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ABSTRACT

A theoretical model capable of predicting the thermomechanical response of

continuously reinforced metal matrix composite laminates subjected to multiaxial loading

has been developed. A micromechanical model is used in conjunction with nonlinear

lamination theory to determine inelastic laminate response. Matrix viscoplasticity, residual

stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the

model.

The representative cell of the micromechanical model is considered to be in a state

of generalized plane strain, enabling a quasi two-dimensional analysis to be performed.

Constant strain finite elements are formulated with elastic-viscoplastic constitutive

equations. Interfacial debonding is incorporated into the model through interface elements

based on the interracial debonding theory originally presented by Needleman (1987), and

modified by Tvergaard (1990). Nonlinear interfacial constitutive equations relate

interracial tractions to displacement discontinuities at the interface.

Theoretical predictions are compared with the results of an experimental program

conducted on silicon carbide/titanium (SiC/'Ti) unidirectional, [04l, and angle-ply, [+45] s,

tubular specimens. Multiaxial loading included increments of axial tension, compression,

torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic

deformation due to damage from matrix plasticity and separate time-dependent effects

from time-independent effects. Results show that fiber/matrix debonding is nonuniform

throughout the composite and is a major factor in the effective response. Also, significant

creep behavior occurs at relatively low applied stress levels at room temperature.
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CHAPTER 1

INTRODUCTION

While the range of applications for composite materials is ever increasing, the use

of composite materials is anything but new. Reinforced concrete has been widely used as a

construction material for years. The Israelites used straw to reinforce mud for making

bricks. The Mongols crafted bows from animal tendons, wood and silk bonded together

with an adhesive. Many other examples of man-made composites could be given.

Composite materials also occur naturally in a wide variety of biological tissues. The recent

increase in interest in composite materials is due primarily to the need for materials with

high stiffness to weight ratios, and is fueled by advances in computing technology.

Metal matrix composites (MMC) arc currentlybeing considered as candidate

materialsfor such structuralapplicationsas hypersonic flightvehicles,propulsionsystems

and missiles.In these types of applicationsthcrmomechanical loading is a primary

consideration.For the structuralapplicationsenumerated above, the materialsystem will

be required to maintain significant stiffness and strength at elevated temperatures. A

titanium (Ti) matrix reinforced with continuous silicon carbide (SIC) fibers is one type of

MMC under consideration and is the model system that will be used in this study.

SiC/Ti composites exhibit many desirable properties, but because the titanium

matrix is a viscoplastic material, the composite can respond to thermomechanical loads in

a highly nonlinear way. Damage to the fiber/matrix inteffacial zone in the form of

debonding and radial microcracking can also cause nonlinear composite response.
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I.I Literature Review

MMC have been studied for years but over the last four years a large amount of

research has been undertaken in order to obtain a better understanding of the response of

MMC to thermomcchanical loading. The following literature review summarizes the most

important work done in the area of inelastic deformation of MMC; it is not intended to be

comprehensive.

1.1.1 Plasticity

Because titanium is an elastic-viscoplastic material, it is necessary to consider

creep as well as plasticity when analyzing the thermomechanical response of titanium

matrix composites. While creep behavior is not associated with classical plasticity, unified

viseoplastic models attempt to describe both time dependent and independent responses

through a single model. Thus, related work done in the area of creep response is also

included in this section.

Teply (1984) developed the periodic hexagonal array (PHA) model for the

plasticity analysis of MMC based on a triangular representative volume element.

Piecewise uniform fields were introduced to obtain estimates of local instantaneous fields.

Dvorak and Teply (1985) and Teply and Dvorak (1988) exercised the model by

subdividing the representative volume element into finite elements. Both displacement

and equilibrium approaches were used to obtain upper and lower bounds on instantaneous

moduli of elastoplastic composites.

Dvorak, et al. (1988 and 1990) conducted an extensive combined experimental/

theoretical study of the elastoplastic response of a boron/aluminum composite.

Experiments were performed on axially reinforced [01 and fiberless tubular specimens by



applying increments of axial load, torque, and internal pressure. Dvorak and co-workers

were able to plot the initial yield locus and track the movement of the current yield

surface. The experimental program confirmed that the composite yield surface, like the

matrix yield surface, must translate in the direction of the applied stress increment. Initial

and subsequent yield surfaces were predicted using the periodic hexagonal array (PHA)

model (Tcply, 1984), bimodal plasticity theory (Dvorak, 1991), and a modified Mori-

Tanaka scheme (Mori and Tanaka, 1973 and Benveniste, 1987). These predictions were

compared to the experimental results. Dvorak (1991) provides a summary of the state of

the art in plasticity theories for fibrous composite materials, extensive references, and

summarizes the experimental results discussed above. Only the PHA model, with it's

reliance on finite element analysis, was able to quantitatively predict the size and location

of the current yield surface under a complex incremental load path. The interfacial bond

between boron and aluminum is strong and no damage was observed experimentally until

a very large number of load increments had been applied to the tube. Even then, the

researchers were unable to conclusively determine that damage had occurred. Damage

was not considered in any of the above analyses.

Aboudi (1987a and 1991) has incorporated the viscoplastic theory of Bodner and

Partom (1975) and (1987) into the method of cells micromechanical model to predict

inelastic composite response due to matrix plasticity. The Bodncr-Partom viscoplasticity

theory describes the material behavior with five parameters. Either isotropic or anisotropic

hardening can be considered. The theory is a unified viscoplasticity theory in that no yield

criterion is used. In order to predict initial yield surfaces with the method of cells, Pindera

and Aboudi (1988) have included the Mises yield criterion in the model. Aboudi (1991)

has demonstrated the versatility and accuracy of the method of cells through correlation

with experimental data.



MMC are known to exhibit viscoplastic response,particularly at elevated

temperatur_ (Arnold, et al., 1992). Numerous theories have been developed to describe

the viseoplastic response of initially isotropic metallic materials. Freed and Walker (1991)

provide a representative bibliography of work done in the field of viscoplastieity of

initially isotropic metallic materials prior to presenting their own viscoplastic theory based

on thermodynamics. In order to predict the viscoplastic response of MMC it is necessary

to use a model that allows the matrix to be described by viscoplastic constitutive

equations.

Eggleston and Krempl (1992) observed that creep of 190] SiC/Ti at elevated

temperature was generally faster than that of the monolithic titanium alloy. They used the

unified viseoplasticity theory based on overstress (VBO) (Majors and Krempl, 1991) to

model the matrix response. Both perfect and weak fiber/matrix bonding were considered

using a finite element model of a repeating unit cell. They concluded that debonding had

occurred during the experiments, and had increased the composite creep rate.

1.1.2 Damage

Long before the current interest in damage to MMC, Adams (1974) considered the

transverse tensile loading of a unidirectional composite using a square repeating cell finite

element model. The plane strain analysis included matrix plasticity and thermal residual

stresses. A finite element scheme was used whereby once an element reached its ultimate

strength it was removed from the analysis by setting its material properties equal to zero.

A degraded fiber/matrix interface was modelled by reducing the strength of the layer of

matrix elements immediately adjacent to the interface. Numerical results indicated that a

crack initiates at the interface, propagates partially around the fiber and then across the

matrix.



While damage mechanics has been studied for some time, until quite recently

imperfections in MMC have commonly been neglected. Benveniste (1985) discussed

fundamental concepts in the theory of elasticity of composite materials in the presence of

displacement discontinuities at constituent interfaces. Representative volume averages

were redefined, and average stress and strain fields were reconsidered under these new

definitions. The dual average stress, average strain approach taken yields the result that the

effective stiffness tensor is not necessarily the inverse of the effective compliance tensor.

Damage to the fiber/matrix interfacial zone of a MMC has recently been

discovered to have significant, deleterious effects on the overall composite response and

has been the subject of much current study. Damage, in the form of interfacial debonding,

in a titanium alloy matrix reinforced with silicon carbide fibers was first experimentally

observed and reported by Johnson, et al. (1990). The experimental study involved

applying tensile loading to five different laminates, most containing off-axis plies. Bond

failure was observed as a separation between the fiber and matrix in off-axis plies using

the edge replica technique. For a [9081 specimen the initial nonlinearity (knee) in the

stress-strain response occurred at the far field stress of 23 ksi; subsequent load cycles

produced a knee at the stress of 16 ksi. Edge replicas taken under load revealed that the

knee corresponded with fiber/matrix separation, not plasticity. Replicas taken after the

removal of the load revealed no separation. The authors postulated that the initial knee

corresponded to the actual breaking of the fiber/matrix bond, whereas the knee observed in

subsequent cycles was associated with overcoming the thermal residual stresses created in

the fabrication process.

In a three part series of papers, Benveniste, et al. (1989, 1991) and Chen, et 81.

(1990) developed a micromechanical model for predicting stress fields and effective
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thermoclastic properties of composites with coat_ fibers. In the first paper (Benveniste, et

al., 1989), the authors use a variant of Benveniste's (1987) restatement of the Mori-Tanaka

method to cvaluau) local fields and overall thermomechanical properties of composites

reinforced with coated fibers or particles. Local fields in a coated inclusion are

approximated by those found when the coated inclusion is embedded in an unbounded

matrix material subjected to the average stresses (or strains) at infinity. This approach

allows local fields in the inclusion, coating, and adjacent matrix to be evaluated by using

the solution of a single coated inclusion in an infinite matrix. The assumed microstructure

in the model is that the matrix phase is continuous. In the application of the model, the

fiber and coating constituents arc restricted to that of a coating encapsulating a fiber or

particle. All constituents are restricted to being isotropic. The second paper (Chen, ctal.,

1990) extended the model to include cylindrically orthotropic fibers and transversely

isotropic coatings and matrices. The third paper (Benveniste, ct al., 1991) attempted to

provide a framework for computation of the effective thermomechanical moduli of

composites reinforced with curvilinearly anisotropic, coated inclusions. It also

analytically established the diagonal symmetry of the predicted stiffness tensor.

An aluminum matrix reinforced by unidirectional silicon carbide fibers subjected

to transverse tension was studied by Wisnom (1990). The effects of fiber spacing, fiber

packing geometry, thermal residual stresses, interracial strength, and matrix material

properties were evaluated with respect to the transverse tensile strength. A generalized

plane strain finite element analysis was implemented using a repeating cell model.

Rectangular, diamond and single ply microstructures were considered. The Mises yield

criterion was used and isotropic hardening assumed for the matrix. Interface elements

were formulated to model the fiber/matrix interface as brittle. Perfect bonding was

assumed to exist until a state of stress was reached when the interface failed. Compressive
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interface failure and frictional slip were not considered. A quadratic interaction equation

was used for the case where both tensile and shear stresses were significant.

(a/a?2+ = 1 (1.1)

o and %are the normal and shear stresses across the interface, and of and 'ofare the failure

stresses for the interface in pure tension and shear, respectively. Of all the parameters

studied, the interracial strengths, of and xf, were found to have the largest impact on the

transverse composite strength. Also, thermal residual stresses were seen to be beneficial

due to the compressive radial stress components at the interface. It was noted that residual

circumferential stresses in the matrix were tensile. The aluminum matrix yielded during

processing.

The effects of cracking and imperfect bonding in metal matrix composites has

been incorporated in the micromechanical method of ceils (Aboudi, 1991) by Aboudi

(1987b, 1988, and 1989). The effective stress-strain response of MMC containing a

doubly periodic array of cracks was predicted by Aboudi (1987b). The effect of cracking

was incorporated by adopting a second order expansion of the displacement field which

satisfies equilibrium as well as traction and displacement continuity. Imperfect bonding

between the fiber and matrix was incorporated into the method of ceils (Aboudi, 1988)

through the flexible interface model of Jones and Whittier (1967). Interracial decohesion

was modelled by two parameters that represent displacement discontinuity at the interface

in the normal and tangential directions. The derived constitutive equations yield closed

form expressions for the effective elastic moduli. The equations were readily implemented

for determining the thermomechanical response of viscoplastic MMC. The normal and

tangential bonding parameters represent a thin elastic film between the fiber and matrix.

Parameter values of zero correspond with perfect bonding, while as parameter values



approachinfinitytheconditionof no bond isapproached.Herakovichand Hidde (1992)

showed that effective elastic moduli are degraded asymptotically, so it is possible to

simulate the no bond, or totally debonded condition, using finite bonding parameters.

Aboudi (1989)presentedclosedform constitutiveequations,basedon themethod

of cells,for predictingthe responseof debonding,continuousfibercomposites.An

interracialfailurecriterionbased upon thecohesivestrengthof theinterfacewas used.

Frictionalslidingoccursafterinterfacialshearfailureifthereiscompressionpresentatthe

interface.The model assumes perfectbonding untila criticalshear stresshas been

reached,above which thefiberand matrixareallowedtoslidealongtheinterface.Sliding

isgovernedby thefrictionalforce,which isdependenton thecoefficientof friction.The

criticalinterfacialshearstressisa functionof thenormalinterracialstresses.Compressive

normal stresses increase the bond strength, while tensile normal stresses reduce it. The

effect of decohesion on effective composite response, initial yield surfaces, and strength

envelopes was shown for a SiCdTi composite.

Effective elastic properties and thermal expansion coefficients of unidirectional

composites with imperfect interface conditions were evaluated by Hashin (1990) using the

three-phase model (Christensen and Lo, 1979). The imperfect interface was treated as an

interphase, and defined in terms of spring type constants relating interface displacement

discontinuities (jumps) to tractions.

(m) D,,lu,,]On(j) = On =

x,,t_ = _(") = D s[us]
--hi

(I.2)

'_n_b = ,C(m) = Db[U b]nb



Where n, t, and b denote a right handed coordinate system with n normal to the interface

and b in the direction of the fiber. [ ] denotes a jump discontinuity, and D n, D t, D b arc

spring constant type material parametgrs which have units of stress divided by length. An

equivalent fiber concept was used to simplify the evaluation of effective axisymmetric

elastic properties, axial shear modulus, and thermal coefficients, but a more complex

analysis was required for the effective transverse shear modulus.

Achenbach and Zhu (1990) also assumed traction continuity at the fiber/matrix

interface and allow for displacement dicontinuity in the interphase region. Again, tractions

wm'e assumed to be proportional to the corresponding displacement discontinuities. The

transverse response of unidirectional composites was investigated using two different

hexagonal arrays of fibers to account for two different fiber packing sequences. Symmetry

considerations reduced the region that must be analyzed to a trapezoid and the boundary

element method was used to solve the numerical problem. In a later paper Zhu and

Achenbach (1991) included the effects of radial matrix cracks and interphase failure on

transverse response. Interphase disbonds and radial matrix cracks were assumed to have

the same periodicity as the fiber array. The interphase was modelled by radial and

circumferential springs. A strain-energy density criterion was used for interphas¢ failure.

Here strain energy is given by:

O2 ,t2
r r0 (1.3)

U = 2k-'--_+ 2k'--0

Where U is the strain energy per interface area and kr, k0 denote the radial and

circumferential interfacial sfiffnesses, respectively. Disbond occurs if the strain energy

exceeds a critical value. Radial matrix cracks are initiated using a tensile circumferential

stress criterion and crack propagation is governed by fracture toughness. For a large

critical interphase strain energy or a weak matrix, radial matrix cracking was predicted to
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occur befor¢ interphase dcbonding. For a small value of critical interphase strain energy or

a strong matrix, intezphase failure was predicted to occur before radial matrix cracking

took place.

Nimmer (1990) developed a very simple model for unidirectional MMC with

weak interfaces based on the presence of thermal residual stresses. A square cell

containing a square fiber subcell and two rectangular matrix subcells was used to

approximate a square array of fibers reinforcing a metal matrix. For simplicity, the model

assumes Poisson's ratio for both fiber and matrix are zero. Thermal residual stresses

created in the cool-down process during fabrication arise due to the mismatch in

coefficients of thermal expansion between the fiber and matrix constituents. In the MMC

under consideration, the coefficient of thermal expansion of the matrix was larger than that

of the fiber. Thus, compressive radial residual stresses were present after processing. No

chemical bond was considered in the analysis, but a mechanical bond created by the

compressive radial residual stresses must be overcome before the interface fails. This is

what is frequently referred to in the literature as a weak bond. When sufficient transverse

tension had been applied to overcome the residual stresses, a knee in the effective

transverse stress-strain response was seen to occur. Results of this simple model wen:

compared with results from a plane stress finite element analysis also conducted using the

weak interface. Qualitatively, the same type of behavior was predicted by each approach.

The nonlinear finite element analysis was based on a square array of fibers, and contact

elements with the capability to represent Coulombic friction were used to model the fiber/

matrix inte, rface. For compressive transverse loading, the matrix yielded before interfacial

separation occurred at an interface location 90 ° away from where separation was observed

under transverse tension.
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The finite elementmicromechanicalmodel discussed above was modifiod by

Nimmcr, et al. (1991) to represent a rectangular array of fibers by inclusion of an aspect

ratio, then compared with experimental results for SiC/I'i-6-4 at three different

temperatures. The constituents were assumed to be isotropic and homogeneous. Fiber

properties were assumed to be linear elastic and temperature independent. The matrix was

assumed to have temperature dependent elastoplastic material properties. The Mises yield

criterion with kinematic hardening was used to represent the plastic response of the

matrix. Time dependent matrix behavior was considered during the fabrication cool-down

process. Large circumferential residual stresses which could lead to radial cracks growing

from the interface in the matrix were predicted to occur. Agreement between predicted and

experimental response was extremely close except in a few instances. The most notable

disagreement occurred during unloading. The model predicted a more distinct knee upon

unloading and permanent strains that were not observed experimentally.

The effect of fiber spacing on interracial damage in SiCfri was studied by MacKay

(1990). Back-scattered scanning electron microscopy techniques were used to study the

condition of the composite in the as-fabricated and heat treated (in argon for 24 hr at 1100

°F) states as well as after 10,000 thermal cycles between 572 and 1022 °F. It was

discovered that microscopic radial cracks existed in the fiber/matrix interface in the as-

fabricated state. These cracks appeared to be the result of tensile thermal residual

circumferential stresses in the matrix at the fiber/matrix interface. The microcracks tended

to occur in the direction of the nearest neighboring fiber and were more prevalent for small

fiber spacing rather than for large fiber spacing. The heat treatment created no further

damage, but thermal cycling did.

The three-phase model (Christensen and Lo, 1979) and a square array generalized
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pianostrain finite element model were used by Highsmith, ct al. (1990) to predict when

fiber/matrix separation occurs in laminated SiC/Ti composites. Linear elastic fiber and

matrix properties were used in both models. Their procedure was to use micromechanics

to predict ply properties, then use lamination theory to determine overall and ply stresses

and strains; finally, the ply stresses were input back into the micromechanical model to

determine local stress and strain fields. Local matrix stresses at points along the interface

as determined from the two models were compared. Thermal residual radial stresses at the

interface are compressive. Separation was assumed to occur when the local radial stress at

the interface is zero. Reasonably good agreement for the transverse response of

unidirectional composites was demonstrated for the two models. The fiber/matrix

separation predicted for transverse loading of a unidirectional composite agreed well with

the experimental observation of a knee in the transverse response of a unidirectional

composite. For laminates however, the predicted overall laminate stresses associated with

fiber/matrix separation were extremely low and thermal residual stresses were nearly

sufficient to cause separation. The experimentally observed knee occurred at a laminate

stress much smaller than the load required to cause local yielding in the absence of fiber/

matrix separation. This separation appeared to alter the local stress field and promote local

matrix yielding.

Lereh and Saltsman (1991) conducted tension tests on seven different SiC/Ti

laminates at room temperature and 1472 °E Metallography was used to examine

specimens prior to loading, after certain predetermined loads were applied, and after

failure. Fractography was also conducted after failure. Fiber/matrix interfacial debonding,

matrix microcracking, and fiber breakage were all visually observed damage mechanisms.

Matrix plasticity was also detected. Fiber/matrix debonding was determined to be the most

prevalent damage mechanism for laminates containing off-axis plies. Through comparison
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of theoretical predictions with experimental data it was determined that some laminates

had sufficiently high tensile thermal residual radial stresses present to cause partial

debonding in the as-fabricated condition. Theoretical predictions from the vanishing fiber

diameter model (Dvorak and Bahei-EI-Din, 1982 and Bahei-EI-Din and Dvorak, 1982)

were compared with the experimental results. Debonding was simulated in the model by

artificially reducing the fiber modulus to 3% of its original value at the stress when the

knee in the response was experimentally observed. Reasonably good agreement between

theory and experiment was obtained for the longitudinal stress-longitudinal strain

response of [08], [908], and [0/9012s laminates, but the longitudinal stress-transverse strain

predictions did not correlate well with the experimental data.

An attempt to distinguish the inelastic deformation of a SiC_./I_ composite due to

damage from matrix plasticity was made by Majumdar and Newaz (1991, 1992a, 1992b)

and Majumdar, et al. (1992) for tensile loaded unidirectional [0] and [90] specimens. To

this end the authors used key experiments conducted at room and elevated temperature as

well as exhaustive microstructural examinations. Results showed that the inelastic

deformation of a [0] composite was primarily associated with matrix plasticity. The

response of [90] composites subjected to tensile loading was separated into three distinct

regions. Initially, an elastic response occurred. The slope of the stress-strain curve was

then decreased and finally the stress remained constant with increasing strain. The

degraded response in the second region was attributed to damage to the fiber/matrix

interfacial zone, primarily in the form of debonding, but also due in part to radial cracking.

The unloading stiffness was observed to be much reduced from the initial loading

stiffness. Only a very small permanent strain was present upon complete unloading. While

both matrix plasticity and further damage occurred in the third region, matrix plasticity

was the dominant feature. The authors compared their experimental results with
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pre_¢tions from three micromechanical models. For theoretical predictions of tests

conducted at room temperature, zero interfacial strength was used and reasonably good

correlation with experimental data was found. The authors suggested, however, that at

elevated temperature there may be a bond strength associated with the interface.

The stiffness reduction of a unidirectional composite containing interfacial cracks

undex longitudinal shear loading was examined by Teng (1992). The composite cylinder

assemblage (CCA) model (Hashin and Rosen, 1964 and Hashin, 1972) was employed to

predict the shear moduli of a composite weakened by similar cracks along the entire

length of the fiber, located symmetrically on either side of the fiber (180 ° apart). The fiber

and matrix were taken to be homogeneous, isotropic, and linearly elastic. Due to the

presence of the uniformly distributed interracial cracks, the composite could no longer bc

considered transversely isotropic as in the perfectly bonded case. Thus, two effective

longitudinal shear moduli exist. The resulting mixed boundary value problems led to

systems of dual series equations, which were reduced to Fredholm integral equations of

the first kind having a logarithmically singular kernel. The unknown functions were the

shear tractions along the uncracked portions of the interface. Nondimensionalized results

were presented for various fiber volume fractions and constituent shear modulus ratios.

McGee and Herakovich (1992) incorporated the interfacial constitutive equations

developed by Needleman (1987a, 1987b, 1990a, 1990b, 1992) into the method of cells.

These interracial constitutive equations will be presented in Chapter 2 as they are an

integral part of the present work. In order to incorporate these interracial traction-

displacement relations which are point-wise in nature into the method of cells, it was

neeess0aT to transform them into average quantities. This transformation must also

account for fiber geometry differences between a round fiber and the square fiber subeell
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used in the method of cells. A linear elastic square repeating cell micromechanics model

was implemented using finite element analysis to determine a suitable transformation.

1.2 Problem Definition

Silicon carbide/titanium (SiC/Ti) composites are a type of MMC that is currendy

under consideration for various high temperature applications. These composites are

typically fabricated at high temperatures. Due to the mismatch in coefficient of thermal

expansion between SiC and Ti, residual thermal stresses are created during the cool-down

process. Many of the SiC fibers currently in use have one or more Carbon/SiC coatings

deposited on them before consolidation. This is done in an attempt to keep the reaction

zone at the fiber/matrix interface from migrating into the fiber. The presence of these

coatings can lead to a very poor bond between the fiber and matrix, thus making the

debonding phenomenon very important in determining the inelastic deformation of this

type of MMC.

Other damage mechanisms are also known to exist in MMC, namely radial matrix

cracking and fiber breakage. While these two damage mechanisms are important, they

appear to effect strength more than stiffness, whereas the focus of this study is on stiffness

rather than strength. That is not to imply that damage induced strength degradation is not

an important consideration in the design of MMC; clearly it is. However, strength

degradation is not included in the scope of the current work. Thus, the focus will be on

fiber/matrix interfacial dcbonding.

Metallic matrices are known to be elastic-viscoplastic in nature. In the present

context, the term viscoplasticity refers to the path-dependent, time-dependent response

associated with the dislocations of a particular alloy. It is noted that the therrnomechanical
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properties of common metallic matrices are generally temperature dependent as well.

The preceding literature review described many attempts to predict the inelastic

response of damaged MMC for tensile loading applied transverse to the fibers, and one

attempt to predict the inelastic response for axial shear loading. A few models have been

presented that are capable of predicting inelastic response for general loading, but

comparisons with experimental data were not made. To date, there is a scarcity of

experimental results from any type of tests on MMC other than tension or compression. A

relatively simple way to apply a general loading to a material is to use tubular specimens;

this allows axial, torsional, internal pressure, and thermal loads to be applied either

proportionally or in increments. However, MMC tubes are very difficult to fabricate and

are therefore expensive. A limited number of 1041 and [:1:451s SiC/Ti tubes was available

for the present study.

The goal of the current study is to develop an experimentally verified model

capable of predicting the thermomechanical response of continuously reinforced metal

matrix composites subjected to multiaxial loads in the presence of damage. The model is

based on micromechanics and employs nonlinear lamination theory to determine the

inelastic deformation of laminates. Constitutive relations for each lamina are determined

from a mieromechanics analysis that is performed numerically using the finite element

method.

The representative cell of the micromechanical model is considered to be in a state

of generalized plane strain, enabling a quasi two-dimensionai analysis to be performed.

Constant strain triangular elements are formulated with elastic-viscoplastic constitutive

equations. Interfacial debonding is incorporated into the model through interface elements

that use nonlinear interfacial traction-displacement relations. Debonding can occur normal
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to the interface and in any tangential direction.

Thcoretical predictions arc compared with the results of an experimental program

conducted on SiCfI_ tubular specimens. Multiaxial loadings included increments of axial

tension, compression, torque, and internal pressure. Loadings were chosen in an effort to

distinguish inelastic deformation due to damage from matrix plasticity, and separate time

dependent effects from time independent effects.
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CHAPTER 2

MODEL DEVELOPMENT

A model to predict the inelastic response of unidirectional and laminated MMC to

thcrmomechanical loading is developed in the present chapter. In laminate analysis it is

necessary to be able to describe the constitutive behavior of each lamina. This is done

using micromechanics. Hence, the ingredients for the micromechanical model arc

presented first. The laminate analysis procedure is then developed. The implementation of

the model is described in Chapter 3.

2.1 Micromechanlcs

Consider a composite with continuous fiber reinforcement aligned in the x- or l-

direction. The use of micromechanics dictates that constituent properties and geometries

are explicitly considered. To do this it is necessary to replace the complex microstructure

of the composite with a representative volume element (RVE). The use of an RVE

presumes that the fibers are uniformly dispersed (statistically homogeneous) throughout

the matrix phase. A sufficient quantity of both material phases must be used such that the

response of the RVE is representative of the composite material at large. If the fibers are

arranged in a doubly periodic rectangular array as shown in Fig. 2.1 it is sufficient to

analyze one unit cell that contains a single fiber embedded in matrix material, provided the

appropriate boundary conditions arc applied. These boundary conditions will be discussed

in Chapter 3. The prcsent model treats the fibers as linear elastic and the matrix as elastic-

viscoplasdc. Fiber/matrix interfaci:d constitutive relations arc used to model debonding.
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2.1.1 Viscoplastic Model

Classical plasticity theory is rote independent. Time dependency is introduced

through phenomenologically developed creep models. Thus, plasticity and creep are

independent in the classical theory. Viscoplastic constitutive equations attempt to

represent the interaction between plasticity and creep. The distinguishing feature between

viscoplasticity and plasticity is that viscoplasticity admits states both inside and outside

the yield surface, governed by the kinetic equation of state, whereas plasticity admits only

states inside and on the yield surface, governed by the consistency equation.

Consequently, the plastic strain rate is continuous from the elastic domain across the yield

surface and into the inelastic domain of viscoplastic response (Freed, et al., 1993). Unified

theories of viscoplasticity are based on the concept of considering both elastic and

inelastic deformations to be generally nonzero at all stages of loading; therefore, no yield

criterion is required. From a practical standpoint this greatly simplifies the analysis

because one does not have to consider different criteria for loading elastically,

inelastically, or unloading. Inelastic strains include time independent and time dependent
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components.

The clasfic-viscoplastic constitutive model of Bodncr and Partom (1975, and

Bodncr, 1987) is used in the current model and will now be presented. The total strain rate

is assumed to be separable into elastic and inelastic components

----. "a]e0 % + _] (2.1)

where the dot represents time differentiation. The elastic component is given by the time

derivative of Hooke's law and the strain-displacement relationship

. t (_ _ ) (2.2)

The Prandtl-Rcuss flow law is assumed to apply to the inelastic strain rate components.

(2.3)

(2.4)
s0 = o O- _o,.8 0

The stress deviators, s O are given by

where 8ij is the Kronecker delta and repeated subscripts imply summation over 1,2, and 3.

An expression for A can be found by squaring eqn. (2.3)

A2 = D_'/J2 (2.5)

where .I2 is the second invariant of the deviatoric stress

! (2.6)
J2 = _Si/Si/

and D2Pi is the second invariant of the plastic strain rate

°

1 .pI-M

D;t= _%%.
(2.7)



21

The kinetic equation (i.e., an equation of state) governs the inelastic deformations and is

taken to be

and Z is assumed to have the form

z = Zt+ (Zo-Zi)expl-m(Wp/Zo)]
(2.9)

where Z 0 and Z 1 are material parameters and Wp is the plastic work.

Altogether there are five material parameters in the model. The parameter Z0 is

associated with the yield stress of the material in simple tension while Z 1 is proportional to

the ultimate stress. The material parameter m determines the work-hardening of the

material and the rate sensitivity is controlled by the parameter n. The constant D O defines

the limiting strain rate for the material. These parameters are often determined from two

simple tension tests conducted at different strain rates.

2.1.2 Damage Model

As indicated by the literature review, damage to the fiber/matrix interface has a

significant effect on the response of MMC. The current section outlines the interfacial

debonding model of Needleman (1987a) and an alternative model developed by Tvergaard

(1990).

Debonding of the fiber/matrix interface plays a key role in limiting the ductility of

a composite. Needleman (1987a, 1987b, 1990a, 1990b, 1992) has developed a cohesive

zone model that describes the process of void nucleation from initial debonding through

complete de,cohesion. The model provides independent constitutive relations for the
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interface. With increasing interfacial separation the traction across the interface increases

to a maximum, decreases, then vanishes so that complete decohesion occurs. Since the

mechanical response of the interface is specified in terms of both a critical strength and the

work of separation per unit area, dimensional considerations introduce a characteristic

length.

Consider an interface supporting a traction field T which in general has normal and

shear components. Two material points, initially on opposite sides of the interface, are

considered and the interracial traction is taken to depend only on the displacement

difference Au across the interface. At each point of the interface

u, = n. Au u, = t- _,u u_ = b. Au (2.10)

and

7: = n. T T, = t.Z' "I_= b. T (2.11)

where n, t, and b form a right-hand coordinate system as shown in Fig. 2.2. Positive un

t

Figure 2.2: Interface Coordinate System

corresponds to increasing interfacial separation, u t is tangent to the interface, and u b is

parallel to the fiber direction. The mechanical response is described in terms of a potential

_(un,ut,ub),
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#(u,,u,, u_) = -J
o

(T.du.+ TfluI+ TbdUb)

A specific form frequently used (Needleman, 1987a, 1987b, 1990a) is

23

(2.12)

27_ o1"1 2 4 1

+l_(,2+w2)(1-2u+u2) _ (2.13)

U n U_ Ub

u=-_ v=-_ w=- 5

for u n < 8. Here o o is the tensile strength of an interface undergoing a purely normal

separation, 8 is a characteristic length, and 0t specifies the interracial shear to normal

strength ratio. When u n > 8, _ -- _sep, where _sep is the work of separation. The work of

separation serves to define the characteristic length 8. Thus, even though the characteristic

length may not correspond to a physical length, it is a measurable quantity because the

work of separation can be determined experimentally. The interfacial tractions are

obtained by differentiation of the potential function, eqn. (2.13), to give

27
Tn = _._..oo [u (1 -2u+u 2) + 0t (_2 + W 2) (hi-- !)]

(2.14)

27
1", = --To,,etv (1 - 2u + u2) (2.15)

27
Tb = -TOoaW ( 1 - 2u + u2) (2.16)

Relative shearing across the interface leads to shear tractions, but the dependence of these

tractions on u t and ub is linear. The traction magnitudes increase monotonically for

negative u n.

Other forms of the potential have been presented, including a combined

trigonometric-exponential (Needleman, 1990b and 1992) and a double exponential

(Needleman, 1992). Little is known about the validity of these specific interracial
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constitutiver_lations.The most dvtail_ informationcomes from Rose, ¢t al.(1981 and

1983),which indicatesa universalexponentialform of the traction-separationrelationfor

coherent atomisticallysharp interfaces.

The above model describes debonding by normal separationonly. Tvergaard

(1990, 1991, and 1993) proposed a model that describes debonding by tangential

separationas well as normal separation.The model was implemented in an axisymn_tric

unitcellanalysis,thereforeitwas only necessaryto describedcbonding in the normal, n

and tangential,b directions.For thecase of purelynormal separationthe model reduces to

Ne_ileman's (1987a) model. In general no potentialexistsfor Tvergaard's (1990)

alternativedebonding model. The cohesive zone formulation is viewed as a

phenomenological model, which represents the average effect of the dcbonding

mechanisms. Once totaldebonding has occurred ata pointalong the interface,tangential

tractionsarc accounted forby Coulombic friction.

The dcbonding model used in the present study is an extension of the Tvcrgaard

alternative to the Ncexileman model. Here, interfacial displacements and tractions must

also be included in the tangential, t direction, therefore a three dimensional analysis is

rexluired.

The first step in the development of the model is to assume that the condition of the

bond can b¢ describedby one nondimcnsionalized parameter,X.

i _/(u,/St)2+(Ub/SS)2 foru,S 0 (2.17)
_"= _/(U,fS,,)2+(u,/8,)2+(Ub/Sb)2 foru,>0

Normal compressive tractionsareconsidered not to be detrimentaltothe interface.In the

most general case thereare three characteristiclengths,8n, 8t,and 8b. Bond failureis

representedby _,=I.For X>I, the interfaceisonly capable of transmittingcompressive
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normal traztton| _ frictional tangential tractions. A function F(_L) is chosen as

F(_) = ._%(_.2_ 2),,+ 1) (2.18)

For monotonically increasing loads the current value of ;k is always the maximum value,

However, for unloading and reloading conditions the current value of _ can be less

than the maximum value, gnuw that may have occurred at some previous time in the load

history. In order to prevent the interface from being self-repairing, which is physically

unrealistic, it is necessary to set the current value of g equal to the current maximum,

;b=_, in eqn. (2.18). For kmax < 1, the interracial tractions are then given by

106 (u,,16,,) foru. <0
T, = F (_.,,,_)(u,/8,] foru,> 0

(2.19)

"/', = cxF(_,,,,,.,) (u/8,) (2.20)

Tb = aF (_.._) (uJ8 b) (2.21)

The normal traction, Tn has been made much stiffer than in Tvergaard (1990) for normal

compression to minimize interpenetration of the phases.

For _.max > 1, which signifies loading after the interface has failed and is only

capable of transmitting compressive and frictional tractions, the interfacial tractions are

given by

= I l&(u./8.) foru.g0 (2.22)Tn
t 0 for u. > 0

-sgn (du,)ffl'. forlT, I >_t.tlT_andu.<OT, = -41aT,, (u,18,) forlT,[ < _tl"r.l and u n < 0 (2.23)

0 foru, > 0
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-sgn (dub)pT,, forlT_ I ;ePlT, Jandu, _;0f

Tb = _ -41.tT,(ub/_ b) forJTb]<P[T,landu,<O
L

0 foru,>0

(2.24)

where p is the coefficient of kinetic friction and dut, dub are the current tangential

interracial displacement increments.

To demonstrate the interracial constitutive relations four interfacial displacement

loading cases are shown in Fig. 2.3 and 2.4. The normal and tangential displacement

components presented in Table 2.1 are applied to a material point along an interface. Case

#1 shown in Fig. 2.3a is first tensile, then compressive normal displacement loading. For

increasing normal separation the normal traction, Tn, increases to a maximum then

decreases to zero when bond failure occurs at _.=1 (un/8=l in this case). After bond failure

only compressive tractions may be transmitted through the interface. The response to

negative (compressive) normal displacements is quite stiff to minimize interpenetration of

Table 2.1: Displacement Loading
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thefiberand magix. Since no tangentialdisplacements areappliedthe tangentialtraction,

Tt,remains zero throughout the displacement history.Case #2 (Fig.2.3b) is tangential

displacement loading.The constitutiverelationsare similarfor positiveand negative

tangentialdisplacements.Once bond failureoccurs,atuJS=l in thiscase,no tangential

tractionsarc presentbecausc therearc no normal compressive tractionspresent.Case #3

(Fig.2.4a) is tensileloading,unloading then reloading.Both unloading and reloading

(below thepreviousmaximum displacement)responsesarclinear,which demonstrates the

use of _,m_ in eqn. (2.21).Case #4 (Fig.2.4b) is similarto Case #3 except tangential

displacements are also applied.The maximum normal tractionis reduced due to the

interactionwith tangentialloading.Once thc tangentialdisplaccmcnt isheld constant at

point B the tangentialtractionremains constantforloadingscgmcnt BC then decreasesto

zero inloadingsegment CD as thebond failsdue tonormal separation.

2.2 Laminate Analysis

Elastic as well as inelastic behavior of laminated composites can be predicted

using nonlinear lamination theory (Hidde and Herakovich, 1992). The assumptions

required for the nonlinear theory are the same as those for classical lamination theory

(CLT):

(1) The laminae are assumed to be thin such that each lamina is in a state of plane

stress (ie, o:: = "cx: = "cy, = 0).

(2) The Kirehhoff plate assumptions apply to the laminate. In particular,

(a) a line originally straight and perpendicular to the midplane of the

laminate remains straight and perpendicular (ie, 3'xz = "/yz = 0),

(b) normals to the midplane do not change length (ie, ezz = 0).

(3) Laminae are perfectly bonded.

The development of CLT is found in many composite mechanics textbooks (such as Jones,

1975) thus only the necessary ingredients will be presented here.
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or simply

The stresses in the k _a ply can be expressed as

{o}* = [_]*( {e} - {er} _ {_NL})*

(2.25)

(2.26)

where {_} denotes the totalstrains,{eT} denotes the free thermal strains,and {e/v/'}

representsany nonlinearstrainsassociatedwith plasticdeformation or damage. For any

ply the transformedreduced stiffnessisdefined:

Qij= C_i- Ci3C_a (2.27)
C3a

The transformed stiffnessforany ply isdetermined tobe:

[Cl = i'/'tl-' ICI IT21 (2.28)

[T_ = s2 c2 _2csl E"2] = s2 c2 -cs (s= sinO) (2.29)

cs cs c 2- s2_.J 2cs 2cs c 2- s

where 0 is the angle 'measured from the x-axis to the l-axis as shown in Fig. 2.5. In

general [CJ is the stiffness matrix for an orthotropic material. [T1] and [T2] are the stress

and strain transformation matrices, respectively, associated with transforming quanddes in

material principal coordinates (1,2,3) to global coordinates (x,y,z). The notation used for

the laminate and lamina is shown in Fig. 2.5. The global free thermal strains are

determined from

{e'}*, = {ot}*av'= {a},)*aT' (2.30)

where {ct} l is the thermal expansion of the k th ply in the material principal coordinate

system and AT is a uniform temperature change.
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The nonlinear strains are found from

{_m.} tz= ( l'l'2l -I { cm'} t) k (2.31)

and include nonlinear effects due to both damage and plasticity. The nonlinear strains in

material principal coordinates, {_t') 1, are determined from a micromechanics analysis as

described in Section 2.1.

The total strains in each ply can be related to laminate quantities by

{e}*, = le ° } +zt{_:l (2.32)

where {e*} is the global midplane strain ,'rod {1¢} is the midplane curvature. At this point it

is convenient to define several quantities. The resultant mechanical forces and moments

acting on a laminate are

I!

IN, M} = fo {l,z)dz (2.33)
-II

The equivalent thermal force and moment resultants ,'u'e defined as

_y z, 3 2

tk

Laminate 1

Lamina

Figure 2.5: Laminate/Lamina Geometry

Y

v

(fiber dirocdon)
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N
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E

Figure 2.6: Nonlinear pseudo-force

II

{N r, M r} = f IC)I {¢r} ,( I, z)dz (2.34)
-II

Nonlinear pseudo-force and moment resultants represent the effects of plasticity and

damage at any given time and are defined to be

II

{NNL, M NL} = f [Q] {glCL} ,(l,z)dz
(2.35)

-I!

The term {N NL } is not a physical quantity, it is the difference between the actual resultant

force-strain (N-e) curve and the linear N-¢ curve as depicted schematically in Fig. 2.6. A

similar explanation applies to the pseudo-moment resultant. The laminate extensional,

coupling, and bending stiffnesses, respectively, are defined:

II

IA, B, DI = _ 1_21(1,z, z2) dz (2.36)
-It

Substituting the ply stresses, eqn. (2.26), into the resultant force and moment

definitions, eqn. (2.33) and integrating through the thickness of the laminate yields

{N} = IAI {e*} + IBI Ix} - {Nr}-{N NL} (2.37)

{M} = [al {¢°} + [Ol {_} - {,,:r} _{MNL}

where eqn. (2.32) has also been used to relate ply strains to laminate strains. Equation

(2.37) can be written in the familiar compact form:
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= N +/v r + NsL (2.39)

= M + M T + M NL

For strain loading, solution of eqn. (2.38) yields the resultant forces and moments.

If resultant forces and moments are applied the ABD matrix must be inverted. The

effective laminate stresses are determined by dividing the resultant forces by the laminate

cross-sectional area.
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CHAPTER 3

MODEL IMPLEMENTATION

The viscoplastic and debonding models discussed in Chapter 2 are implemented

numerically using the finite element method. The analysis of unidirectional composites is

presented first. The method is then extended to laminated composites by employing

nonlinear lamination theory.

Effective stress and strain fields in the unit cell under consideration are determined

in accordance with Benveniste (1985), namely

_ij CfEf + Cm_-- l _= 2v s ([uil nj+ [uj] ni)dS (3.1)

O0= c_j + Cm__

where the sub- and superscriptsf and m refer to the fiber and matrix, respectively. Barred

quantifies are averages. The lower case c is the constituent volume fraction, V is the total

volume, and 5 is the fiber/matrix interface. The outward normal to S is denoted by ni. The

jump in displacement across the interface, S is defined to be

iu i] = u_ - i lsS um,
(3.2)

The surface integral in eqn. (3.1) is evaluated numerically using Simpson's rule and

displacement data from the nodes located along the interface.

3.1 Generalized Plane Strain

Consider a unidirectional composite material with continuous fiber reinforcement.

If the fibers are arranged in a doubly periodic rectangular array as shown in Fig. 2.1 a

single unit cell may be used as the representative volume element. Assume that the
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composite is very long in the x (fiber) direction. Away from the ends, a state of generalized

plane strain (Lckhnitskii, 1981) exists. The stress and strain fields arc independent of the x

coordinate. Displacements arc allowed in all three coordinate directions. Each

displacement is dependent on y and z coordinates and the displacement in the x direction is

also linearly dependent on the x coordinate. Including the y and z dependence of the x

displacement allows axial shear deformation to occur. In mathematical terms, the strain

components arc taken to be (Renieri and Herakovich, 1976):

where u, v, w

_U

exx = _ =fl (Y, z)

_v

e = _ = f2 (Y,z)

_w

e,,= _ =A (y,z)

_v aw

Yyz= _'_+ _'_ =f4 (Y,z)

_u Ow
Yxz= _ + _ =f5 (y,z)

Ou by

Yxy = _'_ + _'_ =f6(Y, z)

(3.1)

are displacement components in the 1-, 2-, 3-directions, respectively.

Integration of the strain field yields the following displacement field:

u (x, y, z)

v (x, y, z)

w(x,y, z)

=x(CIY+C2z+C3) +U(y,z)

x 2

= x (C4z + C6) - C1_ + V(y, z)

X 2

= x (-C4y + C 5) - C2_ + W (y, z)

(3.2)

where C 1 through C 6 are unknown constants and U, V, and W are unknown functions of y

and z. A similar formulation was used by Adams and Crane (1984) to predict the response

of unidirectional glass/epoxy and graphite/epoxy composites to combined loading.
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3.2 Finite Element Formulation

The representative volume element (RVE) shown in Fig. 2.1 is analyzed using the

finite clement method. Duc to material symmetry it is sufficient to model a quarter of the

RVE. Considering the RVE to be in a state of generalized plane strain permits the use of a

two dimensional model while retaining three dimensional stress and strain fields. Thus,

very general combined thermomechanical loading may be applied.

The finite clement analysis is conducted using the commercially available general

purpose ABAQUS finite clement code (Hibbitt, Karlsson, and Sorensen, Inc.,1989) which

uses the Newton method to solve a nonlinear system of equations. Both material and

geometric nonlinearities may be considered. User elements may also be defined through

user subroutines, as is done in the current analysis.

Tbe quarter of the RVE to be analyzed is discrctized as shown in Fig. 3.1. Of

course any discretization is permissible and the finer the mesh is made, the better the

results will be. The trade-off is that as the mesh is made finer, the run time increases. The

mesh used in this analysis was chosen because it was fairly coarse, with 68 solid elements

and 8 interface elements, and yet still gave reasonably accurate predictions for the

effective elastic properties. The dimensions a and b were determined from the packing

sequence of the composite under consideration and thus represent the fiber volume

fraction.

Boundary conditions for thermal, axial, transverse, and axial shear loadings arc

also shown in Fig. 3.1. Symmetry dictates that there is no y-displacement along the line

y=0 and that there is no z-displacement along the line z=0. Rigid body motion is prevented

in the x-direction by restraining the origin. Compatibility with the surrounding material
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requires the y- and z-displacements to be constant along the lines y=b and z=a,

respectively. Loads are applied to the RVE through displacement loading. Axial load is

applied by displacing the common node, which will be discussed in the following section,

in the x-direction. Transverse load is applied by displacing the line y=b in the y-direction.

Axial shear loading is simulated by displacing the line y=b in the x-direction and

constraining the x-displacement of the line y=O. Thermal loading is applied by subjecting

the entire mesh to a uniform temperature change.

Transverse shear loading can be applied to the quarter fiber model, but different

boundary conditions are required. Antisymmetric boundary conditions must be used along

the lines y=O and z=0 in place of the symmetric boundary conditions previously

discussed. Compatibility with the surrounding material requires that the edges located at

3, Z,W

l Aw=0

Av=O

2t y, V

Figure 3.1: Finite Element Mesh
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y=b and z=a remain straight.Transverseshearloadingissimulatedby displacingthe edge

z=a in the y-direction.Due to the differentboundary conditionsrequired for transverse

shear loadingitcan not be combined with theothertypesof loadingdiscussed.Transverse

shear loading isnot requiredfor the analysisof laminatesdue to the assumption of plane

stressused in lamination theory.Thus transverseshear loading willnot be considered in

the remainder of this work.

3.2.1 Solid Elements

Constant strain triangular solid elements are formulated in Appendix A for the

condition of generalized plane strain. Both the fiber and matrix are assumed to be

isotropic. The elastic-viscoplastic constitutive relations of Bodner-Partom presented in

Chapter 2 are used to describe the material behavior. The three corner nodes of each

element have three degrees of freedom. The novelty of these elements is that each element

has an additional node. Elements in the mesh must be numbered such that the last node

specified for each element is the 'common node' located at the centroid of the RVE. The

only degree of freedom associated with the common node is in the x-direction, therefore

each element is constrained to a constant axial strain.

3.2.2 Interface Elements

Smelser and Becket (1989) developed a user subroutine for interface elements to

be used with the ABAQUS program. The user subroutine is for either plane strain or

axisymmetric problems and uses the interfaciai constitutive relations of Needleman

presented in Chapter 2. The interface elements have four nodes, two nodes connect to

material points on either side of the interface. The element stiffness matrix is defined

_FN (3.3)
f NM =

_u #t
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where FN is the force contributed by the element to degree of freedom N and u M is the

displacement at degree of freedom M. The formulation is currently extended to account

for debonding in the normal as well as both tangential directions. The modifed Tvergaard

alternative debonding model presented in Chapter 2 was implemented in lieu of the

Needleman model. The derivation is summarized in Appendix B.

3.4 Laminate Analysis

For the present purposes the current laminate analysis is restricted to thermal and

in-plane mechanical loading of flat symmetric laminates. Therefore no curvatures, {K},

are present and the coupling stiffness, [B], is zero. Thermal loads are applied by specifying

a uniform temperature change over the entire laminate. Any combination of laminate

midplane strains, exx, _yy, 'Yxymay be applied as the mechanical loading.

The analysis of a laminate is initiated by using the micromechanical model

presented in Sections 2.1, 3.1, and 3.2 to determine the therrnomechanical properties of

the laminae. These properties, along with the loading specifications, are used as input to

the nonlinear lamination theory (NLLT) to determine both laminate and laminae stresses

and strains. The midplane strains and effective laminate stresses are the desired output.

The strains in each lamina are input back into the micromechanical model to determine the

nonlinear strains. Because the strains in the material principal coordinate system are, in

general, different for each lamina and because the interfacial constitutive relations are

history dependent each lamina in the laminate has its own unit cell associated with it. The

nonlinear strains for the first increment are zero. In all subsequent increments the

nonlinear strains from the previous increment are used. Figure 3.2 presents a simplified

schematic of the incremental laminate analysis procedure.
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CHAPTER 4

MODEL PREDICTIONS

In this chapter predictions from the model discussed in Chapters 2 and 3 arc

presented first for unidirectional composites and then for angle-ply laminates. In some

instances predictions based on the method of cells (Aboudi, 1991) are also presented for

comparison. All predictions are for a titanium matrix reinforced with 40% silicon carbide

fibers by volume. The thermomechanical constituent properties used here and for the

remainder of this work are listed in Table 4.1.

Table 4.1: Constituent Properties

: _Pl_ _ ',

D o

58 0.25 2.77 0

13.2 0.36 5.14 I0000 140 170 1700 7

4.1 Unidirectional Composites

To illustrate the capability of the generalized plane strain model and provide a

baseline for comparisons consider first the case of perfect bonding between fiber and

matrix. Consider also the case of no intcffacial bonding. Using the perfect bond and no

bond assumptions provides limiting conditions on the effective response of the composite.

Perfect bonding is achieved by requiring a continuous displacement field across the fiber/

matrix interface. The condition of no interracial bond is simulated by setting the interracial

strength, a o, equal to zero and the parameter, _., which describes the condition of the bond,

equal to unity.
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The n_thod of cells predictionsfor no interracial bond arc based on imperfect

bonding using the flexible interface model (Aboudi, 1988). The no bond condition was

approximated by making both normal and tangential bonding parameters quite large (R n --

R t = 1), this effectively created a cavity in the matrix ratber than a debonded inclusion.

4.1.1 Combined Loading

One of the prin_ry goals of this work is to describe the response of MMC

subjected to general loading. Therefore combined lo_ings as well as uniaxial loads will

be applied to the unit cell model as designated below:

-x: uniaxial loading in the fiber direction

-y: uniaxial loading transverse to the fiber

-xy: axial shear loading

-x-y: combined axial and transverse loading

-x-xy: combined axial and axial shear loading

-y-xy: combined transverse and axial shear loading

-x-y-xy: combined axial, transverse, and axial shear loading

The reader is reminded that the material principal coordinate system (1, 2, 3) for the

unidirectional composite considered here corresponds directly with the global coordinate

system (x, y, z), where the 1- and x- directions arc in the fiber direction.

Predictions from the unit cell model as well as from the method of ceils (Aboudi,

1991) are shown in Figs. 4.1-4.4, where FE denotes the current finite element unit cell

model and MC denotes the method of cells. The stiffness tensor obtained from the method

of cells has not been transformed to that of a transversely isotropic material because the

unit cell model is not transversely isotropic.

The axial response to the four loading conditions that include axial loads is shown

in Fig. 4.1a for perfect bonding and Fig. 4.1b for no interracial bond. Excellent agreement

is observed between the two models for both the perfect and no bond cases. The only
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variationbetween the models occurs for load cases thatinclude transverseloading.The

only significantdifferencebetween the axialresponse of unidirectionalcomposites with a

perfectfil_rhnatrixbond and thosewith no bond iswhen transverseloads areapplied.Itis

noted thatthe axialstiffnessof thecomposite, definedby the loading(011 _ 0,oij- 0 for

allothers)isnotrepresentedby the initialslopeofthe response forloadcombinations that

includetransverseloadsdue tothe presenceof the transversestresso22.

The transverse tensile response is shown in Fig. 4.2 for the load cases that include

transverse tension. The response of a composite with no bond is very different from that of

a perfectly bonded composite, and in fact, is so large that a different vertical scale is used.

The two models agree quite well for perfect bonding with only relatively small differences

observed in the plastic region. However, for no bond the traction continuity requirements

imposed by the method of cells force the transverse stresses in one matrix subcell to be

equal to those in the fiber subcell, which are zero in this case. Hence, a lower stiffness is

predicted.

Figure 4.3 presents the transverse compressive response for those load cases that

include transverse compression. Again, the two models agree well for perfect bonding. On

the other hand, poor agreement is observed for transverse stiffness for the case of no

interfacial bond. In addition to what was just discussed for transverse tensile loading, the

bonding assumptions used here for the method of cells predictions effectively remove the

fiber from the composite, such that it can support no tractions. The unit cell model allows

the fiber to behave like a debonded inclusion and support compressive tractions.

For perfect bonding the unit cell model predicts a slightly stiffer axial shear

response in the elastic region than the method of cells (Fig. 4.4a). In the inelastic region

this difference is magnified. Similar to the transverse tensile response, the method of cells
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predicts a more compliant response than the unit cell model for no bond between the fiber

and matrix (Fig. 4.4b.). In fact, the agreement for simple axial shear loading (-xy) is not

very good for the no bond condition.

4.1.2 Interracial Parameter Study

The interfacial properties used in the current debonding model (Sect. 2.1) are

related to physical quantities that can, in theory at least, be measured, o o is the maximum

tensile stress that the interface can sustain under simple tension. The shear-to-normal

strength ratio, _ can be found by determining the shear strength of the interface. The

characteristic length, 8, can be calculated from the work of separation, which is the area

under the interracial stress-strain curve up to complete bond failure. A small value of 8

represents a brittle interface, while a large value represents a ductile interface, p. is simply

the coefficient of friction between the two surfaces of a failed interface.

Actually determining these interfacial properties for real fiber/matrix interfaces

could be quite difficult due to the small size of the fibers. For example, the SCS-6 fiber is

considered to be relatively large and it has a diameter of 0.0057 in. Of course, fiber

coadngs and how they are applied to the fiber are extremely important in determining the

interfaeial properties. In light of this, the interracial properties are treated as parameters

that describe mechanical response of the interface. The characteristic lengths are assumed

to be equal, 8 n -- 8t = 8b=8.

Figures 4.5 through 4.8 present the results of a parametric study undertaken to

determine the effects of the interfacial properties on the response of a unidirectional

composite. Axial, transverse tensile, transverse compressive, and axial shear loadings are

considered individually for this parametric study. As previously mentioned, the perfect
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bond and no bond conditions serve as extreme conditions for a composite with a

debonding interface.

The axial response is shown to be unaffected by the condition of the fiber/matrix

interface in Fig. 4.5a. Thus, the effect of interfacial properties on the axial response need

not be considered further.

The effect that the interracial properties have on the transverse compressive

response is shown in Fig. 4.5b. While compression normal to an interface is not

detrimental to the condition of the bond, the transverse compressive loading considered

here creates significant tangential interfacial displacements that do cause debonding. The

effective response of a unidirectional composite subjected to transverse compressive

loading is quite similar to that for loading which is discussed at length in the following

paragraph.

The effect of the interfacial strength, a o, on both the transverse tensile and axial

shear responses is shown in Fig. 4.6. As expected, the larger the interracial strength

parameter, the closer the initial debonding response is to that of a composite with perfect

bonding. After the interface completely dcbonds the response must be the same as that of

a composite with no intcrfacial bond, and it is. The interesting feature displayed for both

transverse tensile and axial shear responses is the unstable response, or falling stress-strain

curve, that occurs for the larger bond. The beginning of the unstable response corresponds

to the interfacial displacement where the maximum interfacial traction occurs (u/8 = 0.33

in Fig. 2.3a). From this point continued swain increments result in less traction required

for additional interfacial displacements. The required traction per unit strain increment

continues to decrease as the separation zone increases until final separation is attained.
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The inteffacial strength ratio, _ is used to define the interracial shear strength in

terms of the interracial strength, o o. As shown in Fig. 4.7, the interfacial strength ratio has

a similar effect on the effective response of unidirectional composites as the interfacial

strength. The effective response to axial shear loading is identical for cases #1 and #2 in

Table 4.2 because these two sets of properties are equivalent for tangential interracial

Table 4.2: Interracial Properties

40.0 1.0

20.0 2.0 28.5x10 "6 0.0

displacements and axial shear loading creates tangential interfacial displacements

exclusively. The same is not true for transverse tensile loading because debonding is

initiated by normal interracial displacements.

The ductility of an interface is determined by the characteristic length, 8. As

shown in Fig. 4.8, a large characteristic length corresponds to a ductile interface while a

small characteristic length corresponds to a brittle interface. As seen for 8 = 5.7x10 "6 in., a

very brittle interface has a very unstable response.

In this study, and in Tvergaard (1990), the coefficient of friction was found to have

very little, if any, influence on the effective response of the composite. This is in part

because frictional sliding does not occur until after bond failure has taken place; and even

then only when compressive normal tractions are present. For the remainder of this study

the coefficient of friction is assumed to be zero.
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4.1.3 Array Geometry Effects

The geometry of the repeating unit cell is dictated by the fiber packing sequence of

the composite that is being modelled. For rectangular array models, the only variable

dimensions are the height, a and the width b (Fig. 3.1). Since the fiber diameter is known

these two dimensions represent not only the packing sequence, but also the fiber volume

fraction. The packing sequence can be defined by the aspect ratio, R = a/b. Often MMC

are fabricated with uneven fiber spacings. This is frequently caused by uneven layups as

well as by fiber swimming during fabrication. The result is that the analyst is faced with

having to decide what aspect ratio is most appropriate. Thus, it is critical to understand

how the aspect ratio affects the effective composite response. To this end, the response of

composites with a fiber volume fraction of 0.4 and aspect ratios of 0.8, 1.0, and 1.2 are

presented in Fig. 4.9 and 4.10.

The transverse tensile responses of composites with aspect ratios of 0.8, 1.0 (a

square unit cell), and 1.2 are depicted in Fig. 4.9 for both the perfect bond and no

interracial bond conditions. The transverse responses for perfect bonding are the same for

aspect ratios of 0.8 and 1.2, with the response for an aspect ratio of 1.0 being slightly more

compliant in the plastic region. For the no bond condition shown in Fig. 4.9b there is a

large variation in both initial stiffnesses and the onset of plasticity for varying aspect

ratios. This is not surprising in view of the fact that the matrix must carry all of the load.

The throat of the matrix (distance along the z-axis from the top of the fiber to the top of the

repeating cell) increases as the aspect ratio increases. Thus, for imperfect bonding, as the

aspect ratio and the throat of the matrix increase the matrix material is more efficiently

used for transverse loading in the 2-direction. Conversely, as the aspect ratio increases the

effective response is more compliant for transverse loading in the 3-direction.
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The axial shear responses for aspect ratios of 0.8, 1.0, and 1.2 are shown in Fig.

4.10. For perfect bonding the responses are almost identical. But for no interfacial bond,

large differences in stiffness as well as plastic response are observed. The same arguments

apply to the axial shear response as to the transverse response.

The obvious conclusion is that while the aspect ratio has a very minimal affect on

the response of perfectly bonded composites, it has a very significant affect on the

response of imperfectly bonded composites. Therefore one must be very careful when

applying a rectangular unit cell to composites with imperfect interfaces. The composites

modelled in the present work had a nominal aspect ratio of 1.0, although there were many

unevenly spaced fibers (Fig. 5.1). For the remainder of this work the aspect ratio will be

taken to be 1.0.

4.2 Angle-ply Composites

The current laminate analysis model is capable of predicting the nonlinear

response of a symmetric laminate subjected to thermomechanical loading. To illustrate the

nonlinear effects of plasticity and damage the predicted response of a [:!:45]s SiC./Ti

laminate subjected to axial, shear, and combined axial/shear loading will be presented in

this section. The constituent properties are given in Table 4.1 and the thickness of each ply

is taken to be 0.008 in. All mechanical loads are applied through strain loading. Perfect

bonding between the fiber and matrix is considered as well as a debonding fiber/matrix

interface and an interface with no bond.

The response of a [:1:451s laminate to uniaxial loading is shown in Fig. 4.11.

Predictions from the current unit cell finite element model are identified by FE.

Predictions from the method of cells (Aboudi, 1991) are also presented and are identified



58

100 _ t , . ! . , 1 • , , ' i ' '

8O

60

40

2,0

n f_ t_,e_

A t

, | | i t t i t

0.0 O.q 1.0 1.5

_/12 (%)

(a)Perfect Bond

2.0

_.m4_tt

Z12

(ks|)

5O .... l .... I,:
| • I

4O

3O

2O

10

0
0.0

o

v v

R=0.8

0.$ 1,0 i.S

_12 (%)

(b)No Bond

2.0

Figure 4.10: Effect of Aspect Ratio on Axial Shear Response



59

(_XX

0_i)

1S0

100

5O

-_'--['_ _ u o
--4_.-_ 4----- . -

/r
"_.0 0

>"_ ' ' ' I • _ " _ .... I '

0.0 0.5 12) I.S 2.0

Exx (%)

(a)Axial Response
iL#,

Zxy

(ksi)

I$0

I00

5O

(b)ShearResponse

t

- w

0.0 0.$ ! .0 1.$ 2.0

_xy (%)

Figure 4.11: [+45] s Axial and Shear Response



6O

by MC. As for the method of cells predictions for unidirectional composites, the stiffness

tensor for each ply has not been transformed to that of a transversely isotropic material.

Predictions from both models for perfect bonding and the no bond condition are labelled

PB and NB, respectively. The no bond condition is approximated in the method of cells

model (Aboudi, 1988) by making both the normal and tangential bonding parameters quite

large (R n = Rt =1 in./ksi). The predictions from the unit cell model for a debonding

interface, labelled DB, are based on the following interracial properties: Oo=20 ksi, c_l,

8=28.5×10 "6 in., _t=0. This set of interfacial properties does not necessarily represent a

real interface. These interfacial properties were chosen simply because predictions were

presented for a unidirectional composite with this set of interfacial properties in Fig. 4.5-

4.8.

The predictied axial response (Fig. 4.11 a) from the two models agrees reasonably

well for both perfect bonding and no bond. The initial axial stiffness predicted by the

method of cells for the no bond condition is more compliant because of the imposed

traction continuity between subcells and the simplified geometry. For no bond between the

fiber and matrix the stresses in the fiber subcell are zero. Traction continuity dictates that

some stress components in adjacent matrix subcells are also zero, which may be over-

restrictive.

The initial response of a composite with a debonding interface is initially that of a

perfectly bonded composite but is quickly degraded. As for unidirectional composites an

unstable response, or falling effective stress-strain curve, is exhibited once the peak in the

interfacial traction-displacement relation is reached. As the interface becomes completely

debonded the prediction for no bond is approached.

The shear response predicted by both models (Fig. 4.11b) is essentially the same
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forperfectbonding,butonceagainthemethod ofcellspredictsa more compliantresponse

for the no bond condition.The same reasoningapplieshere as above for the axial

response.The predictionfora compositewitha debonding interfacefailsbetween the

predictedresponsesforperfectand no bond.

The responseofa [+45]slaminatesubjectedtocombined axialand shearloadingis

shown in Fig.4.12.Both axial(Fig.4.12a)and shear(Fig.4.12b)responsesaxe quite

similarto theiruniaxialloadingcounterparts,themain differencebeingthatnonlinear

responseoccursata lowerstresslevel.Itisinterestingtonotethattheshearresponsefor

combined loadingofa [+45]slaminatewitha debondinginterfaceisthesame asthatfora

laminatewithno interracialbonding.
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CHAPTER 5

EXPERIMENTAL PROCEDURES
i

I I

The experimental program consisted of two phases. The first phase entailed

development of a test method most appropriate for the given MMC to be tested. The test

matrix wu first determined, then other factors such as what data was to be collected, how

to measure strains, where to measure strains, how to apply the loads, what type of fixtures

are required, etc. were determined. The actual testing was performed in the second phase

of the program. This chapter discusses the materials and procedures used in the

experimental program. Chapter 6 presents the results of the experimental program.

5.1 Materials

The McDonnell Douglas Corporation originally supplied ten SIC/13 tubular

specimens for testing at the University of Virginia Composite Mechanics Laboratory, six

were [:1:45] s and four were [04]. Five more [+45] s tubes were delivered at a later date. The

tubes were manufactured by Textron using a proprietary hot isostatic pressing ('HIP)

technique. Molybdenum wires were woven together with the fibers to form a cloth and

help keep the fibers in the proper alignment during fabrication. Alternating layers of fiber

cloth and matrix foil are consolidated at high temperature and pressure to form the

composite. Each tube consists of four plies that are nominally 0.008 in. thick.

5.1.1 Constituents

The following sections briefly describe the constituents that make up the

composite. Nominally, the composite is comprised of 60.4% Ti matrix, 39.4% SiC fiber,

and 0.2% molybdenum wire weave.
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5.1.1.1 Matrix

The metal matrix used in the tubes is consolidated from thin foils of the metastablc

titanium alloy "pi.15V-3C'r-3Sn-3AI, commonly designated Ti-15-3. Lcrch, et al. (1988)

provide an in-depth discussion of the microstructurc of Ti- 15-3, suffice it to note here that

the microstructurc contains onhorhombic grains, and that these grains become finer and

more cquiaxed near the fiber/matrix interfaces.

5.1.1.2Fiber

The SCS-6 fiber manufactured by Textron is a SiC fiber designed specifically for

use with titanium matrices. These fibers are produced using the chemical vapor deposition

(CVD) process. The fiber is a complex, multilayered structure which is built up from a

13×10 -4 in. (33 I.tm) diameter carbon monofilament. A pyrolytic carbon coating is

deposited on the carbon core up to a thickness of 0.59×10 -4 in. (1.5 I.tm). Silicon carbide is

then deposited on this substrate to a diameter of 56×10 -4 in. (142 Ixm) (Lerch, et al., 1988).

Two four-layer coatings (described below) totalling 1.2×10 -4 in. (3 Ixm) are applied using

the CVD process to control the fiber/matrix reaction zone and improve the strength of the

fiber. The first layer consists of small SiC crystallites in a carbon matrix, the second layer

is predominantly carbon, the third layer consists of laminar carbon, and the fourth layer is

characterized by a more randomly oriented carbon microstructure (Nutt and Wawner,

1985). A disadvantage associated with using these coatings is that the bond between the

coatings is quite poor. As described previously, there is an abundance of evidence showing

that fiber/matrix debonding in laminates with off-axis plies is a prominent source of

degraded response. Figure 5.1 shows the microstructure of both [041 and [+451s

composites.
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(a) [04]

(b) [+4S]s

Photos courtesy of Brad Lerch, NASA Lewis Research Center (Lerch, 1993)

Figure 5.1: SiC/Ti Composite Microstructure
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5.1.1.3 Wire Weave

The molybdenum wires used to weave the SiC fibers into a cloth are often called

'moly wires'. These wires are 0.002 in. in diameter, run perpendicular to the SiC fibers,

and are spaced approximately 0.2 in. apart.

5.1.2 Geometry

The geometry of the [04] and [:1:451s tubes are quite different, enough so that even

the way they are gripped by the testing apparatus is different. Specimen geometry and the

fixtures used to grip the tubes are described below.

5.1.2.1 [04] Tubes

The [(34] tubes are nominally 7 in. long and have an outer diameter of 1.5 in. (Fig.

5.2). The tubes were received with steel plugs 2 in. long bonded to the inner surface of the

ends of the tubes to facilitate the introduction of a uniform load into the composite during

testing. Thus, the gage length was 3 inches. A half-inch diameter hole was drilled through

the tube and steel plug at each end for load introduction. Previous experience with testing

of composite materials demonstrated that loading a [0] composite through a bolt could

cause failure at the bolt hole. Therefore, a fixture was designed to bond to the outside of

the tube, as well as be pinned to the tube. The pin was still required, because the adhesive

by itself was not capable of providing adequate strength. Hyso1934NA adhesive mixed in

a 100 part A to 33 part B ratio was us_, with 1% glass beads added to improve the crack

resistance and help control the bond line. Nylon thread, 0.01 in. in diameter, was also used

to control the bond line. Surface preparation for bonding was performed on both the

outside of the tube and the inside of the fixture. The procedure used is as follows.
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Figure 5.2: Tube Geometry

1. Roughen surface with medium grit emery paper.

2. Thoroughly degrease surface with a mild degreaser.

3. Dip in acid bath (1 part concentrated HCI/1 part distilled water) for 10 minutes.

4. Rinse with cold distilled water.

5. Dry in oven at 150°F for 10 minutes.

6. Apply Hysol adhesive to inside of fixture only.

7. Bond fixture to tube, then insert and bond pin in place.

8. Align in MTS for 2 hours, remove, and cure at room temperature for 20 hours,

then cure at 120°F for 12 hours.

With one exception, [04 ] tubes were instrumented with five rectangular strain gage

rosettes. Micro-Measurements type EP-08-062RB-120 (Tube #2) and TML type FRA-2-

11 (Tube #4) both were used, with the individual gages oriented at angles of -45, 0, and 45

degrees measured from the longitudinal axis of the tube. Three rosettes were spaced at

120 ° around the mid-length of the tube. The other two rosettes were located at the top and
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bottom of the gage length. Figure 5.3a shows a [04] tube with fixtures and strain gages

bonded to it. Four Micro-Measurements type CEA-06-125UR-350 rectangular strain

gages oriented at angles of 0, -45 and 90 degrees were bonded around the mid-length

(spaced at 90 °) of Tube #1.

5.1.2.2 [:i:45]s Tubes

The [:1:45]s tubes are nominally 12 in. long and have an outer diameter of 4 in. (Fig.

5.2). Note that plies are numbered from the inside of the robe, and a positive ply

orientation angle is defined by a counterclockwise rotation from the longitudinal axis of

the tube, as viewed from inside the tube. The tubes were received with tapered steel

collars 4 in. long, bonded to both inside and outside of the ends, leaving a gage length of 4

in. Eight half-inch bolt holes were drilled at an even spacing around the circumference of

each end of the tube. These holes accommodate eight bolts that transfer load from the

fixture to the tube. The fixture itself is comprised of three components (Fig. 5.4), an outer

ring, a solid inner core, and the end piece that is actually held by the coUet grips of the

load frame. The specimen is attached to the fixture by bolts through the outer ring,

specimen, and inner core. Figure 5.5 shows a [:!:45]s in the load frame. Two [:t:45]s tubes

were instrumented with five rectangular sWain gage rosettes located in the same manner as

described for the [04] tubes. One tube had four rosettes located 90 ° apart, bonded around

the mid-length of the tube. The axial strain to failure of the [:l:45]s tube was expected to be

approximately 10%, hence high elongation Micro-Measurements type EP-08-062RB-120

strain gages were used. Figure S.3b shows a fully instrumented [:1:45]s tube.

Visual inspection of the tubes revealed that some fibers, at least in the outermost

ply had not remained in the proper alignment during fabrication. It was also apparent that

seams existed in the tubes where the ends of the fiber cloth abutted, resulting in fiber-rich
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(a) [04] Tube

(b) 1+451 s Tube

Figure 5.3:SCS-6/Ti-15-3 Specimens
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SiC/Ti
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Inner Core

8 - 1/2" Bolts

L ] End Piece
I [ "_..,._ 4- 3/4" Bolts

Maraging Steel'-----*
W"----..---- Gripped by Collet

Figure 5.4: [+45] s Fixture

Figure 5.5: [+45] s tube in load stand

and fiber-depleted regions. Like the fibers, these seams are located at a 45 ° angle to the

tube axis. Strain gage rosettes were located as far as possible from anomalies, while still

holding to the pattern described above.
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5.2 Procedures

The experimental program consisted of tests conducted on an axial/torsional load

frame. The following subsections describe the types of loads applied to the test specimens,

the test mauls, equipment, and instrumentation.

5.2.1 Loadings

Uniaxial tension and compression tests were first conducted on both [04] and

[+45]a tubes to determine initial axial elastic properties. Torsion tests were then conducted

to determine the initial axial shear modulus. Both positive and negative shear were applied

to the [:i:45]s tubes. Internal pressure was applied to a [04] tube to determine the initial

U'ansverse modulus. All of these tests were conducted at very low stress levels so that no,

or at worst, minimal damage would be done to the specimen.

Three types of multiaxial loadings, designated Type I, Type II, and Type III were

then applied to the tubes. After the initial tests to determine elastic properties, only one

type of loading was applied to any particular tube. The loadings are represented

schematically in Fig. 5.6, and are described below. Type I tests are a series of axial tensile

tests to sequentially higher load levels, where at the peak of each individual cycle, a

biaxial stress state is introduced by applying an increment of torque. Both axial and shear

stiffnesses are measured during the biaxial portion of the test. The torque is unloaded

while the tensile load is still held constant, then the tensile load is removed.

Type II tests are a series of torsional tests to sequentially higher load levels, where

at the peak of each individual cycle, a biaxial stress state is introduced by applying an

increment of axial tension. Again, both axial and shear stiffnesses are measured during the

biaxial portion of the test. The tension is unloaded while the torsional load is still held



72

Torque (in-lb)

K

Torque (in-lb)

.....,....., Load (Ib)

Axial

Load 0b)

(a) Type I Loading (b) Type IILoading

m

B

Pressure(psi)

G

1312

(10 ksi)

82

LOAD
SEG MENT

AB

BC
CD
DE
EF
FG
GH

DESCRIPTION

incrementallyapply internal pressure
andcompressiveload

removecompressiveload
apply mile load
remove tensile load

apply torque
unload torque
unloadinternalpressure

Torque (lb-in)

H

A

(c)Type IIILoading

v
Axial Load (lb)

Figure 5.6: Multiaxial Loading Schematics



Table S.l: Test Matrix

73

Tube #5 Tube #9 Tube #10

Tube #I

constant, then the torsional load is rcmoved.

Type Illtestswere quitecomplicated toconduct, because itwas desirabletohave

only one stresscomponent, the circumferential(transversefor a [0] tube)stresspresent.

This requiredthatthelongitudinalstresscomponent duc tointernalpressurebe eliminated

by the applicationof an axialcompression. Due to the type of hydraulicsystem used to

apply the internalpressure,it was impossible to apply axial compression at a rate

proportionalto the internalpressure,thus the internalpressure and compression were

appliedincrementallyforeach cycle.At thepeak internalpressure,an increment of axial

tensionwas appliedand removed, then an increment of torque was appliedand removed.

Finally,the internalpressurewas unloaded.

Type I tests were modified to study time dependent inelastic effects by the

inclusion of hold times where the applied stresses were held constant for a finite time

period immediately before the application of torque and at the maximum torque (points J

and K in Fig. 5.6). This modified loading is designated Type IA, and has been applied only

to [:1:45]s tubes.

5.2.2 Test Matrix

The test matrix for biaxial loadings is given in Table 5.1. The tube identification

number is given for each sequence of biaxial loading. Table 5.2 presents the test matrix for

Type I loadings. These tests were conducted in load and torque control. Table 5.3 displays
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Table 5.2: Type I Loading

ii!iiiiiiilliiiii iiiiiii:iiiiiiiiiiill

:-:: : ,: ,::!:i:i:!! ¸

i

a. adhesive failure

b. failure
c. failure

13.4 2 8 2.1

26 4.5 12.3 2.1

39 4.5 18.4 1.9

52 4.5 18.4 1.9

65 4.5 22 2

78 4.5 27 1.1

29.9 2.1

33.2 2.1

84.5

91

97.5

104

110.5

I19a

I08b

40 4.8

44 4.8

4.5 47.5 4.8

0 55 4.8

0 60 4.8

65 4.8

68.2 c 0

355

109

103

91

141

44

88

194

106

104

100

104

104

102

0

the test matrix for Type IA loading. Recall that the first hold takes place under uniaxial

tension, while the second hold occurs at the peak biaxial load. The total hold time is

defined to be the amount of time that the axial tension is held constant. The test matrix for

Type II tests is shown in Table 5.4. These tests were conducted in rotation and load

control. Finally, Table 5.5 gives the test matrix for Type III loading. In Type HI tests the

peak internal pressure is held constant while axial tension is applied and then removed
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using load control. Torque is then applied and unloaded using torque control. The final

step is unloading the internal pressure.

5.2.3 Test Equipment and Instrumentation

Testing was performed at room temperature on a servo-hydraulie MTS Axial/

Torsional load stand with an axial capacity of 55,000 pounds and a torsional capacity of

20,000 inch-pounds. The load stand is currently outfitted with hydraulic, one-inch

diameter eollet grips. The test equipment is shown in Fig. 5.7. Axial and torsional loads

were applied independently using a function generator for axial loads and a Micro-Profiler

for torsional loads or vise versa. MTS 458 DC and AC Controllers on the MTS Micro-

lhble 5.3: Type IA Loading

17 a

18

24

30

30

36

41

48

54

60

64

68

-- H

: ::i: --4. - ::1

i L. ¸

i i

a. '_applied at o = 12 ksi

b. cycle stopped prematurely

c. cycle stopped prematurely
d. failure

(see)
1

266

246

297

137 b

182

300

300

304

'_xy

5 0

5 297

5 284

0 0

358

640

694

137

419 10 285 894

422 I1 0 ¢ 525

422 10 361 971

421 3 d 0 444

10 301 675

10 301 791

10 266 760

10 299 793
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Table 5.4: Type !! Loading

......._- : :.....g _ 7,:, i̧ ¸¸,-:'i:ii:;i _¸¸¸̧¸:

011

9.7 10

12.4 10

14

5

t

• 10: !

11

13 •

•14 ¸

15

18

20

22

25

28

30

32

34

38.5

10

10

I0

10

10

10

10

10

10

10

40 10

42 b 0 -

15.2 10

16.5 10

18.0 10

18.3 a 10

a. machine capacity reached

b. failure

Console were used to control displacement, rotation, load, or torque. Internal pressure was

applied by pumping hydraulic oil into the tube through a hole drilled in the steel end-plug

with the pump from a second MTS load stand. A 3500 psi capacity pressure transducer

was used to measure the static pressure applied to the tube. The internal pressure test setup

is shown in Fig. 5.8. A plexiglass shield and containment pan were used for protection in

the event failure occurred.

Transducer and strain gage wires are connected to the connection box, which
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Table $.$: Type !!! Loading

_ ...... :::i__]i ¸ ii_̧: i,_!i_i!i!ili_iiii_iii_i_iii!

: -i:i:!:i̧ _i:-ii :i : :.i

i i

_ :10 ....

-:: i 111 ¸ :il i!

12 .....

13

6 10 4

9 10 4

12 10 4

15 10 4

18 10 4

21 10 4

24 10 4

27 l0 4

30 10 4

33 10 4

36 10 4

39 10 4

42 I0 4

45 I0 4

46.2a 0 0

a.failure

provides a quarterbridge for straingages. The connection box, in turn,is linkedto an

Orion datalogger,which samples allthe data.The dataloggeriscontrolledby an RS-232

linktoa 386 classPC. The MATPAC dataacquisitionsoftware(Hidd¢,etal.,1988) on the

PC provides real tirnc stress-strain(or load-deflection)curves throughout the test.

MATPAC alsohas post-processingcapabilitiesincludingplottingand correctionof strain

readings forrnisalignrnent,transversesensitivity,and Wheatstone bridgenonlinearity.All

data was sampled ata rateof one sweep per second.This was the fastestdata could be

transferredfrom the datalogger to the PC when five straingage rosettesand four
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ITEM DESCRIPTION ITEM DESCRIPTION

A Specimen G Function Generator

B Top Collet Grip H Connection Box

C Bottom Collet Grip I Data Logger

D MTS A/T Load Stand J 386 PC

E MTS Console K VCR

F Micro-Profiler

Figure 5.7: Test Equipment
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Figure 5.8:[04 ] Tube under internal pressure

transducers were used. Acoustic emissions (AE) were monitored during testing by

mounting a microphone to the outer surface of the specimen and recording on a VCR tape.

During the Type IA tests a specialized AE data acquisition system was used, this system is

described in the following section.

5.2.4 Acoustic Emission Monitoring

Elastic wave energy propagating through a specimen can be converted into a

decipherable voltage-time signature through high fidelity piezoelectric sensing of

boundary motion. A point contact piezoelectric sensor was used to convert displacement

into a voltage-time signature which was then sent to a storage oscilloscope for further



8O

analysis and manipulation. The energy associated with an acoustic emission (AE) event is

approximated by computing the RMS voltage of the signature.

AE energy for events in Type IA tests was obtained in the following fashion. Leads

from the piezoelectric sensor were directed through charge amplifiers. High pass and low

pass filters then eliminated environmental noise. Each channel was then split into four and

connected to a LeCroy 7200 precision digital oscilloscope. A custom LeCroy RCL

program triggered from incoming signals, used a waveform represented by 20,000 data

points to compute the RMS voltage. The effective bandwidth was 20 kHz to 2 MHz. The

program then stored the RMS voltage and the time of the event to a file. In this way, AE

data could be corresponded with mechanical stress-strain data, as well as with AE

recorded on tape.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter presents experimental results and discusses the features observed in

tests conducted on the tubular specimens. The specimens are identified by numbers

ranging from one to ten. Tubes #1-4 are [041 composites, and tubes #5-10 arc [:1:45] s

composites. Tubes #3, 6, 7, and 8 were not tested in the present study.

6.1 Initial Elastic Response

Before multiaxial loadings were applied to a specimen, simple tension,

compression, torsion, and, in one case, internal pressure tests were conducted to determine

the initial elastic properties of each specimen. The maximum stress in each of these tests

was kept very small so as to minimize the possibility of causing damage or yielding in the

specimen.

6.1.1 [0 4] Tubes

The stress-axial strain and transverse-axial strain diagrams for axial tensile and

compressive loading of Tube #1 are shown in Fig. 6.1. The stress-strain diagram (Fig.

6.1a) shows very little scatter in the data collected from the four strain gage rosettes

located around its mid-length. Slightly less consistent data is obtained for the transverse-

axial strain diagram (Fig. 6.1 b); however, the data is generally considered good in light of

the very small transverse strains obtained. The shear response to positive and negative

torsion is shown in Fig. 6.2. Again, very uniform data were collected from the four

rosettes, and as one would expect, no difference was observed in the response to positive

or negative torsion. The results for internal pressure loading are presented in Fig. 6.3. No
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Figure 6.1:[0 4] Axial Loading - Tube #1
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Figure 6.2:[0 4] Shear Loading - Tube #1

axial compression was applied, thus the slope of the stress-strain curve (Fig. 6.3a) does not

represent the transverse stiffness of the tube. However, it can be observed that the

response is very uniform for three of the four rosettes. Rosette #3 yields a substantially

different transverse response that is also evident from Fig. 6.3b which presents the

resulting axial strain versus transverse strain diagram. The inconsistent transverse

response obtained by Rosette #3 could be due to material nonuniformity, which will be

discussed later, and will otherwise be neglected for the remainder of this work.

The response to tensile loading from five strain gage rosettes bonded to Tube #2 is

shown in Fig. 6.4. Uniform results are obtained from rosettes #1, 2, and 3, which are

located around the mid-length of the tube. The rosettes mounted at either end of the gage

length indicate a stiffer response due to stress concentrations created by the fixtures. These

stress concentrations will be considered in more detail in Section 7.1. The shear response

of the tube subjected to torsional loading is shown in Fig. 6.5, The results from all five
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Figure 6.5:[0 4] Shear Loading - Tube #2

rosettes are relatively uniform, indicating that the fixtures do not create large shear stress

concentrations under torsional loading.

Figure 6.6 displays the response of Tube #4 to tensile and compressive loadings. In

these tests and many subsequent tests, data acquisition was initiated before closing the top

grip because a small misalignmcnt in the load train was suspected, even though the

alignment of the load frame was within the manufacturer's tolerances. A small

misalignment causes measurable bending strains upon gripping the specimen, these swains

are responsible for the data from some rosettes not passing through the origin. Aside from

the offset associated with these gripping strains, the three rosettes around the mid-length

of the tube provide reasonably consistent results. The rosettes at the ends of the gage

length yield a stiffer response, and inexplicably, one gives a higher, and one a lower

Poisson's ratio than the mid-length rosettes. The shear response to positive and negative

torsion is shown in Fig. 6.7; again the mid-length rosettes provide consistent results, aside
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from the initial strain offset due to gripping.

The initial elastic properties for [04] tubes determined from all strain gages are

summarized in Table 6.1. Predictions from the theoretical model discussed in Chapters 2

and 3 are also presented for both perfect bonding and no bond between the fiber and

matrix. Comparisons between these predictions and experimental data are presented in

Section 7.1.

6.1.2 [+45] s Tubes

The axial stress-strain diagram and transverse-axial strain diagram are shown in

Fig. 6.8 for tensile loading applied to Tube #5. Unlike 'all other tests no unloading data was

recorded. The stress-strain response (Fig. 6.8a) is not as uniform as it was for the [04]

tubes. There is a range of stiffnesses (16.4 to 17.8 Msi) measured from the three strain

gage rosettes located at the mid-length of the tube. The scatter observed in the transverse-
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Table 6.1:[0 4] Initial Elastic Properties

31.0 0.312

31.0 0.312

23.8 0.240 8.29

5.97 0.0703 2.10

32.4 0.282 21.6 0.187

30.7 0.263 21.2 0.207

32.3 0.333 17.1 0.140

32.1 0.289 21.0 0.193

31.9 0.251 -

32.2 0.293 -

31.7 0.290

33.6 0.298

37.6 0.275

32.4 0.263

31.7 0.270

30.8 0.274

36.2 0.188

38.5 0.338

7.69

7.49

7.84

7.63

- 7.85

- 8.00

8.11

7.69

8.20

7.48

7.56

7.35

8.06

8.82

ax )) is most probably due to numerical inaccuracies (too few

significant figures and round-off) in the strain transformation calculations, or possibly to

background electronic noise. Figure 6.9 presents the shear response of the tube to positive

and negative torsional loading, The data is very uniform with Rosette #2 displaying a

slightly stiffer response than the other four rosettes. No shear stress concentrations from

the fixtures are notable. Likewise, no significant difference in stiffness is evident between

positive and negative torsion.

The response obtained from four rosettes located around the mid-length of Tube
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0.06

#9, to tensile loading is shown in Fig. 6. lO. As tbr Tube #5, there is a relatively wide range

of sfiffnesses (17.2 to 21.0 Msi) indicated in Fig. 6.10a. The transverse-axial strain

diagram (Fig. 6.10b) is plotted for only two rosettes because data was not collected from

all gages in two of the rosettes; hence transverse and shear strain data were not available.

The shear response to torsional loading shown in Fig. 6.11 is reasonably consistent for the

two rosettes used.

The range of axial stiffnesses measured from different strain gages located around

the mid-length of Tubes #5 and 9 suggest that the [+45] s tubes are nonuniform. Four

additional longitudinal TML FLA-2-11 strain gages were bonded at strategic locations

around the mid-length of Tube #10. Figure 6.12a shows the response to tensile loading

obtained from seven strain gages, located around the mid-length of the tube. The figure

clearly shows a wide range of sfiffnesses (15.1 to 21.1 Msi). Gages #3, 6, and 7 are the 0°

gages of the original rosettes mounted on the tube. While Gages #6 and 7 were far
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removed fi'om any visible anomalies, Gage #3 was relatively close to a seam in the

outermost ply. Gages #1 and 2 were mounted in a region that appeared to be rich in fibers,

adjacent to a visible seam in the outermost ply. Gage #5 was mounted in the seam, a

region that appeared to have few, if any, fibcrs in the outermost ply. The gages in the fiber-

rich region display a much stiffcr rcsponsc, while the gage in the fiber-depicted region

displays a much more compliant response, than do the gages where no surface

irregularities are present. It is noted that possible seams and other irregularities in the inner

three plies arc hidden from view, but would also effect the local stiffness of the composite,

although their effect on strain gages mounted on the outer surface would be less

pronounced. The transverse-axial strain diagram (Fig. 6.12b) for the original rosettes

suggests that the anomalies have little, or no, effect on Poisson ratio.

Figure 6.13 shows the shear response of the tube (#10) to positive and negative

torsional loading. Rosette #3, contains Gage #3 discussed above, and is located in the
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proximity of a seam in a tiber-rich region. Its shear response is stiffer than that of the other

rosettes located around the mid-length of the tube, indicating that this type of anomaly can

affect both axial and shear stiffness.

The initial elastic properties for [+451s tubes determined from all strain gages arc

summarized in Table 6.2. Predictions based on lamination theory, as presented in Chapters

2 and 3, are also given for both perfect bonding and no bond between the fiber and matrix.

Comparisons between these predictions and experimental data are presented in Section

7.2.

6.2 Multlaxiai Loading Results

In this section the results of the multiaxial Ioadings previously described in Section

5.2 and shown schematically in Fig. 5.6 are presented and discussed. These types of

loading cycles made it feasible to collect a large amount of unloading data as well as
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Table 6.2: [:1:45]j Initial Elastic Properties
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21.0

16.I 0.360

16.7 0.332

21.1 0.362

18.5 0.360

20.3 0.369

19.8

8.93

9.70

19.8

18.1

15.1
[':'

loading data. Having both loading and unloading data makes it possible to delineate

inelastic deformation clue to damage from that due to matrix plasticity.
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6.2.1 [04] Tubes

In the previous section it was shown that the response of a [0 4] tube is very

uniform around the mid-length of the tube. Results will now be presented from one strain

gage rosette representative of the specimen response at the mid-length of the tube.

6.2.1.1 Type I Loading

The axial and shear responses of a [04] tube subjected to Type I loading are shown

in Fig. 6.14 and 6.15, respectively. The maximum axial stress is increased with each

successive cycle and a small increment of shear stress is applied at this maximum axial

stress. The axial load cycles shown in Fig. 6.14 have been offset for clarity. The shear

response shown in Fig. 6.15 displays an elastic coupling phenomenon during the axial

loading and unloading portions of the tests. During axial loading shear strains are

accumulated, then upon axial unloading the accumulated shear strains are released. This

coupling had no apparent effect on the shear stiffness, or the inelastic response, possibly

because shear stresses were kept very low. While the exact cause of the coupling is

uncertain, it seems plausible that the small misalignment in the load train could be the

cause. Finally, it is noted that some degree of coupling was observed in virtually all

multiaxial loading tests.

Both axial and shear responses were generally linear elastic until failure occurred.

The maximum axial stress in cycle #12 was 119 ksi, this load cycle was terminated prior

to application of shear stresses because a very loud acoustic emission was heard.

Inspection of the specimen revealed that the adhesive bonding the tube to the top fixture

had failed, however the bolt was still bonded in place. The tube failed in the top grip

during cycle #13 at an axial stress of 108 ksi. As shown in Fig. 6.16, the failure surface ran
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Figure 6.16: [04] Type I loading fracture surface

across the tube near the bottom of the steel plug bonded to the top of the tube, and

connected to the bolt holes on either side of the specimen. Visual microscopy revealed that

the fracture surface transverse to the fibers occurred at the closest moly wire to the end of

the steel plug. A finite element analysis of the tube was performed to better understand this

failure, the results are discussed in Section 7.1. As indicated by data in Fig. 6.17, no

stiffness degradation was observed.

6.2.1.2 Type II Loading

The shear and axial responses for Type I1 loading on a 104j tube are shown in Fig.

6.18 and 6.19, respectively. In Type !I tests the shear stress is increased with each cycle,

and a small increment of tensile stress is applied at the peak shear stress. The shear

responses in Fig. 6.18 are artificially offset for clarity. The axial responses (Fig. 6.19)

display the elastic coupling discussed for Type I loading. Both shear and axial responses

are linear elastic until cycle #13. Low level acoustic enfissions (AE) initiated at a shear



101

stress of 35 ksi in cycle #12. The intensity of these emissions increased with increasing

shear stress. In the subsequent cycle (#13), AE began at the shear stress of 37 ksi. When

the shear stress of 39.5 ksi was attained a distinct knee was observed in the shear response.

After this knee, the response resembled that of a nearly perfectly plastic material. The

unloading response was nonlinear with an initi',d stiffness of 6.5 Msi, which is less than

the initial loading stiffness of 7.4 Msi. The final cycle (#14) displayed a nonlinear

response beginning at approximately 10 ksi, with AE starting at 38 ksi. The initial shear

stiffness was degraded by 10%, and again a distinct knee developed, followed by a linear

hardening type response.

The inelastic response obtained from the three rosettes located around the mid-

length of the tube was substantially different, so data from all three rosettes is presented

35
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Figure 6.17:[0 4] Type I Loading Stiffnesses



102

30.O

Zq.O

20.0

15.0

1o.o

5.0

o.o
o.o 0.1 0.2 0.3

"Y12 (%)

(a) Cycles #1-7

"1:12

(ksi)

40.0

30.0

20.0

10.0

o.0
0.0 0.2 0.4 0.6

'Y12 (%)

(b) Cycles #8-14

Failure

38 .pit

Figure 6.18: [04] Type II Loading - Shear Response



103

_11

(ks|)

12.0

10.0

8.O

6.0

4.O

2.0

0.0
0.0 0.01 0.02 0.03

Ell (%)

(a)Cycles#I-7

0.05

.pk

12.0

10.0

8.0

6.0

4.0

2.0

0.0
0.0 0.01 0.02 0.03 0.04

Ell (%)

(b) Cycles #8-13

O.OS

39.11t

Figure 6.19:[0 4] Type I1 Loading - Axial Response



104

50.0

40.0

30.0

_12

(ksi) 20.0

I0.0

(a) Cycle #13
6O#

50.0 ' ' ' l ' ' ' I ' ' ' I ' ' ' I ' ' " _ ....

"_12

(ksi)

40.0

30.0

20.0

I0.0

_12 (%)

(b)Cycle #14

1.2

61_a

Figure 6.20:[04] Type !! Loading - Shear Response



105

Figure6.21: [04] Type I! loadingfracture surface

for cycles#13and14in Fig. 6.20. Failure, in the lbrm of a line longitudinal crack running

the length of the tube (Fig. 6.21), occurred at the shear stress of 42 ksi. The AE followed

the Kaiser effect (Kaiser, 1950), which to sununarizc, simply states that AE will increase

as the applied stress increases, and upon unloadinffrcloading, will not be heard until the

previous maximum stress has been surpassed. Figure 6.22 presents a histogram that plots

axial and shear stiffness versus cycle for Type I1 loading. No degradation is observed with

the exception of the final cycle, where the shear stiffness was degraded 10% as discussed

above.
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6.2.1.3 Type 111 Loading

Type Ill tests were developed such that multiaxial loads would be applied with the

primary stresses being transverse to the fibers. Internal pressure was used to apply

transverse stresses and axial compression was applied to eliminate the axial stress due to

the internal pressure. At the peak transverse stress, increments of axial tensile and shear

stresses were applied sequentially. The transverse response obtained when the net axial

stress equals zero is plotted in Fig. 6.23. The unloading response is not shown and the data

was adjusted such that each cycle starts at the origin. The transverse stress, 022 is

calculated using the well known equation:

pr (6.1)
022 = t

where p is the internal pressure, t is the wall thickness, and r is the radius of the cylinder to
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the center of the wall, which is assumed to be thin. The transverse response of the first

twelve cycles is linear elastic, with low level AE first heard at the transverse stress of 37

ksi in cycle #12. The initial nonlinear response, or knee, occurred at o22---40 ksi in cycle

#13. The intensity of acoustic activity increased as the transverse stress increased and

followed the previously discussed Kaiser effect. A knee in the transverse response also

occurred at 25 ksi in cycle #14, and 21 ksi in cycle #15. The initial transverse modulus

remained unchanged for all Type III tests. The axial and shear responses of a few typical

cycles are shown in Fig. 6.24. The axial response was linear elastic and displayed the

elastic coupling characteristic of these multiaxial loadings. Initially, the shear response

was also linear elastic, but in cycle #14 an inelastic response was exhibited.

Cycle #14 was the only complete cycle in which inelastic deformation occurred.

Fig. 6.25 provides a detailed view of the transverse and axial strains as a function of the

applied transverse stress in cycle #14. The letters A-H designate points in the load history

shown in Fig. 5.6c. It is noted that no data was collected during the removal of axial

compression, between points B and C. The figure shows the nonlinear transverse response

as well as the permanent transverse and axial strains present upon unloading. It also shows

an accumulation of transverse strain during shear loading (E-F) and unloading (F-G).

Figure 6.26 shows the nonlinear response obtained from all four rosettes located around

the mid-length of the tube and indicates that the inelastic deformation is nonuniform

around the tube. The most likely explanation for this is uneven fiber spacing. It seems

reasonable that the local transverse response would be affected by uneven fiber spacing,

while the axial response would not.

Figures 6.27-6.29 present the transverse response, shear response, and raw strain

data from Rosettes #1 and 2 during cycle #14. Figure 6.27 accentuates the nonuniform
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inelastic deformation present in the tube. Again, the letters A-H represent points in the

load history shown in Fig. 5.6c. It is very evident that the transverse unloading response

(G-H) is nonlinear. In fact it appears to be bilinear, with the initial unloading stiffness

being much less than the final unloading stiffness. This phenomenon suggests that

separation occurs at fiber/matrix interfaces at high stress levels, these separations then

close upon unloading, leading to a higher stiffness in the final unloaded state. As observed

in Fig. 6.25, there is a substantial accumulation of transverse strain during shear loading

(E-G), this will be discussed in conjunction with Fig. 6.29.

The shear response (Fig. 6.28) indicates once again that shear strains are coupled

elastically (A-E and G-H) with transverse and axial strains. More interesting are the

permanent shear strains present upon complete unloading, and the large anomaly in the

Rosette #2 data that occurs around a shear stress of 3 ksi. The permanent shear strains

seem to indicate the presence of plasticity, but could also be caused by damage.

In order to determine the cause of the anomaly in the shear strain data it is

necessary to look at the strain readings from the individual strain gages in Rosette #2. This

is done in Fig. 6.29b. A strain of 0.2% has been subtracted from the 90 ° strain gage ((31)

in order to fit all the data on the figure at a reasonable scale. Also notice that because gage

#2 is oriented at -45 °, a positive applied shear stress results in a negative strain (relative to

the initial value). The most outstanding feature of the figure is the large increase (0.05%)

in strain measured by the transverse 90 ° strain gage during shear loading. This transverse

strain occurs while the transverse stress is being held at a high, constant value, and shear

stresses are being applied. The largest rate of increased transverse strain corresponds with

the largest applied shear stresses. No further transverse strains are accumulated once the

maximum shear stress is reached (point F) and shear unloading begins. This behavior
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strongly suggests that the titanium matrix has yielded, and coupling associated with

loading on the current yield surface and the normality criterion for the plastic strain rate

vector is occurring.

The absolute increase (or relative decrease) in the strain measured by the -45 ° gage

appears to be due to the increase in transverse strain, leading to the anomaly noted in Fig.

6.28b. Rosette #1 also displays coupling between shear and transverse strains, although to

a much less degree (Fig. 6.2%). For both Rosettes #1 and 2 no axial swain accumulation

occurred during shear loading.

Failure occurred during internal pressure loading at the transverse stress of 46.2 ksi

in cycle #15 prior to tensile and shear loading. The failure occurred in the form of a

longitudinal crack running the length of the tube as shown in Fig. 6.30. The crack is fairly

wide, in that a relatively large amount of hydraulic oil sprayed out into the shield and

containment pan.

6.2.2 [+45] s Tubes

Section 6.1 showed that the [:t:451 s tubes display a rather nonuniform response due

to material nonuniformity manifested in the form of tiber-rich and fiber-depleted regions.

The current section presents results from one strain gage rosette located at the mid-length

of a tube. While one rosette does not represent the range of stiffnesses, or even the

average, it does serve to describe the general behavior of a tube.

6.2.2.1 Type I Loading

The axial response of a [+45] s tube under Type I loading is shown in Fig. 6.31a and

the shear response in Fig. 6.31b. The cyclic response illustrated in Fig. 6.31a can be
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divided into three categories based on the phenomena observed in cycles #1-4, cycles #5-

6, and cycles #7-15. The axial response observed in cycles #1-4 was elastic and bilinear. A

slight knee was observed at approximately 8 ksi. Upon unloading, the initial stress-strain

path was retraced with no apparent strain accumulation in the unloaded state. During the

shear loading portion of the load cycle, no axial strain increase was observed.

When the axial sa'ess reached 20 ksi during cycle #5, the response clearly became

nonlinear and was characterized by degradation in the axial stiffness and dissipation of

energy upon unloading. However, no axial strain growth was observed during the

torsional portion of the loading cycle. A small amount of permanent axial strain, likely

Figure 6.30: [04] Type Ill loading fracture
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associated with interfacial slippage, was evident when the material was completely

unloaded. Cycle #6 was similar to #5 except the amount of permanent strain in the

unloaded state was higher.

Cycles #7-15, in addition to further degradation in the axial stiffness, exhibited

axial strain accumulation during the torsional portion of the load cycle when the axial

stress was kept constant. This axial strain response is characteristic of the perfectly plastic

type behavior of the titanium matrix in the plastic region and suggests that the load vector

is on the current yield surface when the shear loading is applied. The axial strain

accumulation during shear loading increases with increasing axial stress. The plastic axial

strain accumulation initiates during cycle #7 at the axial stress of 30 ksi. Figure 6.31a

indicates that hysteresis takes place during unloading and reloading. This could be due to

dissipation of energy through frictional sliding during opening and closing of the

separated fiber/matrix interface, or possibly kinematic hardening effects after the matrix

has yielded.

Permanent shear strains began to be accumulated in cycle #9, as shown in Fig.

6.31b, the amount of permanent strain present in the unloaded state increased with

increasing axial stress. The final cycle (#14) displays a shear stiffening behavior.

Low level AE was heard during all cycles above the axial stress of approximately

12 ksi. The intensity of the acoustic activity increased with increasing axial stress and

again followed the Kaiser effect.

The stiffness degradation data from Type I testing of a [-1-45 Is tube are summarized

in Fig. 6.32. Both the initial loading and initial unloading stiffnesses are shown. At first,

the loading and unloading shear stiffnesses were the same, due to the linear elastic shear
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response. "Ib the contrary, the initial loading and unloading axial stift'nesses were never the

same, because of the nonlinear axial response that occurred even at low stress levels.

Degradation of the loading and unloading axial stiffnesses initiated after cycle #5 and

coincided with the onset of nonlinear behavior observed at an axial stress of 20 ksi. This

degradation appears to proceed in a roughly linear fashion with increasing axial stress.

Degradation of both shear stiffnesses is observed in cycle #6. The degraded shear

unloading stiffness then remains essentially constant. In contrast, the shear loading

stiffness is further degraded when large permanent axial strains are accumulated during

shear loading (cycles #12-14). This further decrease in stiffness occurs in a linear fashion

with increasing axial stress.

A sudden failure occurred in cycle #15 at the applied axial stress of 68.2 ksi. The

fracture surface is seen to follow straight line segments oriented +45 ° from the axis of the
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Figure 6.33: [+45]s Type I loading failure

tube in Fig. 6.33. These segments corresponded with the location of a moly wire in at least

one of the plies, thus suggesting that the presence of moly wires decreases the strength of

the composite.

6.2.2.2 Type IA Loading

Type I loading was modified by tile addition of two time periods when all applied

loads were held constant. The first hold period was immediately after the maximum tensile

stress had been applied and the second hold period was immediately after the maximum

shear stress had been applied. The purpose in conducting these Type IA tests was to

determine the contribution of time dependent components of the inelastic response to axial

and combined axial/shear loading. Specitically, the goal was to determine what portion of

the large axial strain accumulated dr,ring the torsional loading portion of the Type I tests

was due to time dependency rather than coupling with shear stresses.

The history of cyclic axial response to Type IA loading is presented in Fig. 6.34a.
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The response of cycles #1-4 is not visible at the scale of the figure, because it is

overshadowed by cycle #5. The initial axial stiffness is degraded with each cycle after

cycle #3, where the maximum axial stress was 24 ksi (see also Fig. 6.42). The unloading/

reloading cycles display a hysteresis type behavior characteristic of slippage or cracks

opening and closing. As for Type I loading, axial strains were accumulated in certain

cycles after the applied axial stress was held constant. This accumulation increased as the

maximum applied stress in each cycle increased, and was permanent. The shear response

from selected cycles is shown in Fig. 6.34b, where the cycles have been offset for clarity.

Beginning with cycle #5 the shear response was mildly nonlinear with a small amount of

permanent shear strain present in the unloaded state. A very small amount of shear strain

was accumulated during the second hold period in cycle #11.

To facilitate the separation of time dependent axial strain components from axial

strains associated with shear coupling, accumulated axial strain has been plotted (Fig.

6.35) versus elapsed time from the point at which the axial stress was held constant. While

the horizontal scale is the same in each Fig. 6.35a and 6.35b, the vertical scale of Fig.

6.35a has been magnified eight times to amplify the strains in cycles #1-6. Torsional

loading and unloading is darkened to emphasize shear coupling effects. In Fig. 6.35a, that

is, cycles #1-6 where the maximum axial stress is 36 ksi, the accumulated strains are

primarily due to shear coupling. Positive axial strains are induced by both shear loading

and unloading. Conversely, the axial strains accrued in cycles #7-12 are principally due to

time dependent components, or creep. These creep strains increase dramatically as the

maximum applied axial stress increases.

Figure 6.36 presents the temporal history of the axial Poisson's ratio for Type IA

loading. Overall, Poisson's ratio is greatly increased as the axial stress level is increased.
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The history of Poisson's ratio in each cycle can loosely be classified into two general

categories, that of cycles #1-6, and that of cycles #7-12. Figure 6.37 shows an enlarged

view of cycles #5 and 8. Poisson's ratio in cycle #5 (Fig. 6.37a) remains constant during

tensile loading and the first hold period. It is then reduced during shear loading, remains

constant during the second hold period, and then increased back to the original value

during unloading. In contrast, Poisson's ratio in cycle #8 (Fig. 6.37b) increased

significantly during tensile loading, then remained relatively constant through the balance

of the load cycle.

The sequence of figures 6.38-6.41 present normalized stress, strain, and AE data as

a function of elapsed time beginning at the start of each of cycles #1,2, 8, 11, and 12. The

AE data shown was collected using the piezoelectric sensor system described in Section

5.2. Comparison of AE data between the piezoelectric sensor system and the VCR system

indicated that the VCR system was more completely capturing the essence of the acoustic

activity. The sensor system could sample AE data approximately every two seconds, while

the VCR system provided a continuous record. Acoustic events often occurred at a rate

much faster than the sensor system could record them. The onset of AE data collected

from both systems coincided very well. The AE data shown in the figures is the RMS

voltage of the waveform sensed by the transducer. The sequence of figures 6.38-6.41

shows that the intensity of AE increases with increasing axial stress. Also of major

significance is that AE continue at a high intensity after applied stresses have been held at

a constant level. Acoustic activity is also recorded at the end of the torsional unloading

portion of the load cycle. The acoustic activity appears to be associated with fiber/matrix

inteffacial debonding.

Preliminary findings from metallography conducted by Lerch (1993) revealed that
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Figure 6.39: [+45] s Type IA Loading - Cycle #8
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the most prevalentdamage mechanism in the [±45]s tubes was fiber/matrixdebonding.

This reinforcesthe premise thatthe AE monitored were primarilydue the fiber/matrix

inwafacial dcbonding.

A summary of thedegradationof both axialand shearstiffnessesisshown inFig.

6.42.As for Type I loading,a nearlylineardegradationin the axialstiffnessispresent

aftera thresholdvalue of axialstress(24 ksi)has been surpassed.The shear stiffnessis

also degraded in a roughly linearfashion,which is differentfrom the shear stiffness

degradationobserved inType Itests.

6.2.2.3 Type H Loading

The maximum shear stress that could be applied to a [±45] s tube was limited by

the capacity of the load stand. In fact, failure of a [±45] s tube by torsional loading was not
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Figure 6.42: [±45]sType IA Loading
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possible.Because the [+451s tubes have such a large diameter (4 inches),the torsional

rigidityisvery large,thusrequiringa very largetorqueto produce a moderate levelshear

stress.The shear and axialresponses of a [+45]s tube subjectedto Type II loading are

shown in Fig.6.43.The cyclicshearresponses have been offsetto enhance the clarityof

Fig. 6.43a, while the axial responses in Fig. 6.43b wcre not. Both shear and axial

responses are seen to be linearelastic.AE was initiallyheard at the shear stressof

approximately 6.5 ksi and followed the Kaiser effect.The shear and axialstiffnessesare

displayedgraphicallyinFig. 6.44.The shear stiffnesswas degraded by only 6% and the

axialstiffnessdegraded 14%. Relativeto the axialtcsts(Type I and IA), the decrease in

stiffnessfortorsionalloading(Type II)isminimal forthe range of loads applied.

6.3 Ti.15-3 Creep Tests

Short term creep tests were conducted on bulk Ti-15-3 to gain a better

understanding of the creep response of SiC/Ti composites. It is necessary to know the

response of the constituents in order to understand the composite response. The fibers are

elastic, but the matrix is elastic-viscoplastic. The creep response of the matrix is then

crucial in determining the composite creep response. It is acknowledged that it would have

been more beneficial to conduct experiments on as-fabricated Ti-15-3 (a fiberless

composite) because the fabrication process changes the material properties. However,

only bulk Ti-15-3 was available at the time. All tests were conducted at room temperature

ondog-bonetensilespecimens.

Three specimens approximately 0.11 in. thick by 0.20 in. wide were tested in load

control to failure. The specimens were 6 in. long with a gage length of 3 in. A single

longitudinal strain gage was used to measure axial strains. The axial modulus was found to

be 11.9 Msi from low level tests. Loading rates of 20 lb/sec and 50 lb/sec were used.
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Table 6.3:Ti-15-3 Loadings

Sr cime.#2#1

Time o Time

sec ksi sec

226 79.5 266

278 91.2 269

272 96.4 265

577 102.2 607

26 a 109.6 41 b

The load histories for specimens #1 and 2 are presented in Table 6.3. As shown in

the stress-strain diagram of Fig. 6.45a specimen #1 exhibited no creep until the stress of
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1(30 ksi was applied. Creep began in specimen #2 at the stress of 96 ksi (Fig. 6.45b). The

creep strains for specimen #2 at 102 ksi were much higher than those for specimen #1 at

100 ksi, as shown in Fig. 6.46. This can be attributed to the faster loading rate for

specimen #2, 50 lb/sec versus 20 lb/sec, as well as the higher stress level (102 ksi to 100

ksi). The other difference between loadings on specimens #1 and 2 was that specimen #2

was completely unloaded after each cycle, while specimen #1 was only unloaded after the

applied stress of 100 ksi, Both specimens crept to failure at the stress of 110 ksi.

It is important to know the response of the material to monotonically increasing

loads to compare and contrast the creep response with the time independent component of

plastic response. Specimen #3 was tested to failure at a load rate of 20 lb/sec. The

response shown in Fig. 6.45 indicates that creep does not occur until the transition region

between the elastic and perfectly plastic regions is reached. It is noted that the elastic

was slightly nonlinear. Also, significant neckingresponse from all three specimens

0.4
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I_cr
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Figure 6.46:Ti-15-3 Creep Response
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resulting in a cross section approximately 50% of its original area occurred at the failure

surface of all three specimens.
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CHAPTER 7

COMPARISON OF THEORY AND EXPERIMENT

The validity of the theoretical model presented in Chapters 2 and 3, henceforth

known as the debonding unit cell model (DUCM) to distinguish it from other models that

consider imperfect bonding, must be verified through comparison with experimental data.

In the following, DUCM predictions are compared with experimental data from multiaxial

tests conducted on unidirectional [04] and angle-ply [-1-451s tubular SiC/'H specimens.

For transverse tensile loading theoretical predictions obtained from the method of

cells (Aboudi, 1991) will also be presented to illustrate the differences in the treatments of

the fiber/matrix interface. The method of cells predictions are made using the flexible

interface model (Jones and Whittier, 1967). The traction-displacement interfacial

constitutive relations are linear, thus the interfacial model represents a predetermined

amount of imperfect bonding and not the debonding process. In DUCM the interfacial

tractions are determined by a function that increases, reaches a maximum, then decreases

to zero as interfacial displacements increase. The model is intended to represent the

debonding process rather than a predetermined state of imperfect bonding. Both models

use the elastic-viscoplastic model of Bodner and Partom (Bodner, 1987) for the matrix

constitutive relations.

There is however an unresolved issue. What are the interfacial properties? DUCM

requires values for the normal interfacial separation strength, shear strength ratio, normal

and tangential characteristic lengths, and the coefficient of kinetic friction between the two

sides of the interface after failure. In theory at least, these interfacial properties can be



measured experimentally as discussed in Chapter 4. If the interfacial properties were

determined from such a set of experiments then the response of a composite composed of

a doubly periodic array of fibers could be predicted provided the model is correct.

However, real composites, particularly the ones used in this experimental program, are not

truly doubly periodic (Fig. 5. I) but are more random in nature due to fiber misalignment.

For perfectly bonded fiber/matrix interfaces this deviation from the assumed packing

sequence is insignificant, as shown in Section 4. I. Conversely, for imperfect bonding the

response of a unit cell is quite sensitive to its aspect ratio; the random nature of the actual

material causes the response to be nonuniform. The debonding process begins sooner at

locations where high local stress and strain fields exist than it does elsewhere.

The fiber/matrix interface in SiC/Ti composites with coated fibers, as discussed in

Section 5.1, is generally considered to be battle and weak. However, if a unit cell is to be

considered an RVE it must represent the average behavior of the composite at large. In

some cases experimental results indicate that the overall composite response is that of a

composite with a ductile interface. The conclusion to be drawn here is that if the loading

on all interfaces is uniform then the interfacial properties may be experimentally measured

at any representative interface. Otherwise, the interfacial properties must be determined

from a statistical analysis of all interfaces in the composite, because by definition of a

RVE the unit cell must represent the composite at-large to be a valid micromechanical

model. At present it is unclear how to perform the necessary statistical analysis to

determine the effective interfacial properties for a nonuniform composite. Therefore,

interfacial properties must be treated as parameters and a curve fitting technique used to

match predicted effective response with experimentally determined response.

Sometimes it is useful to be able to predict yield surfaces so that it is not necessary
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to conduct a large quantity of experiments to determine the yield surfaces for a material.

Comparison of a predicted yield surface with a limited number of experimentally

determined yield points can be very helpful in understanding material behavior. However,

many viscoplastic theories do not include a yield criterion, thus no yield surface exists.

DUCM uses the unified viscoplastic theory of Bodner and Partom (Bodner, 1987) which

does not use a yield criterion. Hence, in its current form, DUCM can not predict yield

surfaces. However, Pindera and Aboudi (1988) included the Mises yield criterion in the

method of cells to enable the prediction of initial yield surfaces. Yield surfaces predicted

by the method of cells, including the effects of an imperfect fiber/matrix interface, arc

presented in this chapter to aid in understanding the experimentally observed material

response.

7.1 Unidirectional Composites

Theoretical predictions are compared with experimental results from Type I, Type

II, and Type III tests on [041 SiC/Ti tubes, in the following, perfect bonding will be

denoted PB, a debonding or imperfect interface will be denoted DB, and an interface with

no bond between the fiber and matrix will be denoted NB.

7.1.1 Initial Elastic Properties

A comparison between the predicted and experimentally determined initial elastic

properties was displayed in Table 6.1. The comparison is shown graphically in Fig. 7.1 as

well. Predictions from DUCM for both perfect and no bond conditions are presented to

establish a range where the experimentally detemlined values are expected to lie. Thermal

residual stresses are not considered for these predicted properties.

The histograms in Fig. 7.1 are for initial modulus, Poisson's ratio, and axial shear
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modulus. Experimental data from strain gages located at the mid-length of all [04] tubes

tested are presented along the horizontal axis of each graph. Only data from the initial, low

load level tests are presented. Axial and transverse moduli, E ! ! and E22, respectively, are

compared to accent the differences between axial and transverse moduli. Likewise for the

major and minor Poisson's ratios, v12 and v21. Data from only four strain gages was

available for the transverse modulus and minor Poisson's ratio because just one tube was

subjected to internal pressure.

The model predicts that the condition of the fiber/matrix bond has no effect on

either the axial modulus or the major Poisson's ratio. However, for transverse modulus,

minor Poisson's ratio, and axial shear modulus, GI2, a wide range of values are predicted

as the condition of the bond varies from PB to NB.

The experimental data for axial modulus is very uniform and agrees extremely

well with the prediction. As observed in Section 6.1 three of the four experimentally

determined values for transverse modulus are very uniform, while the fourth value is

much lower. The three uniform values are approximately 10% below the PB prediction.

Experimental data for major Poisson's ratio is slightly more scattered, but agrees

reasonably well with the predicted value. The three uniform experimental values for minor

Poisson's ratio are approximately 18% below the prediction for perfect bonding. The

experimentally determined values for the axial shear modulus are quite uniform and on

average are just 7% below the prediction for perfect bonding.

These comparisons reveal that the experimentally determined properties are at

least bracketed by the PB and NB predictions. Reasonably good agreement is observed

between experimental initial elastic properties and model predictions for perfect bonding.

There are two possible explanations for why the model predicts a slightly higher
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transverse modulus, minor Poisson's ratio, and axial shear modulus. It is possible that the

specimens in the as-fabricated state do not have perfectly bonded interfaces. Second, the

representation of the composite with a repeating unit cell model, while making the

analysis possible, may simply overestimate the actual elastic properties.

7.1.2 Type I Loading

The response of a [04] tube subjected to Type I loading was linear elastic to failure.

No appreciable acoustic emissions were heard prior to failure. Comparisons between

DUCM and the experimental data are shown for loading cycles #11 and 12 in Fig. 7.2.

Excellent agreement is observed in Fig. 7.2a for the axial stress-axial strain response.

DUCM predicts a linear elastic axial response for PB and NB. No stiffness degradation is

predicted for axial loading and none was observed experimentally. As mentioned above

for initial axial modulus (Fig. 7.1), the predicted axial stiffness agrees well with that

observed experimentally. Figure 7.2b compares the predicted transverse strain-axial strain

response with that determined experimentally. DUCM predicts no change in the slope of

the transverse-axial strain response (Poisson's ratio) regardless of the condition of the

fiber/matrix bond. Once again the predicted response is observed to agree well with the

experimental data. It is interesting to note that the experimental transverse strain-axial

strain data is slightly nonlinear and that cycle #11 displays a hysteresis type behavior. At

present this phenomenon is unexplained.

No inelastic deformation was observed in Type I tests because the tube failed

outside the gage section due to stress concentrations associated with the grips.

Fractography conducted by Lerch (1993) indicated that failure initiated at the bolt hole

where the pin transmitted applied loads to the tube. The failure can be summarized as

follows. In the cycle prior to failure (#12) the adhesive bonding the tube to the top grip
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failedata gage sectionstressof 119 ksi.Failureinitiatedatthe boltholesin the top grip

during cycle#13 ata gage sectionstressof I08 ksi.The fracturesurfacepropagated tothe

bottom of the steelplug bonded to theinsideof the tube where itcontinued transverseto

the fibersuntilcomplete failureoccurred (Fig.6.16).Visualmicroscopy revealed thatthe

portionof thefracturesurfacetransverseto the fibersoccurred where a moly wire existed

inone of the plies.

A linearelasticfiniteclement analysiswas performed on the tube and fixture

assemblage using ABAQUS (Hibbitt,Karlsson,and Sorcnscn,Inc.,1989).Axisymmctric

elements were used tomodel one halfof the assemblage (usinglongitudinalsymmetry) in

thelongitudinal,radialplane.The resultsshowed thatnot only was the longitudinalstress

concentrationfactorapproximately 1.65,but thatsignificantbending stressesdeveloped in

the tube at the bottom of the steelplug duc to the restraintitprovided againstradial

contraction associated with longitudinal tension. These bending stresses are the reason for

the clean, straight failure transverse to the fiber direction (Fig. 6.16).

Initial yield surfaces in axial-shear stress space and axial-transverse stress space

predicted by the method of cells are shown in Fig. 7.3. Stresses are normalized with

respect to the matrix yield stress in uniaxial tension, Y=110 ksi. The effects of thermal

residual stresses associated with an effective fabrication cool-down of 1500°F arc

included in all predictions. Predictions are shown for perfect bonding as well as for two

stages of imperfect bonding. Imperfect bonding is observed to reduce the size of the initial

yield locus.

Experimentally determined points are also plotted with the predicted initial yield

surfaces. The apparent failure stress of 119 ksi for Type I loading is plotted on the

horizontal axis. Due to the stress concentrations from the grips (discussed above) the
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StreSSin the grip region was much higher than the apparent failurestressin the gage

section.

7.1.3 Type II Loading

The inelastic shear deformation of a [041 tube subjected to Type II loading was

clearly nonuniform around the circumference of the tube at the mid-length, as shown in

Fig. 6.20. In cycle #13 the response from rosette #2 was linear, while there was a very

abrupt knee and a perfectly plastic type response from rosette #3. The reader is reminded

that Type II tests were conducted in rotation control. Thus, if the material response was

uniform there would have been equal shear strains measured by all the rosettes at the mid-

length of the tube. The large uneven horizontal spacing between experimental data points

in the response of rosette #3 to loading cycle #13 shown in Fig. 7.4b suggests that not only

is the inelastic deformation nonuniform but also sudden. The sudden increase in acoustic

activity that corresponds with the observed knee is further evidence of the abrupt nature of

the phenomenon.

Unlike the abrupt knee observed experimentally (Fig. 7.4) the predicted response

of the titanium matrix has a relatively large, smooth transition region between the elastic

and perfectly plastic region as shown in Fig. 7.5. Plotting the proportional limit stress of

40 ksi obtained from rosette #3 in cycle #13 of the Type II tests on the predicted initial

yield surfaces (Fig. 7.3a) shows that the nonlinearity occurred prior to predicted initial

yielding for a perfectly bonded composite. Thus, the knee in the shear response can only

be associated with yielding if there is imperfect bonding between the fiber and the matrix.

DUCM was used to predict the shear response of a unidirectional 10] composite.

First the fabrication cool-down cycle was simulated by a uniform temperature change
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(A'l'ffi-1500"F), then an axial shear strain of 1.0% was applned. All attempts to predict the

unloading response resulted in a system of equations that could not be solved within the

appropriate equilibrium tolerances prior to completing the unloading cycle. The properties

for the interface model were chosen from a trial and error curve fitting procedure to be:

Oo=15 ksi, cz=3.3,/i=10xl0 "6 in., Iz--0. Both axial shear and transverse tensile loading on a

[0] lamina were considered in the curve fitting procedure. The interface properties chosen

represent the best fit to both Ioadings considered and will be used throughout the

remainder of this work for [01 lamina. The DUCM prediction is compared with

experimental results from rosettes #2 ,'rod 3 in Fig. 7.4. DUCM predictions for PB and NB

are also shown in the figure to provide extreme conditions.

Figure 7.4 shows excellent agreement between the DUCM prediction and

experimental results up to the shear stress of 40 ksi at which point the predicted response

displays an instability while the observed experimental response exhibits a large
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instantaneous reduction in stiffness. The model predicts sudden debonding to occur at the

shear stress of 40 ksi. Due to the sudden nature Of the debonding event the solution is very

difficult to obtain and it is necessary to substantially reduce the size of the applied

displacement increment. The parameter _. describes the condition of the bond at a point

along the fiber/matrix interface. For perfect bonding k=0. Bond failure occurs when X=I.

For the shear strain of 0.5453% the maximum value of X along the interface was 0.44. But

for the next displacement increment (T12ffi0.5494%) the maximum value of X was 2.02 and

bond failure has occurred over more than 50% of the interface. The model indicates that

matrix plasticity has not yet occurred, in fact the predicted maximum effective stress in the

matrix is reduced from 101 ksi to 89 ksi by the sudden debonding. Here effective stress is

defined to be

_ e = _ S ij$ ij
(7.1)

where sij are the stress deviators defined by eqn. (2.4). The maximum effective stress of

101 ksi is very near the yield stress (110 ksi) of the matrix.

The model considers debonding to be macroscopically uniform, but

experimentally debonding occurred in a nonuniform manner. The predicted instability is

due to the sudden brittle nature of the debonding event. The interfacial debonding model

dictates that the effective response approaches that predicted for no interfacial bond after

debonding begins. The predicted instability was not observed experimentally because, in

the experiments, debonding was a local event and only global stresses ('CI2=TclJ") were

measured. Because the debonding process was nonuniform in the tube, the global stresses

measured (actually torque was measured and shear stress was calculated) are not

representative of the local stresses present during and after debonding. Therefore, on the

local level it is not possible to determine whether the predicted instability does or does not
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occur experimentally. In the presence of nonuniform debonding it is possible that the local

response is governed by local stresses even though the global response is governed by

displacements, or in this case rotations. If this were the case, no significant instability

would be observed on the global level. Notice that if the predicted response obtained after

the instability were shifted vertically in Fig. 7.4, the comparison between theory and

experiment would be very good.

It is difficult to compare predictions from DUCM with the experimental results

from Type II tests due to the nonuniform abrupt debonding present. Strain gages provided

local response while the torsional load cell provided global, or average, response. Thus,

experimentally it was only possible to plot global stresses versus local strains, which

provided neither the global nor the local response. Conversely, macroscopically uniform

debonding is assumed in DUCM.

Another possible contributing factor in the difference between the predicted

response and the experimental response is the frictional forces at the interface. The

presence of frictional forces at the interface allows tractions to be transmitted to the fiber

after debonding has occurred. DUCM has the capability to account for frictional forces

after bond failure by making the coefficient of friction greater than zero. This was

attempted but the finite element program was unable to converge on a solution that

satisfied equilibrium within the given tolerances, therefore the coefficient of friction was

taken to be zero.

7.1.4 Type III Loading

The axisymmetric finite element model discussed for Type I loading was also used

to study the stress distributions in the test specimen assemblage under internal pressure
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andcombined internal pressure and axial compression. The resulting axial stress, c_lt, and

circumferential stress (or transverse stress for a 1041 tube), G22, distributions are shown in

Fig. 7.6. The figure illustrates the stress concentrations caused by the fixture. The simple

equations for internal pressure loading of a thin walled cylinder

pr (7.2)
pr and Oil = 2"_

G22 = -T

are satisfied at the mid-length of the tube (Fig. 7.6a). Application of an axial compressive

stress equal in magnitude to the tensile axial stress _ll=pr/2t creates a zero net axial stress

at the mid-length of the tube (Fig. 7.6b).

The proportional limit transverse stress of 40 ksi is plotted on the predicted initial

yield surf_e (Fig. 7.3b). This point lies well within the predicted initial yield surface for

l_rfeet bonding. Therefore, the knee (proportional limit) appears to be associated with

damage rather than yielding. This is in agreement with virtually all other work in the

literature for transversely loaded unidirectional composites.

DUCM predictions are compared with the final two cycles (#14 and 15) of Type III

loading in Fig. 7.7. The same interfacial properties were used for DUCM as discussed for

Type II loading. The loading sequence for the predictions was as follows:

1. thermal loading (AT=-1500°F) associated with fabrication cool-down

2. apply a transverse strain of 0.25%

3. apply and unload an axial strain of 0.10%

4. apply and unload a shear strain of 0.10%

5. unload the transverse strain

6. apply a transverse strain of 0.5%.

Predictions from DUCM for PB and NB are also shown to indicate extreme conditions.

The predicted transverse response for no bond (DUCM, NB in Fig. 7.7) illustrates the

effects of the thermal residual stresses. A distinct knee associated with overcoming the
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compressive residual stresses at the interface occurs at approximately 18 ksi. For clarity

the no bond prediction has been offset such that it starts at the same point as data from

cycle # 15.

Comparisons are made between the theoretical model and the response from both

rosettes #1 and 2 in Fig. 7.7 because of the differences in the experimental data at different

locations on the tube. The model (DUCM, DB) predicts a knee at the transverse stress of

approximately 23 ksi that is associated with overcoming the thermal residual stresses. This

knee was not observed in the Type III tests possibly because of the additional restraint to

circumferential deformation provided by the fixtures. The Type III tests displayed a larger

elastic region than results presented in the literature for transverse tension tests conducted

on flat specimens. It is surmised that the additional constraint provided by the fixtures

served to retard the debonding process. The vertical spike present in the predicted

response (DUCM, DB) at the transverse strain of 0.25% is created by an increase and then

a decrease in the effective transverse stress during axial and shear loading and unloading,

while the transverse strain is held constant. This is probably caused by changes in the local

stress fields in the fiber and matrix. Transverse unloading began at a lower stress (022---43

ksi) than had been present prior to the biaxial loading (o22--45 ksi). The predicted

unloading response is bilinear due to the compressive radial residual stresses that clamp

the matrix around the fiber.

Permanent axial strains were observed experimentally from both strain gage

rosettes but were not predicted by DUCM. Prior to transverse unloading the maximum

effective stress predicted in the matrix was 116 ksi which is greater than the yield stress

(110 ksi) of the matrix for uniaxial tension. Thus, the model predicts local plastic strains,

but they are insufficient to cause significant plastic strains in the composite (overall) stress



156

6O

SO

4O

3o

2o

DUCM, PB

DUCM, DB
CYCLE #I

L DUCM, NB

I0

-O =MC, R_=Rt=I0-s

0 I I I 1

0.0 0.! 0.2 0.3 0.4 0.5

E22 (%)

e,,,._pSb.#t

Figure 7.8: [04] SiC/Ti DUCM and Method of Cells Comparison

field. The tact that DUCM under-predicted the transverse plastic strains for this loading

cycle is significant in that it shows that the model does not accurately represent all the

deformation mechanisms for this loading cycle.

The flexible interface model used in the method of cells (MC) is compared with

DUCM in Fig. 7.8. The same loading sequence was applied using the method of cells as

discussed above in conjunction with Fig. 7.7. The normal and tangential bonding

parameters for the flexible interface model were taken to be R n = R t = 10 x 10-6in./ksi.

The linear interfacial constitutive equations cause the response predicted by the method of

cells to be degraded but linear in the range shown in the figure. Again it is observed that

the flexible interface model does not provide a representation of the debonding process but

rather it models a predetermined amount of imperfect bonding.

The predicted and experimental axial swain-transverse strain response for Type IH
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loading is shown in Fig. 7.9a.The DUCM predictionis based upon the loading cycle

discussed above in conjunction with Fig. 7.7, but for clarityonly data from the two

transverseloading cyclesispresented.The agreement between theory and experiment is

very good except, as discussed above, DUCM did not predictpermanent swains after

loadingto thetransversestrainof 0.25% and then unloading.

Predicted and experimental axial shear responses are compared in Fig. 7.9b.

DUCM accurately predicted the axial shear stiffness but did not predict the permanent

shear strain observed experimentally. It is noted that residual stresses do not significantly

affect the response in the range shown in the figure.

7.2 Angle-Ply Composites

Theoretical predictions are compared with experimental results from Type I, Type

IA, and Type II tests on [+451s SiC/'H tubes. As for the discussion regarding unidirectional

tubes perfect bonding will be denoted PB, a debonding or imperfect interface will be

denoted DB, and an interface with no bond between the fiber and matrix will be denoted

NB.

7.2.1 Initial Elastic Properties

The predicted and experimentally determined initial elastic properties for a [+45] s

tube were presented in Table 6.2. The comparison is repeated graphically in Fig. 7.10. The

three histograms show the initial axial modulus, E_, Poisson's ratio, Vxy, and shear

modulus, Gx,2. Predictions from DUCM for the perfect and no bond conditions are

presented to establish a range where the experimentally determined values are expected to

lie. Thermal residual stresses are not considered in the predictions. Experimentally

determined data from strain gages located at the mid-lengths of three [:!:45]s tubes are
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presentedalongthe horizontal axis of each graph.

The experimentally determined axial moduli range from 15.1-21.0 Msi, with the

average being 18.1 Msi. The wide range of experimental values is the result of material

nonuniformity, or more specifically, local variations in the fiber volume fraction. The

highest experimental axial modulus (21.1 Msi) is 8% below the predicted value for perfect

bonding. In order to explain this discrepancy a study using the method of cells model was

conducted to determine the sensitivity of the predicted axial modulus to fiber modulus,

matrix modulus, fiber orientation, and fiber volume fraction. The method of cells is an

analytical model that allows elastic properties to be predicted very quickly. Because no

debonding was being considered it was not necessary to use DUCM. Only one of the

above mentioned variables was changed at a time. For the fiber modulus of 58 Msi, matrix

modulus of 13.2 Msi, fiber volume fraction of 0.40, and fiber angles of :i:45 °, the predicted

axial modulus was 22.29 Msi while DUCM predicted it to be 23.0 Msi. The results of the

sensitivity study are summarized in Table 7.1. The variations required to produce the

Table 7.1: Sensitivity Study

Exx (Msi)

Fiber modulus, El--40 Msi 19.92 Fiber vol. fraction, cf=0.30 19.37

El=50 Msi 21.35 cf=0.35 20.77

Matrix modulus, Em=10 Msi 18.20 Fiber angle, 0--'J:40 ° 23.05

20.81Em=12 Msi 0--+_.50° 21.87

discrepancy between experimental and predicted initial axial modulus for perfect bonding

were much larger than could be expected in the specimens. The most likely explanation

for the low measured modulus is that imperfect fiber/matrix bonding exists after

fabrication. Figure 7.11 shows the global and material principal stresses predicted by a
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laminated tube analysis program, developed by Derstine and Pindera (1989), for a [+45] s

tube subjected to thermal, axial, and torsional loads applied independently. While the

program is capable of nonlinear analysis, only a linear elastic analysis was performed.

Thus, the values presented in the figure may be scaled provided the stresses remain in the

linear elastic range. The figure shows that cooling the composite tube down during

fabrication creates transverse tensile, 022, stresses in all plies. Because transverse tension

causes debonding, the thermal stresses associated with fabrication cool-down initiate the

debonding process.

The range of shear moduli predicted for PB and NB is relatively small (Fig. 7.10)

and the measured values all fall within the predicted range, but the average of the

measured values (9.08 Msi) is 16% below the predicted value for perfect bonding. This

provides further evidence that the as-fabricated 1:t:45]s tubes do not contain perfectly

bonded interfaces.

Poisson's ratio is predicted to increase as the fiber/matrix bond is degraded (Fig.

7.10). However, the average measured Poisson's ratio is 4% below the prediction for

perfect bonding. This data is in conflict with the explanation presented above; that the low

measured initial axial and shear moduli are due to imperfect fiber/matrix bonding. No

logical explanation can be given for this inconsistency at this time.

7.2.2 Type I Loading

Figure 7.11 indicates that applying axial load to a [+45] s tube creates axial shear

stresses, z12, as well as transverse tensile stresses, o22, in all plies. Both axial shear and

transverse tensile stresses cause the fiber/matrix interfaces to debond. Due to the material

nonuniformity debonding occurs at different applied stress levels at different locations.
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This is evident from the observed continuous stiffness degradation, in contrast to the

sudden degradation observed for Type Ii loading on a [04] tube, as well as from the

gradual increase in acoustic activity.

Predicted initial yield surfaces in the axial-shear stress space are plotted in Fig.

7.12. As for the [04] predictions stresses are normalized with respect to the matrix yield

stress in simple tension, Y=110 ksi. Thermal residual stresses associated with cooling the

composite from the fabrication temperature are included. Different normal and tangential

bonding parameters were considered to illustrate the effects of imperfect bonding. Figure

7.12 shows that as the interfacial bond is degraded the initial yield surface translates along

the horizontal axis in addition to decreasing in size. The proportional limit and failure

stress from Type I tests are also shown in the figure. The location of these points (well

within the predicted yield surface for perfect bonding) indicates that interracial damage
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precedes and accelerates matrix yielding.

A comparison between the predicted and experimentally observed responses for a

[-I-45]s tube is shown in Fig 7.13. Residual stresses associated with fabrication cool-down

are included and the interracial properties were taken to be Oo--15 ksi, a=2.0, 8n=10×10 "6

in., 8t=Sb=108n, and la=0. While both [04] and [+45]s tubes were fabricated from the same

materials using the same process they exhibited different types of nonuniform response.

The initial elastic properties were uniform for [04] tubes but not for [+45] s tubes. The

individual interfaces in each type of tube are the same but are loaded differently. Because

the interracial properties used for a RVE must be representative of the statistical average

rather than the properties of an individual interface the use of different properties for

[:1:45]s tubes is justified. Previously, for simplicity the characteristic length, 8, had been

assumed to be the same in the normal and tangential directions. This is not necessarily the

case and for [:t:451s laminates the characteristic length in tangential directions was taken to

be an order of magnitude larger than in the normal direction.

The experimental data lies within the range predicted by DUCM for the perfect

(PB) and no bond (NB) conditions. The stiffness was degraded with each load cycle and

approached the NB prediction as the maximum applied stress level in each cycle

increased, thus indicating that bonding between the fiber and matrix was initially present.

At the higher applied stress levels creep response was observed experimentally, as

indicated by the data points that lie on a horizontal line and are spaced closer and closer

together for increasing axial strain in Fig. 7.13a. For clarity the unloading response is not

shown for the loading cycles when large creep strains were measured. The stiffness

degradation and nonlinear response is of primary importance in Fig. 7.13a. The predicted

response (DUCM, DB) somewhat resembles the experimental data but agreement could
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be better. Initially the predicted response was slightly more compliant than the

experimental response. However, the nonlinear response observed experimentally was

more abrupt than DUCM predicted. Although not evident from the figure the model

predicted local plastic strains to occur in conjunction with nonlinear strains associated

with debonding. This will be discussed in more detail in the subsequent section.

The predicted cyclic axial response is compared with two Type I loading cycles of

experimental data in Fig. 7.13b. Accumulated axial strains associated with shear coupling

and creep have not been included in the experimental data so that only cyclic axial loading

is compared in the figure. DUCM predicts a continuously degraded axial stiffness as well

as permanent axial strains. The experimental initial axial stiffness was less than that

predicted by DUCM due to debonding that occurred in previous loading cycles.

Experimentally, more permanent strain was present after each cycle than was predicted,

however, the maximum axial strain in each cycle was not the same for theory and

experiment.

Transverse strain-axial strain response is plotted in Fig. 7.14. The transverse strain-

axial strain response lies within the predicted range for perfect bond (DUCM, PB) and no

bond (DUCM, NB) except when large creep strains have been accumulated. The

experimental data lies closer to the perfect bond prediction than to the debonding interface

prediction (DUCM, DB) suggesting that Poisson's ratio (defined by the slope of the

transverse strain-axial strain response) is not as sensitive to interfacial debonding as the

model predicts.

7.2.3 Type IA Loading

Type IA experiments were conducted to determine how much of the permanent



167

strain accumulated during Type I tests was time-dependent and how much was time-

independent. Figure 6.35 summarizes the results quite well. At low applied stress levels

(below 42 ksi) the strain accumulation is due primarily to time independent coupling

between shear and axial strains. But at higher applied stress levels (above 42 ksi) the strain

accumulation is due primarily to creep. Creep strains increase dramatically at very high

applied stress levels. Clearly, room temperature creep is a significant design consideration.

Short term creep tests conducted on bulk Ti-15-3 at room temperature indicated

that creep behavior does not begin until the yield point has been reached (Fig. 6.45). Since

the theoretical model uses a unified viscoplastic theory to describe the material behavior

of the constituents it is possible to predict the creep response. The predicted creep

response of as-fabricated Ti-15-3 is shown in Fig. 7.15b for applied stresses of 100, 110,

120 and 130 ksi. The yield point of as-fabricated Ti-I 5-3 is 110 ksi (Fig. 7.15a). No creep

is predicted for the applied stress of 100 ksi, but creep response is observed for the other
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three higher applied stress levels. These predictions are consistent with the experimentally

obtained creep response of bulk Ti-15-3 in that creep does not occur until after the yield

stress has been surpassed.

In principle DUCM is therefore capable of predicting creep response in laminated

MMC. However, the current laminate analysis program can only apply thermal and strain

loadings to a laminate. In order to be able to predict creep response it is necessary to apply

stress loadings. This is not possible at the present time but should be considered in future

work. In light of the observation that creep response is initiated once the yield point has

been reached it is instructive to consider the maximum effective stress in the matrix. Creep

in the matrix is expected to occur once the maximum effective stress in the matrix exceeds

110 ksi. The maximum effective stress in the matrix is plotted against the applied axial

strain in Fig. 7.16 for a [+451s laminate with a debonding interface. As before, residual

stresses due to an effective cool-down of 1500°F were considered. These residual stresses
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cause the maximum effective stress in the matrix to be approximately 100 ksi initially. The

interface properties used were the same as discussed for Type I loading: Oo=15 ksi, 0,=.2,

8a,10xl0 "6 in., 8r_Sb=108n, and g--0. Effective stress (eqn. (7.1)) is calculated for each

matrix element in the finite element mesh (Fig. 3.1). The effective stress in one element

reaches 110 ksi at a composite stress of 17.3 ksi. The first significant creep was observed

experimentally for an applied stress of 42 ksi which corresponds with a maximum

effective stress of 123 ksi. This demonstrates consistency between DUCM and the

experimental data because the initiation of measurable composite creep is expected to be

caused by htgh effective stress in a somewhat larger portion of the matrix than just one

finite element.

7.2.4 Type II Loading

Type II loading was limited by the capacity of the load stand as shown in Fig. 7.12.

The experimental response appeared to be linear elastic in each loading cycle but was

degraded slightly with each cycle (Fig. 6.44). Figure 7.11 shows that torsion of a [:I=45]s

tube causes tensile transverse stresscs, 022, in the third (and second) ply and compressive

transverse stresses in the fourth (and first) ply. No shear stresses, '_12, are present in any

ply. Torsional loading is expected to have a fairly minimal effect on stiffness degradation

because only two plies experience stresses, in this case tensile transverse stresses, that

cause debonding. The shear stiffness of the tubes varied with location, thus results from

two strain gages are compared with theoretical predictions. The shear response is plotted

at two different scales in Fig. 7.17. The larger scale (Fig. 7.17a) shows the predicted shear

response to be slightly nonlinear for high shear stresses. The sm',dler scale (Fig. 7.17b)

provides a better view of the comparison between theory and experiment. Perfect bond

and no bond predictions are shown to indicate extreme conditions. The residual stresses
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and interface properties used for the debonding interface prediction arc the same as used

previously for [+45]s tubes. The data from rosette #2 falls outside the predicted range,

indicating that this strain gage could have been located where there were fewer than

average fibers. To reiterate, both axial and shear stiffnesses measured at different points on

the tube varied significantly due to material nonuniformity. The data from rosette #3 is in

very good agreement with the debonding interface prediction (DUCM, DB).

7.3 Discussion

The elastic-viscoplastic model of Bodner and Partom (1987) and an extension of

the interfacial debonding model of Tvergaard (1990) are incorporated in the current

theoretical model (DUCM) to predict the inelastic response of metal matrix composites

with debonding fiber/matrix interfaces. Results from DUCM have been compared with

experimental results from a limited number of different types of multiaxial tests. DUCM

was seen to predict the inelastic response of metal matrix composites with debonding

fiber/matrix interfaces reasonably well.

The framework of the model is such that virtually any constitutive theory may be

used. The viscoplastic theory of Bodner and Partom was chosen for this work because of

its simplicity. Any viscoplastic theory could be used in its place. The debonding model of

Tvergaard was chosen because it provided a rational approach to combined normal and

tangential fiber/matrix debonding. For purely normal separation the interfacial constitutive

relations resemble the dependence of interatomic forces on interatornic separation.

However, there is no physical evidence that on an atomistic scale a fiber/matrix interface

behaves as described by the model. Thus, the model is viewed as phenomenological in

nature. Any such model that describes interfacial tractions in terms of interfacial

displacements could be implemented using DUCM. This is one of the outstanding features
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of the model. It can be used to study how well different interfacial constitutive models

pr_llct the local and overall stress and strain fields in composites with debonding

interfaces.

The occun_nce of nonuniform debonding in a composite dictates that a statistical

average of the interfacial properties be used to describe an effective interface for a

repeating unit cell analysis. Currently, the properties of such an effective interface must be

treated as parameters and determined by curve fitting experimental data. The usefulness of

a model that re,quires parameters to be determined from comparisons with precisely the

response to be predicted is limited. Thus, unless composites can be manufactured such

that d¢bonding occurs in a uniform manner, it may be more useful to develop stochastic

models that are better suited for nonuniform processes.
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CHAPTER 8

CONCLUSIONS

A mieromechanical model has been developed to predict the inelastic deformation

of laminated metal matrix composites in the presence of interfacial debonding. The

representative cell of the model was considered to be in a state of generalized plane strain,

enabling a quasi two-dimensional analysis to be performed while retaining the capability

to apply loads in all three coordinate directions. Residual stresses and matrix

viseoplasticity were explicitly included in the model. Interfacial tractions were related to

interracial displacements by a function that increases to a maximum, decreases, then

vanishes for monotonically increasing interfacial displacements. The model was

compared with experimental data from multiaxial tests conducted on SiCfI'i tubular

specimens.

Several technologically important conclusions can be reached based upon the

results of the experimental program. Following are key conclusions presented in the order

of their perceived importance.

[0] SICITi lamina

•Fiber/matrix interfacial damage is nonuniform and a major factor in the transverse

and shear responses.

•The axial shear response exhibits a sudden loss of stiffness.

•Axial shear loading results in brittle fiber/matrix debonding prior to initial

yielding.

•Fiber/matrix debonding introduced during shear loading degrades the shear

stiffness.
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•Transverse tensile loading results in fiber/matrix inteffacial debonding prior to

initial yielding.

• Inelastic coupling between transverse and shear strains occurs for shear loading in

the presence of constant transverse stress.

•The uniaxial tensile response is independent of the condition of the fiber/matrix

interface.

[245] s SIC/TI laminates

•Fiber/matrix interracial damage is a major factor in the tensile response.

• interracial damage precedes and accelerates matrix yielding for tensile loading.

•The axial modulus exhibits a damage induced degradation of as much as 50% ".

cyclic tensile tests to sequentially higher stress levels.

•At room temperature longitudinal creep strains occur at applied stresses less than

50% of the stress level required to initiate creep response in bulk Ti-15-3.

•Inelastic coupling between axial and shear strains occurs for shear loading in the

presence of constant axial stress.

•Imperfect bonding exists in the as-fabricated material as a result of thermal cool-

down during processing.

GGneral

•The aspect ratio in a rectangular repeating cell micromechanical model is

insignificant for perfectly bonded composites but is a major factor in determining

the effective response of imperfectly bonded composites.

•Titanium (Ti-15-3) exhibits creep behavior at room temperature.

•Acoustic emissions in SiC/Ti follow the Kaiser effect and provide a good

qualitative indication of when damage is occurring.

• Current fabrication techniques for SiC/Ti tubes need to be improved to obtain a

more uniform distribution of fibers throughout the tube.

•The molybdenum wire weave was observed in most fracture surfaces and reduces

the composite strength.
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APPENDIX A

SOLID ELEMENTS

In the present analysis the effective response of the representative volume element

(RVE) is found by averaging the stress and swain fields. This process is simplified by the

use of constant strain elements. Thus, a linear displacement field is employed for each

element.

u (x, y, z) = u i + Cly + C2z (A.1)

v (x, y, z) = v i + C3Y + Cnz (A.2)

w (x, y, z) = w i + Csy + C6z (A.3)

Here (u i, v i, w i) represents the displacement of node i and CI through C 6 are unknown

constants to be determined. Figure A.I shows the geometry of an element. The

formulation of the generalized plane swain finite elements proceeds as follows. The four

nodes are designated i, j, k, and l, where node I is common to all elements in the mesh. By

AJ

l v

Figure A.I: Solid Element Geometry
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writing ¢_lns. (A.1-A.3) at nodes j and k the constants C 1 through C 6 can be expressed in

texrns of nodal displacements and element dimensions a i, aj, a k, b i, bj, and b k (Fig. A.1) as

C I = [(b/- bk)ui+ btuj- bjuk]/A (A.4)

c2 " [- (at- a_,)ui-atu / + ajutl /A (A.5)

C 3 = [(bj-bDvi+bkvcb/vtI/a (A.6)

C 4 = [ (a k- a)) vi-atvj + ajv t]/A (A.7)

Cs - [(bj-bk)wi+ bkw_-biwkl/A (A.8)

C 6 = [ (a t- aj) wi-akwj + ajw k]/A (A.9)

where A = ajb t - a_/is twice the area of the element.

The infinitesimal strains are defined by {e} = ID! {u 1, or

.eyy i)/i)y 0

e 0 _1_:
"" I

Y. I 0 O/Oz O/Oy

ia,, z o  ,,ax
Y:z L_/_y _/_x o

Ul

vI "-

Wl

0

C3

C6

C 4-bC 5

C2

CI

(A.IO)

For generalized plane strain, set ex = Ul/(l.O L), where L is the curent length units, to

ensure a constant strain in the x-direction. This, and substituting eqns. (A.4-A.9) into eqn.

(A.10) yields
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%
Esl 1

A

o o o o o o o o o,_

o bj-b_ o 0 b_ 0 0 -bj 0 0
0 0 a k-a� 0 0 -a k 0 0 a� 0

0 a k-ajbj-b k 0 -a k b k 0 aj-bjO

-(aj-a k) 0 0 -a k 0 0 aj 0 0 0

b_-b_ o o b_ o o-b_ o o o

. =

Ui

Vi

Wi

uj

v_

w_
ul

Vi

W_

Lu_

(A.I1)

or {e} ffi [B]{q}, where [B] is the strain-nodal displacement relationship defined by the

matrix on the right hand side of eqn. (A. 11) and {q} contains the nodal displacements.

Hooke's law may be written

{a} = [Cl ({e} - {E r} - {eeL}) (A.12)

whm'c {el is the total strain, {e T} is the free thermal strain, and {e eL } is the plastic strain.

For isotropic materials the stiffness tensor [Ci is

(I-v2)E (V+v2)E (v+v2)E

Z Z Z

(1 -V2) E (v + v2) E

Z Z

( 1 - v 2) E

Z[Cl =

sym

0 0 0

0 0 0

0

E

2(1 +v)

0 0

0 0

E
0

2(l+v)

E

2(1 +v)

where E is Young's modulus, v is Poisson's ratio, and Z = 1 - 3v + 2v 2.

(A.13)

The strain energy, U, of an element is
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U= ft. {e}T{o}dV (A.14)

Rewriting ¢qn (A.14) in terms of the nodal displacements and applying the principle of

virtual work in the usual fashion leads to

[K] {q} = {F}+ {F r} + {F I'L} (A.15)

where

[K] = I [B] r [el In] dV

(F r} = t[BIT[Cl {Ff}dV

(Ft'L} = t [BIr [C! {eeL}dV

is the element stiffness matrix

is the thermal force vector

is the plastic force vector

(A.16)

and {F} is the applied mechanical force vector. The thermal strains arc determined from

{gT} __ {a}AT, where {o_} contains the coefficients of thermal expansion and AT is a

uniform temperature change. The plastic strains are found by the Bodner-Partom model.
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APPENDIX B

INTERFACE ELEMENTS

Int_rf_e finite elements are derived in the following manner (Becket, 1988 and

Smelm" and B_ker, 1989). The current nodal coordinates are first determined

Xi = X' i + Ui

yi=y'i+vi } i = m,n,p,q (B.1)

Zi = Z'i + Wi

where the primed coordinates refer to the original coordinate locations; ui, v i, and w i (i -

m, n, p, q) are nodal displacements, and m, n, p, and q are the node numbers as shown in

Fig. B.1. In the figure a, _ represent the element end points and A, B represent integration

points. Interfacial tractions for the current load increment are determined by the

increments of interracial displacement discontinuities, which will subsequently be referred

to as displacements, in the n, t, b coordinate system.

!
0

v

y'

Interface

element

Figure B.I: Interface Element Geometry
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Un = (X m - Xp) s - (Ym - Yp) c

U_n = (X n - Xq) $ - (Y. - Yq) C

ct

u, = (x,,,- xp) c + (y,,,- yp) s

U_t = (X n-xq) C + (Y. -Yq) $

Ub - Zm --Zp

U_b= Z.- Zq

(B.2)

Here c - cos e and s ffi sin e and _, 13superscripts designate the end points of the element.

Displacements are determined at the integration points A, B

where

i = n, t, b (B.3)

1

I
= (1 - 1/_f3)11

(B.4)

(8.5)

The tractions obtained in eqns. (2.20-2.25) are differentiated with respect to

displacements. For monotonic loading prior to bond failure. _ = kma x < 1,

I 10 6 1

dT. ] [.. for u. < 0
- (B .6)

du. l dF dk u. 1_--_ _-_._ + F_. foru. > 0

dT. [ 0 for u. < 0

dul - l dF dl U"
d--_ _-_t _nn f°ru. > 0

(B.7)
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dT n

du b

0

dF d_, Un

for u n < 0

foru n > 0

dTl dF d_. ut

dTt dF dk ut

dTt dF dk ut

dTb dF d_, Ub

dTb dF d_ Ub

_, - __,_

dTb dF d2L U b _bdu b - Ot-_ -_-_-b_bb + O_F

(B.8)

(B.9)

(B.10)

(BAD

(B.12)

(B.13)

(B.14)

where

dX 1 un

dX 1 ut

d_, _,
dX 1 Ub

au_ _

dF 27

d-"_ = T °O (k - i ) (2)

For unloading and reloading below the previous maximum load

dTn _ I106_- n un<O

dUn l F 1 un>O

dTt - otF _
du t

dTb 1

_b - _r_,b

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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dT s dT n dr` dr` dT b dT b
...... 0 (B.22)

du t du b du n du b du n du t

For loading and unloading after bond failure, _. > 1, and when a compressive

normal force is present, u n < 0

dTn 1

du n - 106_n

dT n dT n
D

du t du b

(B.23)

0 (B.24)

1

'-sgn (dut)l.t(106)_-_n Ir`l>.IT,_I

0 17,1< I.tlT d (no sliding)

(sliding)
(B.25)

dTt _ { 0
dut -41.1. ( 106)

Ir`l > _tlTnl

Un 1

if, Ir`l <_tlT_!

dr,
- (}

du b

(B.26)

(B.27)

I

dT b {-sgn (dUb) _t ( 106) _n
= o Ird <_tlTnl

ITbl_>_lTnl (sliding)

(no sliding)

(B.28)

dT b

du t
-0 (B.29)

dT b [ 0 ITd> _ILI

- l un 1
dUb -41.1" (106) _ _ ITb[< _lrnl

If there is no normal compressive force, un > 0, separation occurs and

(B.30)

dT n dT n dT n
- - - 0

du n du_ du b

dr` dr, dr`
-0

du n du I du b

dT b dT b dT b
_ _ 0

du n du t du b

(B.31)

(B.32)

(B.33)
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In order to form the interface element stiffness matrix,

KIvM = 3FN (B.34)

_u M

where F/v is the force contributed by the element to degree of freedom N and uM is the

displacement at degree of freedom M. it is necessary to multiply the traction derivatives by

the area associated with the integration point to determine the force derivatives. The force

derivatives are projected to the nodes to obtain the element stiffness matrix in the n, t, b

coordinate system.

I,k:tki:l (B.35)[k] = It k

The submatrices k / and kIt are related 6x6 matrices. The terms in the k / submatrix are

i_11 = [afdTn_ A :dTn "_R']_,d"_n) +b_,dl_nJ ]AREA (B.36)

VafdT,_ A fdT")81g2 = L _,-d--_t) +bl_ _-_ AREA (B.37)

kll3= [afdTn) '4 :dTn hD7

[dfdTn_A+dfdTn)B ]
_4 = L _,d-_,) _,d-_,) _]AREA (B.39)

ktl5 = [dfdTn y t :dTnhB7_,_ ) + d L-_l J ] AREA (S.40)

_afdTn yt+dfdrn_D 1
_6 = L _,d--_b} _,_--ub) _]AREA (B.41)

_d"_.J _,d-'unJ _1AREA (B.42)

[afdTt_ A fdTt} D]k/2 = L _,_tt) + b _,_ AREA (B.43)

k/3 = [a (dT. _a+b (dT, _t_]_,_b J _,d--ub) _1AREA (B.44)



dT t B

t,'_nJ +bt,'_n) AREA

ra(dTb_A (dTb'

k133 = [a(dTb_ A (dTb

kl3,1 rd(dTb_ A I'dTb'
= L t,d-_) +dt,d-_-,

k'_: [dCdr_]_t_s +dt_rdT_'

[d(dTb_il (dTb'

k'3,: L t,-_T) +d{,-_7,

AREA

8]AREA

AREA

8] AREA

D]AREA

t___n + a t,_j _]AREA

_'_:gc_: ate,J_1'<"_"
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(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

k#3'= k/6 (B.62)
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r,,f ),, ,.ar,,,,,k_6=L kd-_b+a_bbJJAm_A (B.65)

k/6, = k/34 (B.66)

k_2 = g5 (B.67)

k/63 = k/36 (B.68)

k_

45 = [b(dTb]a

46 = [ b(dTb)Ak_-¢i)

dT b B

+ a (_-_n) ]AREA (B.69)

{dT b 387

+a[_J ]AREA (B.70)
dT b n

Here,

1 1 1 1 1

a = _+2---_ b = 3 2,,f3 d= -_ (B.72)

Also, k//j = - k/_/. The stiffness terms must now be translated to the global coordinate

system.

(B.73)

Kh-,_-_kl,+.,_h)+c<-ok/,+s@ (B.74)

,¢_,= _u_h+ckl,)+c<.,.,"+c@ (B.75)

(B.76)

K_, = -c (s_l + c_2)+s (sk_,+ ck/22) (B.77)



And finally,

where K I!ij = "KIik

K;,,= -_(_,'.+ck',,)+s(_,,+c_,,)
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(B.78)

(B.79)

(B.SO)

(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)

(B.88)

(B.89)

(B.90)
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APPENDIX C

EXPERIMENTAL DATA

Material

•Ti- 15V-3Cr-3Sn-3AI matrix foil

•SCS-6 Continuous fibers spaced at 128 per inch

•0.002 inch diameter molybdenum wires spaced at 5 per inch woven with fibers

-0.008 inch nominal ply thickness

-0.4 nominal fiber volume fraction

Tube # I.D. #

N8801621

2 N880160

4 N880159

5 P880019

9 P880022

10 P880023

Tube Geometry

Layup I.D. (in.)

[04] 1.429

[04] 1.4249

[04] 1.4256

[:1:45]s 3.9048

1:!:451s 3.908

1:t:451s 3.9068

O.D.(in.) t (in.) L (in.)

6.91.491 0.0310

1.4893 0.0322 7.0

1.4910 0.0327 7.0

3.9824 0.0388 12

3.980 0.0360 11.9

3.9808 0.0370 12
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[04] Tube Elastic Properties

Rosette

El I (Msi)

v12

V21

GI2 (Msi)

R1

32.4

0.282

21.6

0.187

7.69

Tube #1

R2

30.7

0.263

21.2

0.207

7.49

R3 R4

32.3 32.1

0.333

17.1

0.140

7.84

0.289

21.0

0.193

7.63

Rosette

Eli (Msi)

v12

GI2 (Msi)

R1

31.9

0.251

7.85

R2

32.2

0.293

8.00

Tube #2

R3

31.7

0.290

8.11

R4*

33.6

0.98

7.69

R5*

37.6

0.275

8.20

Rosette

Ell (Msi)

v12

GI2 (Msi)

R1 R2

32.4 31.7

0.263 0.270

7.48 7.56

Tube #4

R3

30.8

0.274

7.35

R4*

36.2

0.188

8.06

R5*

38.5

0.338

8.82

* Strain gage rosette located at the end of the gage section.
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[+45] s Tube Elastic Properties

Tube #5

Rosette

E_ (Msi)

Vxy

Gxy (Msi)

R1 R2 R3 R4* R5*

16.4 17.8 16.7 19.8 16.5

0.433 0.459 0.351 0.370 0.418

8.69 9.45 8.62 8.60 8.71

Rosette R1

17.2

Tube #9

R2

18.6

R3

19.1

R4

21.0

Vxy 0.331 0.352 -

Gxy (Msi) 9.57 9.13

Tube #10

Rosette R1 R2 R3 R4* R5*

II I

Ezx (Msi) 16.1 16.7 21.1 18.5 20.3

Vxy 0.360 0.332 0.362 0.360 0.369_

Ox_ (Msi) 8.59 8.85 9.75 8.93 9.70

Strain Gage G1 G2 G4 G5

E_ (Msi) 19.8 19.8 18.1 15.1

* Strain gage rosette located at the end of the gage section.
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Failure Data

Tube #

r

I

[04] Tubes

Ultimate Stress Comments

o11=119 ksi Failure occurred in grip section at o11=108 ksi

2 X12---42 ksi Inelastic shear strains were very nonuniform

4 022=46 ksi Nonuniform inelastic transverse strains

[+45] s Tubes

Tube #

5

9

10

Ultimate Stress

Oxx=68 ksi

Oxx=66 ksi

oxx=68 ksi,

'txy=3 ksi

Comments

Failure occurred during uniaxial tensile loading

Failure occurred during a hold time after the

accumulation of a large amount of creep strain

Failure occurred during shear loading with

constant axial load
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