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ABSTRACT

An analytical technique for determining the inelastic responses of
coupled shear wall structures is developed based on the transfer matrix
technique in combination with the continuum method. It applies to
nonuniform coupled shear walls resting on flexible foundations. The P-A
effect, the possibilities of formation of the yield hinges at the ends
of the connecting beams and at the bases of the walls, the effects of
the rotational ductility factor of the connecting beams are also
considered in this analysis.

Based on this technique, a study is made on a two interconnected
coupled shear wall model to simulate the earthquake response of a
typical coupled shear wall building with different exterior and interior
walls. The dynamic responses of these coupled shear walls are then
compared with those obtained by conventional analysis of a single
coupled shear wall to evaluate the effect of load transfer between

dissimilar coupled shear walls within a building during an earthquake.
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SUMMARY

In high rise buildings the design consideration due to lateral
loads becomes important. One of the alternatives in design to provide
adequate lateral strength and stiffness is the use of reinforced
concrete shear walls. These walls extend the entire height of the
building and are coupled together by a system of horizontal spandrel
beams or connecting slabs. The typical shear wall-flat slab building
consists of set of such parallel coupled shear walls arranged in
symmetric manner, such that, all interior coupled shear walls are
identical and also the two end coupled shear walls are the same.

In such a case, the behaviour of the whole building can be studied
from the two dimensional behaviour of an interior or an exterior coupled
shear wall in turn. Each coupled shear wall in the building is assumed
to take the lateral load in proportion to its elastic stiffness and this
proportion of 1load is assumed to be constant throughout the
elasto-plastic analysis. This assumption is realistic so long as the
shear wall is in the elastic state, but when the plastic hinges start
forming at the ends of the connecting beams, the stiffness ratio of the
shear walls changes and hence there will be a redistribution of lateral
load between the interior and exterior coupled shear walls. This
phenomenon of transfer of loads may lead to different behaviour of the
coupled shear walls building and is studied by considering a
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mathematical model consisting of two coupled shear walls, one
representing all the interior coupled shear walls and the other
representing the two exterior coupled shear walls, connected together at
the floor levels.

The purpose of the present analysis is to develop a technique for a
complete time history analysis of shear wall-flat slab multi-storey
building. The behaviour of typical coupled shear walls, interior and
exterior, obtained by this two interconnected coupled shear walls
formulation is compared with those obtained by the single coupled shear
wall formulation.

The analytical method developed herein, in single and two
interconnected coupled shear walls formulation, is based on the transfer
matrix technique which is based on the continuum method and is suitable
for a wide variety of non-uniform shear wall configurations, foundation
conditions and loading conditions. The technique is to divide the wall
into a number of segments, and each segment can be considered as a
uniform coupled shear wall. The continuum method of analysis can
therefore apply to each segment to relate the parameters of interest
from one end of the segment to the other end. 1In the dynamic analysis,
the lumped mass appreocach is used where the masses of the segments of all
shear walls are lumped at the discrete floor levels along the height of
the wall and this technique automatically takes care of the sharing of
lateral loads between the interconnected shear walls. The damping
matrix is obtained from the modal matrix, mass matrix, the natural
frequencies and percentage critical damping for each mode. Newmark's
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gt method of step-by-step integraton is used as it is found to be the
most stable and accurate method. P-A Effect 1is included and this
analysis takes into account the plastic deformations at the ends of the
connecting beams of coupled shear walls. The effect of the connecting
beam ductility on the seismic response of the coupled shear walls is
also considered. The possibility of complete collapse with the
formation of plastic hinges at the base of the piers is considered in
the single coupled shear wall formulation. The failure and damage
patterns of the coupled shear walls are studied by considering the
modified waveforms of earthquake record of El-Centro (1940) N-S
component .

This analysis technique is found to be very efficient to obtain a
full time history inelastic response of a single and two interconnected
coupled shear walls subjected to any type of ground motion. P-A Effect
appears to have a minor influence as long as the walls are in the
elastic state. But when the formation of the plastic hinges at the base
of the piers is considered, the P-A Effect is 1likely to become
important. For the coupled shear walls of practical dimensions, it may
be concluded that when the monotonously increasing load is applied, the
second plastic wg%pgg at the base forms almost immediately after the
first hinge has been formed. Based on the present study, it may be
concluded that the model structure will suffer light damage and may
survive against collapse if it 1s exposed to moderate earthquake
shaking. On the other hand, if it is exposed to a severe earthquake,
then heavy damage may occur and the walls may even fail as a complete
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mechanism with the formation of hinges at the bases develops. The
behaviour of the coupled shear wall will be improved if the ductility of
the connecting beams is increased. This improvement is more important
for the survival against severe earthquakes. But it should be noted
that the improvement in the member ductility of only one or some of the
coupled shear walls will not be much advantageous for the behaviour of
the other coupled shear walls of the same system and hence due
importance should be given for designing the coupling system of the
interior shear walls.

Based on the behaviour of the coupled shear walls observed in the
present study, the following recommendations can be made for the design
of coupled shear walls. It is desirable to design the walls to maintain
an elastic behaviour throughout an earthquake response for minimum
nonstructural damage, and to ensure the moderate ductility capacity as a
second line of defense. A strong and ductile wall can be designed by
concentrating the flexural reinforcement at the two extreme ends of the
section and detailing the transverse reinforcement to confine the
concrete effectively. The coupling beams should be designed so as to be
moderately stiff enough in order to render an effective coupling systemn.
These beams should be carefully detailed with the diagonal, transverse
reinforcement for ductile behaviour without brittle shear failure under
a large number of\ reversals so as to reduce the possibility of

significant yielding in the walls.

vii



ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Dr. W.K.
Tso for his consistent guidance, assistance and encouragement throughout
the research program. His invaluable suggestions and advice are
gratefully acknowledged.

The author wishes to record his indebtedness to McMaster University
and the National Research Council of Canada for providing financial

support during this research work.

viii



TABLE QF CONTENTS

ABSTRACT

SUMMARY

ACKNOWLEDGEMENTS
TABLE OF CONTENTS

LIST OF
LIST OF
LIST OF

CHAPTER

T S
e e e
EWN -

— e
O 00 3

CHAPTER

2.1
2.2

FIGURES
TABLES
SYMBOLS

1 - INTRODUCTION

General

Review of Past Works
Objective and Scope
Appraisal of Existing Approaches and Outline of the
Transfer Matrix Technique
Assumptions

1.5.1 General Assumptions
1.5.2 Special Assumptions
Dynamic Modelling

1.6.1 Mass Matrix

1.6.2 Stiffness Matrix
1.6.3 Damping Matrix
Numerical Integration
Equivalent Static Load
Elasto-Plastic Analysis

1.9.1 Assumptions for the Definition of Segment State

Resistance Function
Segment State

Scheme of Computations
Flow Chart

-9
-9
-9

[ T G

(S S = UV RN \V]

-9

2 - ELASTO-PLASTIC ANALYSIS OF SINGLE COUPLED
SHEAR WALL

Introduction
Development of Transfer Matrices
2.2.1 Field Transfer Matrices
2.2.1.1 Field Transfer Matrix for an
Elastic Segment
2.2.1.2 Field Transfer Matrix for a
Plastic Hinged Segment
2.2.1.3 Field Transfer Matrix for a
Real Hinged Segment

ix

Page

iii
iv
viii
ix
xiii
xvii
xviii

O W =

13

14
15
17
17
20
22
25
25
27
28
30
31
32

39
39
ko
4o
4o
4y

49



2-3

CHAPTER

WwWwwww
. - [] L]
N EWN -

CHAPTER

4.1
b,

=~ =
=W

4.5
4.6

CHAPTER

5.1

TABLE OF CONTENTS (cont)

2.2.2 Station Transfer Matrices (S.T.M.)
2.2.2.1 Elastic-Elastic S.T.M.

2.2.2.2 Plastic-Elastic S.T.M.

2.2.2.3 Elastic-Plastic S.T.M.

2.2.2.4 Plastic~Plastic S.T.M

2.2.2.5 Real Hinged-Elastic S.T.M.
2.2.2.6 Real Hinged-Plastic S.T.M.
2.2.2.7 Elastic-Real Hinged S.T.M.
2.2.2.8 Plastic-Real Hinged S.T.M.
2.2.2.9 Real Hinged-Real Hinged S.T.M.

Formulation of Mixed Boundary Value Problem

3 ~ WALL HINGE FAILURE FORMULATION

Introduction

Interaction Curve

Boundary Value Problem Formulation
Determination of Curvature at the Base
Scheme of Computation

Static Analysis of a Coupled Shear Wall
for Wall Hinge Failure

4 - DYNAMIC ANALYSIS OF SINGLE COUPLE SHEAR WALL

Introduction

Checking for Method of Dynamic Analysis

4.2.1 Coupled Shear Walls

.2 Dynamic Model and Method of Excitation

.3 Effect of the Percentage Critical Damping

.4 Dynamic Response of Structure 1

.5 Dynamic Response of Structure 2

ect of Investigation

led Shear Walls

.1 Dynamic Modeling of Interior and Exterior
Coupled Shear Walls

h.4,2 Seismic Response

4.4.3 Overall Behaviour

Dynamic Behaviour Considering Wall Hinge Formation

at the Base

Design Considerations For Coupled Shear Walls

5 - ELASTO-PLASTIC ANALYSIS OF TWO INTERCONNECTED
COUPLED SHEAR WALLS

Introduction
5.1.1 Modelling of the Building

X

Page

87

87
88
88
90
92
94
104
110
112
116

118
139
143
165
169

169
170



TABLE OF CONTENTS (cont)

Page

5.1.2 Segment States 173
5.2 Development of Transfer Matrices 184
5.2.1 Field Transfer Matrices 184
5.2.2 Station Transfer Matrices (S.T.M.) 189
5.2.2.1 Elastic Elastic - Elastic Elastic S.T.M. 190
5.2.2.2 Elastic Elastic - Elastic Plastic S.T.M. 192
5.2.2.3 Elastic Elastic - Plastic Elastic S.T.M. 194
5.2.2.4 Elastic Plastic -~ Elastic Elastic S.T.M. 195
5.2.2.5 Plastic Elastic - Elastic Elastic S.T.M. 197
5.2.2.6 Elastic Plastic - Elastic Plastic S.T.M. 198
5.2.2.7 Plastic Elastic - Plastic Elastic S.T.M. 200
5.2.2.8 Elastic Elastic - Plastic Plastic S.T.M. 201
5.2.2.9 Plastic Plastic - Elastic Elastic S.T.M. 203
5.2.2.10 Elastic Plastic - Plastic Plastic S.T.M. 204
5.2.2.11 Plastic Elastic -~ Plastic Plastic S.T.M. 206
5.2.2.12 Plastic Plastic - Elastic Plastic S.T.M. 207
5.2.2.13 Plastic Plastic - Plastiec Elastic S.T.M. 209
5.2.2.14 Plastic Plastic - Plastic Plastic S.T.M. 210
5.2.2.15 Elastic Plastic - Plastic Elastic S.T.M. 212
5.2.2.16 Plastic Elastic - Elastic Plastic S.T.M. 213
5.2.2.17 Station Transfer Matrices Relating Real 215

Hinged Segment/Segments with Elastic,
Plastic, Real Hinged Segment/Segments

5.3 Formulation of Mixed Boundary Value Problem 215
CHAPTER 6 - DYNAMIC ANALYSIS OF TWO INTERCONNECTED COUPLED 218
SHEAR WALLS
6.1 Coupled Shear Wall System 218
6.2 Method of Excitation 220
6.3 Seismic Response 222
6.3.1 Top Displacement Response 225
6.3.2 Base Axial Force Response 225
6.3.3 Base Moment Response 237
6.3.4 Load Sharing Factor Response of Exterior Walls 242
6.4 Comparison Between Single Coupled Shear Wall Problem 249
and Two Interconnected Coupled Shear Walls Problem
CHAPTER 7 - CONCLUSIONS, DESIGN RECOMMENDATIONS AND 258
FURTHER INVESTIGATIONS
7.1 Conclusions 258
7.2 Design Recommendations 261
7.3 Further Investigations 262

xi



TABLE OF CONTENTS (cont)

Page
APPENDIX A - CALCULATION FOR THE INTERACTION CURVES 263
FOR THE COUPLED SHEAR WALLS CONSIDERED
IN EXAMPLES
REFERENCES 272

xii



| S L
~N OV EWN =

N N N T e ¥

[o gV}

U EWw D -

ll\)l\)l\)l\)l\)l\)l\)l\)

[G8]
1
—_

!
N~ OV EFw N

oW

B G QY W e - IS S B PR RN

VT FWN - O

B Tk — i N i — i~ g = - g N Wwwwwww

IST OF FIGURE

Stepped Coupled Shear Wall on Flexible Foundation
Force Components Acting on the ith Station and Segment
Lumped Mass Modelling

P- Effect

Shearing Force Intensity and Deflection

Resistance Function

Flow Chart for Elasto-Plastic Dynamic Analysis of
Coupled Shear walls

Segment States

Station Combinations

Forces Acting on ith Plastic Segment
Equivalent Beam

Bending Moment diagrams for Equivalent Beam
Equivalent Beam with Relative Displacements
Deflection Pattern of ith Segment

Force Components Acting on ith Station

Forces and Stresses Acting at the Base of Coupled
Shear Wall

Interaction Curve

States At the Base of Coupled Shear Wall

Possible Routes for Final Base Condition

Static Cases Considered for Wall Hinge Formation
Shear Wall Considered for Above Cases (Structure 1)
Case - 1, All Segments Plastic

Case - 2, All Segments Elastic

Dynamic Model of Structure-1 and Structure-2
El-Centro Comp. North (41 Perc. g)

Top displ. El1 Centro Comp. North (Structure 1)
Base 0.T.M.

Axial force

Top Acceleration

Shear Int. (Segment No. 1)

Shear Int. (Segment No. 2)

Shear Int. (Segment No. 3)

Shear Int. (Segment No. 4)

Shear Int. (Segment No. 5)

Top Displt. (Structure 2)

Base 0.T.M.

Axial Force

Top Acceleration

xiii

Page

9
1
16
18
26
29
35

41
41
45
45
45
48
48

51,54,58

70

71
76
80
82
82
84
85

89
91
95
96
97
98
99
100
101
102
103
106
107
108
109



4-16
4-17
4-18
4-19
4-20
321
422

4-23

YooY
4-25

426
4-27
428
4-29
4-30
4-31

4-32

4-33
4-31

4-35

—
1

(W8]

()]

St EErEFEWWW

T EWN =0 W o3

4-46

LIST OF FIGURES (cont)

Comparison of Base Motion 1

Overall Dimensions of Shear Wall Building
Reinforcement Details, Exterior Shear Wall (20 Story)
Reinforcement Details, Interior Shear Wall (20 Story)
Dynamic Model of Exterior and Interior Shear Wall

El Centro Comp. North, 16% g.

Top Displ, El Centro Comp. North 16%g (Exterior and
Interior Wall)

Top Displ., El Centro Comp. North 16%g and 32%g
(Interior Wall)

Base A.F., El Centro Comp. North, 16%z (Exterior Wall)
Base A.F., El Centro Comp. North, 16%g and 32%g
(Exterior Wall)

Base A.F., El Centro Comp. North, 16%g and 32%g
(Interior Wall)

B.M.L. Wall, El Centro Comp. North, 16%g and 32%g
(Interior Wall)

B.M.L. Wall, El Centro Comp. North, 16%g (Exterior
and Interior Wall)

B.M.L. Wall, El1 Centro Comp. North, 32%g (Exterior
and Interior Wall)

Shear Int. (Segment No. 1)

Shear Int. (Segment No. 2)

Shear Int. (Segment No. 3)

Shear Int. (Segment No. 4)

Shear Int. (Segment No. 5)

Yielding History of coupling Beams, Interior Wall
(Run-6)

Top Displ., Wall Hinge Formation considered, El Centro
Comp. 32%g (Int. Wall)

B.M.L. Wall

B.M.R. Wall

Axial Force

Shear Int. (Segment No. 1)

Shear Int. (Segment No. 2)

Shear Int. (Segment No. 3)

Shear Int. (Segment No. 4)

Shear Int. (Segment No. 5)

Wall Hinge Formation at the Base of Piers of
Interior Wall Under Severe Earthquake

Top Displ., Wall Hinge formation considered, El1 Centro
Comp. 16% g (Ext. Wall)

B.M.L. Wall

B.M.R. Wall

Ax. force

Xiv

Page

111
113
114
115
117
121
123

124

125
126

128
129
130
131

133
134
135
136
137
142

145

146
147
148
149
150
151
152
153
155

156
157

158
159



1
- em YW OETONN W N

-
wN= O

O\O'\O\O\O\O\(I)\O\O'\O\O'\O\O\

6-114
6-15
6-16
6-17
6-18
6-19

6-20
6-21

6-22

LIST OF FIGURES (cont)

Wall Hinge Formation at the Base of Piers of Exterior

Wall Under Moderate Earthquake

Top Displ., Wall Hinge Formation considered, El1 Centro
Comp. 32%g (Ext. Wall)

B.M.L. Wall

B.M.R. Wall

Ax. Force

Wall Hinge Formation at the Base of Piers of Exterior Wall

Under Severe Earthquake

Original system of Shear Walls

Equivalent system of Two Interconnected Shear Walls
Forces Acting on the ith Segment of Equivalent System
Segment States

Station Combinations

Deflection Pattern of Two Interconnected Coupled
Shear Walls

Modelling of Two Interconnected Coupled Shear Wall Systems
Dynamic Model of 20 Storey Building
Top Displ. (Run-B, Run 5, and Run-2)
Top Displ. {(Run-C, Run-6, and Run-3)
Top Displ. (Run-C, and Run-D)

Ax. Force (Run-B and Run-2)

Ax. Force (Run-B and Run-5)

Ax. Force (Run-C and Run-6)

Ax. Force (Run-C and Run-3)

Ax. Force (Run-D and Run-3)

Ax. Force (Run-D and Run-C)

Ax. Force (Run-D and Run-C)

B.M.L. Wall (Run-B and Run-5)

B.M.L. Wall (Run~-C and Run-5)

B.M.L. Wall (Run~-B and Run-6)

B.M.L. Wall (Run-C and Run-3)

B.M.L. Wall (Run-C and Run-D; Interior Wall)
B.M.L. Wall (Run-C and Run-D; Exterior Wall)

Load Sharing Factor, At Base, Shear Wall Building
(Moderate Earthquake)

Load Sharing Factor, At top of Seg. No. 2,

Shear Wall Building

Load Sharing Factor, At Base, One Exterior and
One Interior Shear Wall

Load Sharing Factor, At top of Seg. No. 2,

One Exterior and One Interior Shear Wall

XV

Page
160
161

162
163
164
166

171
171
172
174

175-183

185

219
221
226
227
228
229
230
232
233
234
235
236
238
239
240
241
243
244
245

246
2u7
248



6-23
6-24
6-25

6-26

LIST OF FIGURES (cont)

Load Sharing Factor, At Base, Shear Wall Building
(Severe Earthquake)

Load Sharing Factor, At top of Seg. No. 2, Shear
Wall Building

Load Sharing Factor, At Base, One Exterior and One
Interior Shear Wall

Load Sharing Factor, At top of Seg. No. 2; One
Exterior and one Interior Shear Wall

Dimensions, Stress and Strain Distribution,
Exterior Wall

Interaction Curve, Exterior Wall

Dimensions, Stress-Strain Distribution, Interior
Wall

Interaction Curve, Interior Wall

Dimensions, Stress-Strain Distribution,
Structure 1

Interaction Curve, Structure 1.

xvi

Page

250
251
252

253

266

266
269

269
271

271



LIST OF TABLES

Review of Past Works on Shear Wall Analysis
Dimensions, Reinforcement and Capacities of

Structure 1 and Structure 2

Assumed Material Properties of Structure 1 and
Structure 2

Comparison of Response Parameters; Structure 1,
Motion 1.

Comparison of Periods of Structure 1

Comparison of Maximum Responses of Structure 1

Under Motion 1

Comparison of Periods of Structure 2

Comparison of Maximum Responses of Structure 2

Under Motion 2

Dimensions, Refinforcement and Capacities of Exterior
and Interior Walls of the Example Building
Corresponding Periods of the Walls of Twenty

Story Building

Summary of Assumed Conditions for Dynamic Runs
Maximum Responses of the Interior Wall

Maximum Responses of the Exterior Wall

Top Deflection Ratio for the Exterior and Interior Wall
Summary of Assumed Conditions for Different Case Studies
Considering the Wall Hinge Formation at the Base

Dimensions and Capacities of Wall-1 and Wall-2

Summary of Cases Studied for Dynamic Analysis

Comparison of Maximum Responses of an Exterior

and an Interior Wall, 16%g El Centro

Comparison of Maximum Responses of an Exterior and an
Interior Wall, 32% g El1 Centro

Top Deflection Ratio for an Exterior and an Interior Wall

xvii

Page

90
93

gl
104

104
105

116
118
120

138

139
140
144

220
222
254
255

256



HTT, (or HTT)

LIST OF SYMBOLS

cross-sectional area of left and right walls of
segment 1i.

equivalent cross-sectional area of the coupled shear
walls, such that 1/Ai = I/Ai1 + 1/A12.

effective shear cross-sectional area of connecting
beam.

distance between centroidal axes of left and right
walls of segment i.

ground acceleration at time tn‘

clear span length of the connecting medium within
segment 1i.

damping matrix.

damping forcesvvector at time tn.

elastic modulus.

field transfer matrix for ith segment,

total matrix of the structure.

shear modulus.

height of segment i.

total height of the structure.

the height from the ith mass to the top, such that

i
HTTi = HT - I Hk .
k=1

xviii



i1

Ii (or I)

I10’

bi

Ks12

K]
*
(K ]

L},

xi

IiZ

20

82

LIST OF SYMBOLS (cont)

storey height within segment i.
second moment of area of left and right walls of ith
segment, respectively.

It

+ IiZ'

moment of intertia of left and right walls at the
base, respectively.

Ti0 * Ioo-

second moment of area of connecting beam within
segment 1i.

vertical displacement stiffness of foundation under
left and right walls, respectively.

equivalent vertical displacement stiffness of the
foundation, such that I/K6 = 1/K61 + 1/K62'
rotational stiffness of foundation under left and
right walls, respectively.

equivalent rotational stiffness of foundation, such
that‘Ke = Kel + Ke2'

stiffness matrix before P-A effect.

combined stiffness matrix,

load vector for ith segment.

bending moment per unit height at distance x from the

bottom of the segment "i",

xix



Mi(x)

Mi(x)

iA’ iB

(or M,, My

)
iu
io

[M]

NSEG

NMAS

NFR

{P}

qi(x)

{R}

LIST OF SYMBOLS (cont)

walls bending moment at a distance x from the bottom
of segment 1.

cantilever moment at a distance x from the bottom of
segment i due to external loads only.

walls bending moment at the upper and lower surfaces,
respectively, of station i.

ultimate bending moment of the ith pier at the base.
bending moment at the base of ith pier

mass matrix.

number of segments within the wall.

number of masses considered;

NSEG/NMAS

concentrated lateral load at station i.’

applied loads vector at time tn'

shear distribution per unit height along the
connecting medium in segment 1i.

maximum shear distribution per unit length along the
connecting medium in segment 1i.

resisting forces vector at time tn'

station transfer matrix for ith station.

period of the ith mode.

axial force in the piers within segment 1i.

axial force at base of walls.

XX



Y10 Yi2

u.
1

{u}n

{u}n

{u}n

Viar Vi
(or VA’ VS)
* *
1A’ ViB

* A*)
(or VA’ B

v

v
0

(W,

yi(x)

y?(X)

LIST OF SYMBOLS (cont)

axial deformation in the left and right walls,
respectively, in segment i.

Yi1 * Yio-

displacement vector at time t
velocity vector at time tn.
acceleration vector at time tye

inter-storey shear on upper and lower surfaces, res-
pectively, of station i.

wall shear on upper and lower surfaces, respectively,
of station i,

total shear at the base of the coupled shear wall.
inertia load acting on the structure at time t.
lateral deflection at a distance x from the bottom of

segment i.

nth derivative of yi(X)-

¥ Suffices 1A (or A) and iB (or B) refer to the upper and lower

surfaces, respectively, of station i.

* Suffices "I" and "II" refer to the first and second coupled shear wall

respectively (in two interconnected coupled shear walls formulation).

2
au

2
— (1+I/4a")

12E Ib

1+ —7——
*

GAb 02

Xxi



At

yi

ui
st

=1

uover'all

£y

(o]

{<1>}iA, {<1>}iB

LIST OF SYMBOLS (cont)

curvature at the base.

2
u

EZAIa

relative displacement of the foundation due to axial
force at base.

time interval for the numerial integration of the
equations of motion.

relative end displacements of the laminae of the ith
segment.

yield deflection of the ith segment's laminae.
ultimate deflection of the ith segment's laminae.
time interval for calculating the straining actions
due to the inertia load.

rotation of foundation.

the jth eigenvector.

12EIba

3.2 °

hc™g

ductility factor of connecting beams.

top deflection ratio (overall ductility demand).
critical damping ratio for mode i.

modal matrix.

state vectors at the upper and lower surfaces,

respectively, of station i.
xxii



LIST OF SYMBOLS (cont)

{¢} the jth normalized eigenvector.

w, the ith natural frequency in radians per second.

xxiii



CHAPTER 1

INTRODUCTION

1.1 GENERAL

In high-rise buildings, the design consideration due to lateral
loads becomes important. It is necessary to provide adequate lateral
strength and stiffness to the structure. One of the alternatives in
design is the use of reinforced concrete shear walls. The high
stiffness of the shear walls in their planes is employed to resist the
lateral 1loads. Usually, these walls extend the entire height of the
building. In order to have windows, doors and service ducts, openings
must be provided in the shear walls, and the resulting structure often
consists of two or more shear walls coupled together by a system of
horizontal spandrel beams or connecting slabs. Usually, the exterior
walls have spandrel beams, relatively deep, while the interior walls are
connected by slabs.

When the shear walls are arranged in a symmetric manner in the
plan of the building, wind and seismic loads will cause translational
displacements only. In such a case, the behaviour of the whole building
can be studied from the two-dimensional behaviour of a typical pair of
shear walls, coupled either through the floor slabs or floor beams.
This class of problem is generally known as the plane coupled shear wall

problem.



Coupled shear walls can be analysed as equivalent frames using
standard matrix structural analysis techniques. The finite width of the
shear wall is accounted for by assuming sets of infinitely rigid beams
connected to the column of the equivalent frame. The length of the
rigid béam is taken from the center line of the wall to the inner edge
of the shear wall. This approach has the advantage of being versatile.
Coupled shear walls can also be analysed using the continuous approach
which replaces the connecting beams between the walls by a continuous
distribution of laminae of equivalent stiffness. This approach has the
advantage of being relatively simple and explicit solutions can be
obtained for a wide range of coupled shear wall geometries.

When the wind load is the predominant lateral load on high-rise
building, elastic analysis is extremely useful in assessing the
behaviour of the structure. On the other hand, in seismic areas where
the structure may be exposed to moderate or severe earthquake, the
lateral load may be sufficiently large to cause plastic deformations in
some elements of the structure, hence an elasto-plastic analysis becomes
appropriate.

In the coupled shear walls of ordinary proportions, the most
critical areas are the connecting beams between the walls. Observations
of the earthquake damages have repeatedly indicated the failure by
diagonal tension of the coupling beams containing insufficient web
reinforcement. Clearly such failures, usually brittle, which result in
a high rate of strength degradation under cyclic loading, must be

suppressed if satisfactory seismic resistance is to be provided.



Irrespective of the design loads, the shear strength of a coupling beam
must be equal to or larger than its flexural capacity. It is expected
that even under a moderate intensity earthquake, the plastic hinges will
develop at the ends of some, if not all, connecting beans. The
behaviour of a coupled shear wall building during a moderate earthquake
will therefore, depend on the extent plastic hinges formed. When
subjected to a strong earthquake, the rotation demand at the plastic
hinges may even exceed the member's rotational capacity, causing the
connecting beams to fail under flexure. Therefore, the behaviour of a
coupled shear wall building subjected to a strong earthquake will affect
not only the extent of formation of the plastic hinges, but also the
extent the proportions of the connecting beams that have failed
completely.

Therefore, in order to study the behaviour of a coupled shear
wall structure subjected to earthquake loadings, it is necessary to
perform a dynamic analysis of the structure, allowing the possibility of
plastic hinges or real hinges to be formed at the ends of the connecting
beams. An understanding of the dynamic behaviour is an essential step

to design coupled shear wall structures in seismic areas.

1.2 REVIEW OF PAST WORKS

It is useful to review the existing knowledge of the coupled
shear walls by citing some of the studies carried out by different
authors. These works may be divided into three basic categories,

namely; elastic studies, elasto-plastic studies, ductility limited



elasto-plastic studies. Each of these categories may be again divided
into two cases, namely; static analysis and dynamic analysis. Table 1.1

gives the overall view over these past works.

STATIC ANALYSIS DYNAMIC ANALYSIS
ELASTIC Beck [3], Coull and Choudhury [6,7], Jennings and Skattum
Tso and Chan [31,33], Pisandy and [13], Tso and Chan

Traum [24], Smith [28], MacLeod [14] [32]

ELASTO- Gluck [10], Paulay [21], Winokur and El-Shafee [9], Sozen
PLASTIC Gluck [37], Robinson and Elkholy [25] | and Ochoa [29],
Takayanagi and
Schnobrich [30],
Srichatrapimuk [29a]

DUCTILITY | Gluck [10] El-Shafee [9]
LIMITED
ELASTO-
PLASTIC
L

Table 1.1: Review of Past Works on Shear Wall Analysis

Based on the continuum approach, sets of design curves for
different static loads are produced by Coull and Choudhury [6,7]. The
effect of flexibility of foundation is studied by Tso and Chan [33].
Based on the transfer matrix technique coupled with the continuous
approach, a general method is presented for static analysis of non-
uniform walls by Tso and Chan [31]. The flexibility of foundation can
also be incorporated in this method. Based on the equivalent frame
approach, a modified beam equivalent structure method is presented by

Smith [28].



Elasto-plastic static analysis of the coupled shear wall based on
the continuous approach has been presented by Gluck [10], Paulay [21],
and Winokur and Gluck [37].

Ductility limited elasto-plastic analysis is done by Gluck [10]
and he concluded that full plastification along the entire height is
very rarely possible due to the limitations on the ductility factor.

Dynamic properties of planar, coupled shear walls are studied by
Jennings and Skattum {[13]. Planar coupled shear walls are analysed
dynamically by Tso and Chan [32] by a generalized method of continuous
approach i.e. the points of contraflexure are not assumed to be at the
center of the connecting beams.

Dynamic elasto-plastic analysis for limited and unlimited
rotational ductility is done by El-Shafee [9] by extending the transfer
matrix approach. Takayanagi and Schnobrich [30] and Sozen-Ochoa [29]
have done analytical and experimental work to study the inelastic
dynamic behaviour of the coupled shear wall. Srichatrapimuk [29a] has
studied the earthquake responses of coupled shear wall buildings by
considering inelastic yielding at the ends of the connecting beams.

Further references on the shear walls can be obtained from the
bibliography compiled by Schwaighofer and Singh [27].

Both El-Shafee [9] and Takayanagi-Schnobrich [30] have assumed in
their analysis that the shear walls are fixed at the base. But the
bending moment may exceed the ultimate capacity of the section forming
the plastic hinges at the base of the walls. It 1is, therefore,

important to consider this type of failure to understand the complete



elasto-plastic dynamic behaviour of the coupled shear wall under severe
earthquake excitation.

El-Shafee [9] has studied the behaviour of the coupled shear
wall-flat slab building subjected to an earthquake excitation. He has
assumed that the building is symmetrical in plan and consists of a
series of planar coupled shear walls such that all the interior coupled
shear walls are identical and also the two end coupled shear walls are
the same. Since the building is symmetrical, he has studied its overall
behaviour by considering a typical interior coupled shear wall and a
typical exterior coupled shear wall. In his analysis each coupled shear
wall in the building is assumed to take the lateral load in proportion
to its elastic stiffness and this proportion of load is assumed to be
constant throughout the elasto-plastic analysis of the coupled shear
walls. This assumption is realistic so long as the shear wall is in the
elastic state, but when the plastic hinges start forming at the ends of
the connecting beams, the stiffness ratio of shear walls changes and
hence there will be a redistribution of 1lateral load between the
interior and exterior coupled shear walls. This phenomenon of transfer
of loads may lead to different behaviour of the coupled shear walls.
This can be studied by considering a mathematical model consisting of
two coupled shear walls, one representing all the interior coupled shear
walls and other representing the two exterior coupled shear walls,

connected together at the floor levels.



1.3 QBJECTIVE AND SCOPE

The purpose of the present analysis is to develop a method for a
complete time history analysis of shear-wall flat slab multistorey
building, taking into account the plastic deformations at the ends of
the connecting beams of coupled shear walls and the P-A effect. With
this proposed method, it is possible to study the effect of the
connecting beam ductility on the seismic response of the coupled shear
walls within a building.

The method used for the dynamic elastic analysis including the
P-A effect is presented in the subsequent sections of this chapter. The
modification to the proposed method for the elasto-plastic analysis is
presented in Chapter 2. The formulation of the plastic hinges at the
base of the coupled shear wall is presented in Chapter 3. The static
analysis of the coupled shear wall taking into account wall hinge
failure is also presented in that chapter. The elasto-plastic dynamic
behaviour of the single coupled shear walls, with and without
considering the plastic hinges at the base, is presented in Chapter 4.
The modification to the proposed method considering a structural model
consisting of two inter-connected coupled shear walls for elasto-plastic
analysis is presented in Chapter 5. The responses of the interior and
exterior coupled shear walls in a building of typical dimensions are
presented in Chapter 6. In that chapter, these responses are also
compared with those obtained in single coupled shear wall analysis. The
calculations for the ultimate capacities of the piers are presented in

Appendix A.



It is hoped that the present work will provide some insight to
the inelastic dynamic behaviour of the multistorey flat-slab shear wall
building and will give some confidence for the accuracy of the

conventional method of single coupled shear wall analysis.

1.4 APPRATSA F_EXJIST APPR A E _OF THE ANSFE
MATRIX TECHNIQUE

Generally, coupled shear walls can be studied by one of the two
methods. These are the equivalent frame method and the continuum
method. 1In the first method, the coupled shear wall is treated as a
single bay frame. In the second method, the discrete system of the
spandrel beams is replaced by an equivalent continuous medium capable of
transmitting actions of the same type as the discrete spandrels. This
method is particularly convenient if the walls are uniform.

For non-uniform walls, a transfer matrix technique is developed
by Tso and Chan [31]. This method is based on the continuum method and
is suitable for a wide variety of nonuniform shear wall configurations,
foundation conditions and loading conditions. The technique is to
divide the wall into a number of segments, and each segment can be
considered as a uniform coupled shear wall. The continuum method of
analysis can therefore apply to each segment to relate the parameters of
interest from one end of the segment to the other end.

Figure (1.1) shows a nonuniform coupled shear wall on flexible
foundation. The cross-sectional properties of the coupled wall change

at a number of discrete stations along the height of the wall and
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concentrated lateral 1loads are acting on these stations. So, the
station is defined as the section at which the wall cross-section
properties change or when there is a concentrated lateral load acting.
The base is taken as station zero and the top as station n, where n is
the number of segments into which the wall is divided. The ith segment
lies between the (i-1)th station and the ith station. The force
components on ith station and ith segment are shown in Fig. (1.2). A
complete scolution of the problem is obtained by determining the state
vectors {¢}iA and {¢}iB above and below the ith station respectively.

The state vectors are defined by,

mne

' "
{Qh}iA = column {Y, y,y,y , T, q}iA
(1.1)
[ " e
{rb}iB =column {y, y ,vy,v , T, q}iB
where
t n "

Yy, ¥ .¥ .,y : deflection, slope, curvature and variation of
curvature respectively
T: axial force
q: shear force intensity at the center of the
connecting beams.

Station zero has one state vector {¢}o and also station n has one
state vector {¢}nB. These state vectors contain the boundary conditions
of the coupled shear wall problem. By relating the state vector {¢}o to
the state vector {¢}nB by means of tﬁe segment transfer matrices, {¢}O
and {¢}nB can be determined. Then by back-substitution using the

transfer matrices of the segments, other state vectors can be found.
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The transfer matrices necessary for the solution of the problem are
defined as follows:
a) Field Transfer Matrix [F1;
The matrix [F]i is the ith field matrix which relates the state
vector at one end of the segment, {¢}(i—1)A’ to the state vector at the
other end of the segment, {¢}iB-

(o} 5 qya = [F1; Lodyp (1.2)

b) Station Transfer Matrix ISI-.L and the Load Vector {Lli

The matrix [S]; represents the station transfer matrix of the ith

station. It relates the state vector at one side of the station to the
state vector at the other side. The externally applied concentrated
load P, is included in the load vector {L};. The state vector {¢},5 is

related to the state vector {¢}iA by the following equation.

{6}, = [S]; (o}, + L}, (1.3)

i

¢) Total Transfer Matrix of the Structure [F]

The matrix [F] is the product of all the field and station
transfer matrices of the segments. The [F] matrix relates the state
vectors at the base, {¢}_, to the state vector at the top, {¢} ., and is

given by the following equation [31].

[F] = (

i

TE= -

| [F1; (81 (1.4)

with [S]n = identity matrix.
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d) Total Load Vector for the Structure {L.}

The externally applied concentrated loads are included in the
total load vector for the structure. This load vector {L} is formed by
the following equation [31].

n-1 1i-1

{L} = [F], {L}, + (L (81 TRy (L (1.5)

The state vectors {¢}o and {¢}nB can be related by the above

matrices [F] and {L} and is given by the following equation.
{¢}, = [F] {¢} g + {L} (1.6)

There are six elements in each of the state vectors {¢}o and
{¢}nB' Out of these twelve elements, six are known as given by the
boundary conditions at the top and bottom of the structure. The
remaining six unknowns can be obtained from the set of six equations
given by (1.6). Once this equation is solved, then every element in the
state vector {¢}o and {¢}nB will be known.

By means of the transfer matrices of the segments other state
vectors can be determined for all segments starting from the top and

going down until segment 1 [31].

1.5 ASSUMPTIONS

Many assumptions are used for the present analysis. The
assumptions which are listed below can be c¢lassified into two main
groups. The first one is the general assumptions which have been

verified by most investigators, and the second group of assumptions
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concerns the present problem specifically.

1.5.1 General Assumptions

These assumptions are dealing with the stress-strain relationship
and compatibility conditions of the lintel beam.
-~ 1. Moment-rotation relationship is considered linear up to the
plastic moment followed by a horizontal plastic plateau.
+ 2. Plane section perpendicular to the axis of the member before
loading remains plane after application of load.
+ 3. Shear deformation is neglected for the piers and axial
deformation is neglected for connecting beams.
4. The midpoints of the connecting beams are points of contra-

flexure.

1.5.2 Special Assumptions

These assumptions are made in order to simplify the analysis and
to make it compatible with approach used. These assumptions are dealing
with the modelling of the structure.

1. The wall remains elastic except at the base throughout the

analysis.

2. Plastic hinge may form at the base of the wall depending on

the base moment and axial force.

3. Uncracked, double reinforced concrete section for the wall is

used in the calculation of wall stiffness and moment

capacities.
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4, The connecting beams are taken as a double reinforced
concrete section and the cracked section is used for
stiffness and moment capacity determination.

5. The masses are to be lumped at discrete points along the
height of the wall. Therefore, the inertial forces of the
wall are approximated by concentrated loads acting at

different heights of the building.

1.6 DYNAMIC MODELLING

The lumped-mass approach is used in the dynamic analysis. The
masses of the segments (of all walls) are lumped at discrete floors
along the height of the wall. The locations of the masses are taken at
the stations in the problem. These masses need not necessarily be
located at the top of each segment. As shown in Fig. (1.3), the
location of the masses may be at the top of one or more segments and the
masses of all the segments between the two mass-stations can be lumped
together at the upper mass-station. In the present study, the total
number of segments in the wall is taken as an integer mnmultiple of the
total number of masses considered.

For dynamic analysis of coupled shear walls, only the first few
modes are important and more accurate behaviour of the shear wall along
the entire height can be achieved by increasing the number of segments.
This compromise can be made in this modelling by considering the number

of segments is larger than the number of lumped masses.

The mass matrix, stiffness matrix and damping matrix in the
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equations of motion for the system are m by m matrices, where m is the

number of lumped masses.

1.6.1 Mass Matrix [M]

It is a diagonal matrix with the mass of the segments between ith
mass~level and (i-1)th mass level to be the element m(i i) on the main
’

diagonal.

*
1.6.2 Stiffness Matrix [K 1

The flexibility matrix [F'] can be obtained from static analysis.
That is, the Jjth column is to be formed by calculating the lateral
deflection v of the ith mass due to unit load acting on jth mass (i,
j=1, m).

P-A effect can be introduced in this stage, i.e. before inverting
the flexibility matrix [F'] to obtain the stiffness matrix. If p-A
effect is to be neglected the inversion of [F'] will give the stiffness
matrix [K]. The combined s£iffness matrix [K*] which includes the
geometric stiffness, can be obtained by inverting the combined
flexibility matrix [F*]. The combined flexibility matrix [F*] includes
the P-A effect.

To introduce the P-A effect, the following iterative procedure is
to be carried out:

1. From the resulting flexibility matrix [F’], the lumped

weights at the stations will cause additional bending moment

due to the eccentricity from the axis of the wall, Fig.
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(1.4),
2. The additional lateral deflection Afi is calculated at each

mass level i and is added to the flexibility coefficient fi

*
to get a modified coefficient fi-

*
3. Step (1) is to be repeated using fi and from which a new Af,

can be calculated. This new Afi is to be added to the

*%
flexibility coefficient fi to obtain a new f‘i . Comparison

%% %
is to be made between the resulting f; and f,. If the

difference between two cycles is within certain allowable

*%
error, the resulting modified flexibility coefficient fi is

taken to be correct. Otherwise steps (1) to (3) have to be

** *

repeated again with fi as fi.

Figure (1.4) shows the eccentricities fi for the lumped weights

Wi, (i = 1, m), and the method of calculating the additional bending

moment due to these eccentricities. Also the method of calculating the
elastic weights ai is shown in the same figure. The additional Afi can

be calculated from the following equation:

2
-HTTi) + Hk/2] + WiZ[(HTTk-HTTi) +—HI1} + Aei

Afi: 3 Hy

k

Hnm~m4g

1 tw, , barT,

1.7
where Aei is the additional deflection due to the additional rotation at

the foundation level, which can be calculated as:

M
o]

a8, = E; (HT - HTTi) (1.8)
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It should be noted that in the above method the coupled action is
neglected in calculating Af and the coupled shear wall is considered as
cantilever with equivalent moment of inertia Ii = 111 + Ii2' (In case

of two interconnected coupled shear walls formulation the coupled action

in both coupled shear wall is neglected by considering Ii = I.., + 1., +

i1 iz
Ii3 +Ii4')
By applying the above method for all the columns in the
*
flexibility matrix (j = 1, m), a modified flexibility matrix [F ] is

obtained. This matrix includes the gravity load effect.

*
The combined stiffness matrix [K ] is to be determined by

%
inverting this combined flexibility matrix [F ]

K"} = [F 1] (1.9)

1.6.3 Damping Matrix [C]

For the numerical integration the damping matrix must be
introduced to the equations of motion with its original form. It is

assumed that the damping matrix [C] will be diagonalized by the similar

%
transformations that diagonalize the [M] and [K ] matrices. In other
words,

[ 0
[o17 [C] [o] =| 2 (1.10)
] [0} = Eiwi .
0 ",
[ —

where
[¢]: modal matrix

gi: ith percentage damping ratio, and
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wg ith natural frequency in radians per second.
Therefore, to form [C] it is necessary to calculate the eigen-
values and the eigenvectors of the system. The periods and the

normalized unit vectors can be determined from the eigenvalues and

eigenvectors respectively.

T; = 2n/w; (1.11)
1 172
s = T Aj .
to}; =4 ) 0 (1.12)
LR EERR
i=1 J
where {A}j: Eigenvector for jth mode
If the percentage damping ratios g1, Esr eeey Ep are to be

assigned, the damping matrix [C] can be determined from equation (1.10)

as
0
_ T,-1 : -1
[(c] = [e7] 28 w0, [¢] (1.13)
0 ".
from orthogonality condition T
[e3" [M] (0] = [1] (1.14)

Premultiplying equation (1.14) by [<I>T]_1 gives

(07177 [oTy [M] [e] = [oT17" [12

therefore

[¢°1 " = [M] [¢] (1.15)
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Postmultiplying equation (1.14) by [<I>]_1 gives

(01T [M] o) [o17 ! = [1] L]

therefore

(6171 = [T (M) (1.16)

Substituting for (6737 and [0]”" from equation (1.15) and (1.16)

in equation (1.13) gives
— —
0
[l = [M] [e] 2€im. (o] [M] (1.17)

0

e

Above equation gives the damping matrix [C] by knowing the
normalized eigenvector matric [®], the frequencies, the matrix [M], and
after assuming the critical damping ratios Ei’ (i = 1, m),for different

modes.

1.7 NUMERIC INTEGRATI

To obtain the seismic responses numerical integration needs to be
carried out for any ground acceleration record input. The choice of the
proper method for the step-by-step integration is governed by two
factors.

a) Stability of the Integration Procedure

The rate of convergence is dependent upon the periocd of the
highest mode of the system. Consequently, the time interval At used
must be related to the shortest period of vibration, for lumped mass
system. The method is unconditionally stable if the solution for any

initial conditions does not grow without bound for any time step §t, in
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particular when at/Tmin is large. Unconditionally stable scheme is
needed when we have very high frequencies. Alternatively, a numerical
scheme can be conditionally stable, which requires an upper 1limit for

§t/T and is suitable for systems in which Tmin is relatively large,

min’
so that fairly large integration step &t can be used. Among the
different numerical schemes, such as Newmark method [18], Wilson ©
method [2], and the direct step-by-step integration method [35], Newmark
method is found to be the most stable method as stated by Wilson,
Farhooh and Bathe [36].

b) The Accuracy of the Resulting Acceleration, Velocities and
Displacements

The accuracy increases by decreasing §t, for large values of 6t
the errors in period are increased and the percentage amplitude decay
also is increased. From Wilson and Bathe's analysis [36], Newmark
method proved to be the only method which gives no errors either in the
period or in amplitude alternation.

From the above discussion it can be seen that Newmark method is
the best one to be used in integrating the equation of motion to ensure
the stability of the integration. Given below is a summary of Newmark
method [18], using "o" = 0.5, and "B" = 0.25.

1. Assume values of the acceleration of each mass at the end of

the interval.

2. Compute the velocity and the displacement of each mass at the

end of the interval from the following equations:
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e .

* ' At
{U}n+1 = {u}n + '2""{un+1 + u} (1.18)
(At)2 e
{u}n+1 = {u}n + At {u}n + 7y {un+1 + un} (1.19)

From the computed displacement {U}n+1’ compute the resistance

forces {R},

(R}, = [K'] {ul,, (1.20)

From the computed velocity {u}n+1’ compute damping forces

{p},

{D}n+1 = [C] {u}n+1 (1.21)

From the resisting forces {R}n+ the damping forces {D}n+1

1’
and the applied loads {P}n+1’ which is given by -[M] {1}an+1,

and a is the ground acceleration at t the acceleration

n+1 n+1’

can take a new value for each mass at the end of the

interval, as:

{w . =[M7 {p-R-D} . (1.22)

Compare the derived acceleration with the assumed accelera-
tion at the end of the time interval. If these are the same,
the calculation is completed and one can proceed to the next
time interval. If these are different, repeat the
calculation from step 1, with the derived value as the new

acceleration for the end of the time interval.
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1.8 EQUIVALENT STATIC LOAD

The output of the numerical integration process 1is the
displacement, the velocity and the acceleration for each mass as a
function of time. The product of mass times the corresponding

acceleration will give the inertia load acting on the structure, namely:

Wy, = - M) {ul, (1.23)

It should be noted that {u}t is total acceleration vector at time

Once the inertial loading is known, the stress state of the
structure can be determined using the transfer matrix technique. In
this manner, one can obtain a time history of the parameters of
interest. T1he parameters of interest are the top deflection, base wall
moment, the connecting beam end moments or shear intensity, and the

axial force in the walls.

i.9 ELASTO-PLASTIC ANALYSIS

The main difference between an elasto-plastic analysis and the
elastic analysis is that the inelastic behaviour of the connecting beams
is taken into account. Depending on the shear intensity q(x,t) in the
connecting beams, the beam may be in one of three states. It may remain
elastic if q(x,t) is small. Plastic hinges may form at the ends of the
connecting beams if the end moment exceeds the plastic moment of the
beams [Fig. 71.5(b)J]. Finally, if the deformation requirement on the

connecting beam is sufficiently large then the beam may fail. No shear
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or moment will be transmitted by connecting beams if this happens.
Conceptually this is represented as the formation of two real hinges at
the ends of the connecting beam [Fig. 1.5(c)].

In this section the segment states are defined and the overall
scheme of analysis is described. The flow chart of the computer program

to perform the computation is presented.

1.9.1 Assumptions for the Definition of Segment State

To decide what state a segment is in, the bending moment and the
rotation at the ends of the connecting laminae are to be computed and
related to the moment-rotation relationship of the connecting laminae.
The relation between the bending moment at the ends of the connecting

laminae and the shear intensity qxi is as follows:

2 mxi
Qi = o, (1.24)
i
where: m_. = Bending moment per unit height at distance "x" from the

X1

bottom of the segment "in,

As ci the length of the connecting laminae within the segment "i"
is constant, q,; c¢an be used instead of the end moments to check the
conditions of the connecting laminae. Also, the rotation of the laminae
can be expressed in terms of the relative end displacements "Ai" of the
laminae.

In the present analysis, the shearing force qi per unit height of
the ith segment is taken to be the average value in the ith segment's

laminae q; can be calculated from the following equation:
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1

a =3 (qiO + qui) (1.25)

where:
ayp = shearing force intensity at the bottom of the ith segment,

Qg = shearing force intensity at the top of the ith segment.
i

The deflection Ai of the connecting laminae of the ith segment is
taken to be one half of the average value of the relative end
displacements of the ith segments laminae at the faces of the walls [see

Fig. (1.5a)]. A, can be calculated from the following equation.

b; =5 (a5 + AiHi) (1.26)
where:
AiO = half the relative end displacements of the ith segment's
laminae at the faces of the walls.
Mg, = half the relative end displacements of the ith segment's
i

laminae at the faces of the walls.

1.9.2 Resistance Function

Instead of using the moment-rotation relationship, the resistance
function of the ith segment‘'s laminae will be expressed in terms of 9
and Ai defined previously. The resistance function used as shown in
Fig. (1.6) 1is a bilinear hysteretic resistance function. As the

deflection Ai increases from zero, the resistance a; increases linearly
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FIGURE 1-6 RESISTANCE FUNCTION
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with the slope of (2ui/ai). The linearity continues until the yielding
deflection Ay.1 is reached. As the deflection Ai increases further, the
resistance q; is assumed to remain constant at qpi' The latter value
will be maintained until the ductility limit of the member is reached.
However, if the deflection Ai reaches a maximum before the ductility
limit and then decreases, the resistance qi is assumed to decrease along
the line parallelled to the initial elastic shape. This decrease will
continue with decreasing the deflection Ai until a shearing intensity

-q_. is attained.
pi

1.9.3 Segment State

Shown in Fig. (1.6) is the resistance function of the connecting
laminae in the ith segment. The ductility 1limit is denoted by A which
is the product of the yield displacement Agi and the ductility
coefficient n. This figure contains two sets of lines, namely: Set I
and set II.

The segment state can be defined as follows:

- If the average shear intensity a in the segment is such that

. 2 . i i . 2 A, i.e.
q; 2 qpl and average laminae deflection Al(t) _'Al(t—Gt)’ l.e
i H i s - . . < A, i.e.
along line II; or if a; < qpl and Al(t) —'Al(t—at)’ i.e
along line II' and in both cases, IAiI < ]Auil, then the

segment is in plastic hinged state

- If Ai(t) < A,

1(t-8t) and Qy 2 q. . i.e. along line I', or if Ai

pi
_ , . " ..
> Ai(t—ét) and qi < qpi’ i.e. along line I", the segment is in

£

the elastic state. Also the segment is in the elastic state if
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“Ap; <93 < 9y
- If the laminae displacement exceeds the ductility limit i.e.
|ai] > IAuiI, then the segment is in the real hinged state.
Once the segment is in the real hinged state, it will remain in
the real hinged state until the end of the analysis. However when the

segment is in the plastic hinged state, it will return to the elastic

state upon unloading.

1.9.4 Scheme of Computation

The scheme of computation for response calculations is as
follows. The segments are taken to be elastic initially. Step-by-step
integration is performed to obtain the displacement, velocity and
acceleration at every time interval At. The P-A effect is introduced
here to consider the effect of the dead loads on the deflection pattern.
The dead 1loads at the deflected mass-level will cause additional
deflection due to the secondary moments and this additional displacement
Afi at the ith level (equation (1.7), (1.8)) is calculated to get the
modified deflection at each level. If these modified deflections at
each level and corresponding deflections at the beginning of the cycle
are within the allowable error, then the iteration procedure for P-4
effect is stopped. Otherwise these modified deflections are taken as
the values at the beginning of the cycle and next iteration cycle is
carried out.

The stress states of the wall are checked not at every time step

but at the intervals of K times §&t. The value of K is to be
max max
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entered as an input to the computaton, and 6t is the time interval of
calculating the straining actions of the structure. This arrangement
allows the user to obtain a compromise between the accuracy of solution
and economy in computation time. If any segment changes its state, the
overall stiffness matrix of the coupled shear wall is reevaluated before
the next time step integration takes place. This procedure carries on
until the end of the earthquake or when the time of integration reaches
a prescribed limit or the complete failure of the shear wall, whichever
occurs first.

The time history responses for top deflection, base wall moments,
base axial force and shear intensity at the different segments are
calculated and plotted out by the subroutine attached to the main

computer program.

1.9.5 Flow Chart for the Elasto-Plastic Dynamic Analysis of Planar
Coupled Shear Walls

For the purpose of saving the computer time the following steps

are taken in computer program:

1. The response is printed out after every Kmax cycles of
integration, which is entered as input to the computation.

2. A factor Kmax is introduced for the check of segment stress
state, so that the segments state is to be checked at time
interval = Kmax §t second, and the segments state is assumed
to be constant in the interval between checking.

3. The cracked moment of inertia of the connecting beams, is

computed manually beforehand and then introduced to the
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program as input data and kept constant in the analysis.
The flow chart of the computer program is shown in Fig. (1.7).

Some controlling integer and real parameters are presented in the flow

chart to control the operation. The controlling parameters are Kmax’ J,
tmax’ NSEG, NWHNG, NMAS, qpi’ Ayi’ and Aui' The following definitions
may help in understanding the flow chart.

NSEG number of segments considered.

NMAS number of masses considered.

NWHNG controlling parameter for wall hinge failure consideration

if it is zero, then wall hinge failure is not considered
if it is one, then wall hinge failure is considered.

Kmax segments check parameter, i.e. the segments state, are to
be checked every Kmaxat’ where 8t is the time interval for
computing the stress state of the structure.

dJd number of segments which change their states. If J = 0,

no correction of the dynamic properties needs to be made.

tmax time limit of the analysis

qpi plastic shearing force intensity of the ith segment's
laminae.

Ayi yield displacement of the ith segment's laminae.

Aui ultimate displacement of the ith segment's laminae. Aui

is the product of the yield deflection Ay, and the
ductility coefficient W.
NGEE counter for iteration at wall hinge formation. If it is

zero, then either wall hinge failure is not considered or
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it is before hinge formation, hence next time step is
considered. If it is non-zero; then an iteration
procedure is to be started and hence next time step is not
considered.

if it is equal to L, then hinge is formed at base of Lth
pier. If it is zero, then hinge is not formed at base of
Lth pier.

maxm B.M. permissible at base of pier L for given A.F,

no of piers; = 2 for single coupled shear wall problem

4 for two interconnected coupled shear wall
problem

counter for iteration to check the segment states. If it
is zero, then go for next time step i.e. the iteration
procedure is completed. If it is non-zero, then go for an

iteration procedure in the same time step.



DATA INPUT: Dimensions masses, damping, ducd; qP,NSEG,
NMAS, NPIERS,gr.asc.?max’ kmax'

¥

INITIALISE VALUES: t=0.0, k=0, Elastic Seg., zerovalues
for straining action and Numerical Integration.
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CHAPTER 2

ELASTO-PLASTIC ANALYSTS OF SINGLE COUPLED SHEAR WALL

2.1 INTRODUCTION

An elasto-plastic analysis for one planar coupled shear wall is
presented in this chapter. The analysis is based on the transfer matrix
technique in combination with the continuum method as explained in the
previous chapter.

Depending on the shear intensity q(x,t) in the connecting beam,
the beam may be in one of the three states, namely, the Elastic,
Plastic-hinged or Real-hinged state. At any given time, the shear
intensity varies along the height of the structure. Therefore, portions
of the connecting beams along the height may be elastic, part of them
may have plastic hinges formed at the ends and part of them may have
failed and therefore represented by connecting beams with real hinges at
the ends. A segment of a coupled shear wall containing only elastic
connecting beams 1is called an elastic segment. Similarly, a segment
containing beams with plastic hinges or real hinges are called plastic
hinged segment or real hinged segment respectively.

The properties of a plastic hinged segment or real hinged segment

will be different from an elastic segment. Hence it 1is necessary to

39
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derive appropriate field transfer matrices for plastic and real hinged
segments in addition to elastic segments. Furthermore, the station
transfer matrix relating a state vector in an elastic segment to a state
vector in a plastic hinged segment is different from the one which
relates two state vectors both in either elastic segment or plastic
segment. Since each segment can take the form of an elastic segment, a
plastic hinged segment or a real hinged segment, it is necessary to
deevelop nine station transfer matrices to cover all combinations of

segment variations as shown in Figure (2-1).

2.2 DEVELOPMENT OF TRANSFER MATRICES

In this section the field transfer matrices for an elastic
segment, a plastic hinged segment and a real hinged segment respectively.
are presented. In addition, nine station transfer matrices are

developed to cover all combinations of segment variations.

2.2.1 Field Transfer Matrices
Listed below are the three field transfer matrices with their

derivations.

2.2.2.17 Field Transfer Matrix for Elastic Segment

By definition, this is the segment in which the connecting beams
are in the elastic state (Fig. 2.1a(1)). It has been considered by Tso
and Chan [31], and is given in the following form:

1

[F]i z [w]i [x]; (2.1)
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where [F]i is the field transfer matrix for the ith segment.

[v 1,

and

-1
[A]i =

1

0

0

0

0

1

-H

0

0

1 0 0 0
0« 0 0
o? 0 Yz/a Y2H/a2 ;
0 o 0 -Y2/a2
0o 0 1 H
0 o 0 1
i
-1 H ¥ H 1
2 2 IERIRATY
a a a a
=1 -Y2H
0 2 2
a ¢
ChoH  -ShaH  ~y2ChoH
2 3 Y
a o a
2
-ShaH  ChoH < ShaH
(!2 (X3 (1.)4
0 0 1
0 0 0

Where, the parameters of the ith segment are

ShaH = sinh(aH)

)

2
au

== (1 + —3)

EI

I

Aa2

ChaH = cosh(aH)

.
y
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(2.2)

(2.3)



I=I +1I

But this

vector which are in terms of y, y', ¥v", y"', Me, v, i.e.

054y = [F1; {odyp
1 Ho € =1
{¢}(i—1)A = {yy"y"y" M V}

(i-1)A
- [} " " € -1
and {¢}iB = {yy"y"y""' M V}iB

where

M°® and V are functions of y" and y"' given by

M° = EIy" + Ta

V = <-EIy"'" + qa
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field transfer matrix is formulated to relate the state

(2.4)

(2.5)
(2.6)

For coupled shear walls, it is considered more convenient to use

the state vector {y, y' y" y"' T q}.

Reformulating this to relate the states which are in terms of y,

y'y ¥v', ¥t ¥y, T, Q.

multiplying [w]i and [A];1 and as the field transfer matrix [F]i

for an elastic segment is given in equation (2.7)



C-1 KYZ n2
y 1 <H > vy
a a
=S Ky2
y' 0 0 ;_+ 3 (S=n)
a
KYZ
y" 0 0 C#‘E—(1-C)
a
KYZ
y'" = 0 0 a3+ S
a
K 2
T 0 0 ZFlt-c=—5—(1-0)
a
K 2
q 0 0 ;{-aS+ o S]
J ‘
(i-1)
C =
S =
K = EI
n=akl

cosh(a H)

sinh(a H)

2 2 2
n-s Ky n3 ay n
5 (6 +n=-S) ¥ G +1-C)
a a
C-1 KYZ n2 ayz
g (G- ()
a a o
2
Y Ky ay?
5(1-C) - 3 (n-8) ——(1-C)
a a a
Kyz ayz
C-—%~ (c-1) — S
a
K S Ky2 Ky°

-;{H-g;—g—(n-s)] 1-—5—(1-0)
a [s3

K Ky? Ky?

ZlC5(C-1-1]1 —/ S

0l

2.2.1.2 Field Transfer Matrix for Plastic Hinged Segment

A plastic

plastic hinges formed at both ends.
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hinged segment has all its connecting beams with

Consider the segment as shown in

Fig. (2.2) subjected to uniform shearing force per unit height "qp" in

the connecting beams.
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where a, = 2Mu/ch (2.8)
Mu: ultimate moment of the connecting beams considered as double
reinfored concrete cross-section
c: clear span of connecting beams
h: storey height in the ith segment
Here since qp is known, this problem is essentially like a beam

segment with modified "shear force" and "moment".

Equation of Axial forces gives

e .
where M : overturning moment

aM _dM 4T
a

dx dx dx

*
v

vV - qp a
where: V*: wall shear

V : interstorey shear

To obtain the field transfer matrix for plastic hinged segment,
it is necessary to obtain the relationship between y, y', y", y"', T and
q at the top and bottom of the plastic hinged segment. The deflection,
slope and curvature relationship can be obtained by considering a
plastic hinged segment under the wall moment "M" and interstorey shear

"Y" to be the same as the beam with moment of inertia I = I1 + I2 under

#
the action of beam moment "M" and beam shear "v " Fig. (2.3).
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Consider a beam of length H under action of wall moment "MB" and
*
wall shear "VB" at the top of the beam as shown in Fig. (2.3). The

deflection and slope at the top relative to the beam are given by, (see

Fig. (2.5))
o) -y (2.9)
yA_yB_H(yB—eB_y 2.9
L] 1
Yy =Yg - Op (2.10)
L 1
To obtain a relationship between y,; Yy and yg, Yp respectively,

from the bending-moment-diagram shown in Fig. (2.4) we get [Note: here
the effect of change in axial force i.e. of the shear intensity is
considered in the third bending-moment-diagram due to gpi hence

satisfying the equilibrium]

2 3 3
Mg VgH e
Y =37 * 3EI - 3EI (2.11)
2 2
MBH VBH qBaH
®s = BT * 2ET - 2EI (2.12)

Substituting these equations in (2.9) and (2.10) and as,

"

My = E Iy (2.13)
Vg=-E1 y"é +aqg (2.14)
we get
1 ) 2 " 3 me
yp = Vg -~ Hyg +(H/2)y, -(H/6)y (2.15)
t 1 1" 2 mne
Yo =Yg + Hyg +(H /2)y B (2.16)

from the moment equilibrium

M =M, +V_H-

A"t Vs ag @ B

" " He

oo Yy =V¥g - HY g (2.17)
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from shear equilibrium

* *
VA = VB
meooom 8)
. yA_ yB (2.1

from vertical force equilibrium

T, =T, +q_H

A B )
T, = Tg + H qg (2.19)
and as q, = 9 (= qp) (2.20)

Hence the field transfer matrix [F]i for a plastic hinged segment

is given by equation (2.21)

(v ] L & w2 w6 o o] [y ]
v 0 1 -H H2/2 0 0 y'
y" 0 0 1 ~H 0 0 y" |
{ y"! = 0 0 0 1 0 0 < y"! (2.21)
T 0 0 0 0 1 H T
Lq=qE ._fl 0 0 0 0 __1_ quqR
(i-1), ip

2.2.1.3 Field Transfer Matrix for a Real Hinged Segment

The field transfer matrix for a real hinged segment can be
obtained from a plastic hinged segment assuming the connecting beams
have lost their moment transmission capacities, i.e. when gy = 9 = 0.

Therefore, by substituting the above value in place of qB in
equation (2.19)

T, =T (2.22)
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and setting

=0 (2.23)

The field transfer matrix [F]i for the real hinged segment

becomes

[y ] 7 8 w2 -8 o o] [y |
v o 1 -H B/, 0 0 g
y" 0 0 1 H, 0 0 ¥

) y"'? - 0 0 0 1 0o 0 \ y" > (2.24)
T 0o 0 0 0 1 0 T

| @=0 0 0 0 0 0o 1 =0

G, T

2.2.2 Station Transfer Matrices

Listed below are nine station transfer matrices, necessary to

complete the solution of the problem.

2.2.2.1 Station Transfer Matrix Relating a State Vector in an Elastic

Segment to a State Vector in an Elastic Segment [Elastic--

Elastic S.T.M.]
The station transfer matrix for Elastic-Elastic Station as shown
in Fig. (2.7a) has been formulated by Tso and Chan [31] in the following
form

{o},, = [S], {¢}.A + {L}i (2.25)

iB i i
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where
[S]i = station transfer matrix for ith Station
10 0 0 o o |
0 1 0 0 0 0
IAaB aA-aB
0 0 IBaA 0 EIBaA 0
IAug u%—ui
R I
0 0 0 0 1 0
0 o 0 0 0 1
{L}, = load vector for ith station. T
= Column {0 0 0 -P/EI O P},
{¢}iB = state vector giving the state i.e.
v, V', ¥y, y"', Me and V, at base of ith station
{¢}iA = state vector giving above states at top of ith station
and 12EIba 12EIb
u21=(’TZ—);B§=1+( ¥ 5 )
hC~'g i GA,C i

Reformulating this to relate the states y, y', y", y"', T and q

from equations (2.5) and (2.6), the station transfer matrix for Elastic-

Elastic station becomes



— —
y 1 0 0O
y! 0 1 0
Ip
y" O O —
IB

y||l> O o O

T 0 0 O
q 0 0 0
T, - SR
iB

—
0 0
0 0
apr-3p
0
EI
-a UZ—UZ
A YaT"
0 - (
EI 2
B w)
1 0
2
2B
0 >
B¥aA
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iA

( .
0
0
0
)
EIB
0
0
- -
i
(2.26)

2.2.2.2 Station Transfer Matrix Relating a State Vector in an Elastic

Segment to a State Vector in a

Elastic S.T.M.]1

lastic Segment |Plastic-

From the continuity of the wall, as lateral deflection, slope and

axial force above and below the stations are to be same,

Y
4

YB

Tg

Equilibrium of moments about the central point "Q"

2.7.d]1 gives

MA + TAaA -

MB - T.a, = 0

B'B

(2.27)
(2.28)
(2.29)

[Ref. Fig.

substituting from eqn. (2.13) and (2.29), above equation becomes
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Vg = T_Ya* EL. Ta (2.30)

ny nt
—EIAy At qAaA + Pi z —EIBy g * qBaB (2.31)
as from Tso and Chan [31], the shear-intensity at the bottom and top of
station "i" are related by

4 2

A "B
qB = > qA (2.32)
B "a

But as the segment above the station is in plastic state

Ay = 9py

ap (2.33)

therefore, from egn. (2.33) and simplifying eqn. (2.31) becomes

2
"B
I, [Pi+aAqPA(1- 5 )]
ue B m UA 1)

B B



becomes
-

y
yl

y"

y"' =

56

Hence the station transfer matrix for a Plastic-Elastic staton

2.2.2.3

100 0 0

01 0 0 0
Iy aj-ap

0 0 7T 0 Tt
B B

I
0 0 0 EA 0
B
00 0 0 1
000 O 0

Station Transfer Matrix Relating a State Vector in Plastic

Segment to a State Vector in an Elastic Segment [Elastic-

y 0
y' 0
y" O
2
B
{ $ { -[Pi+aAqPA(1 - *57]
u
y"r |+ A
Elg
T 0
2
= ( e: ) q
9=9 . 2 PA
L J L “g"a
ta

Plastic S.T.M.

The continuity eqns. (2.27), (2.28), (2.29) holds good.

(2.35)

Also the

eqm. of moment gives the same relationship between curvature as given in

eqn. (2

or

.30).

Equilibrium of lateral forces gives

mne

-EIA y A + qAaA + P.l =

-EI

from eqn. (2.32), after simplification,

BY gt %%
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a_)
- — (2.36)

As the segment below the station is already in the plastic state
(Fig. 2.7.b)
qp = g (2.37)

Hence the station transfer matrix for Elastic-Plastic station

becomes
~- - — — . — —
y 1.0 0 O 0 0 y 0
y' 0O 1 0 0 0 0 y! 0
I a,~a
y" 0 0 EA 0 21 B 0 yr 0
B B
I a -(P4~gppag)
1 “PB”B
< y" >_ 0 0 O EA 0 JE%_ { y"'> + < - SEI > (2.38)
B B B
T 0 0 O 0 1 0 T 0
aA“é
a=q 0 0 0 O 0 q 0
P a 2 L_
L. . I, —BEA" L - -
iB iA

2.2.2.4 Station Transfer Matrix Relating a State Vector in a Plastic

Segment to a State Vector in a Plastic Segment [Plastic-Plastic

S.T.M.1

Egns. (2.27), (2.28), (2.29), (2.30) remain valid for this

station also.
Equilibrium of lateral forces gives

e mne

or -Ely p * 93 = -EI,y At 9t P, (2.39)
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As both the segments above and below the ith station are in

plastic station [Fig. 2.7(h)]

9 = 9B
Q= Gp, (2.40)
therefore, after simplification eqn. (2.39) becomes
oo Ta o, (Pi9ppRptapa®y) |
ol e — (2.41
B IB A EIB

Hence the station transfer matrix for Plastic-Plastic station

becomes
S ‘ —_— .
y 10 0 O o olly ] 0 ]
y' 010 O o o]y 0
1 a,-a
y" 0 0 EA 0 él B ol yr 0
B B
g I 3 > ﬁ ~(P.~Q.,a,+q,,a,)
jy"' =lo oo 2 o olly] + i TBB_'PAA (2.42)
I EI
B B
T 0 8 0 0 1 0 T 0
a=q 0 0 0 O 0 0l{la=q q
P P PB
L 1 I _ .
iB iA

2.2.2.5 Station Transfer Matrix Relating a State Vector in an Elastic
Segment to a State Vector in a Real Hinged Segment [Real
Hinged-Elastic S.T.M.]
This is a special case of the plastic-elastic station. If we
substitute zero for gy, in the load vector in equation (2.35) the load

vector for the real hinged-elastic station will be obtained. The
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station transfer matrix [S}i; will be the same as it is independent of

the lateral force in the connecting beams of the segment above ith

station.
- 4 — -_ - -
y 1 0 0 O 0 0 y 1 0 1
y' o 1 0 O 0 0 y' 0
IA a,-a
y" 0 0 E— 0 -—-—JEI 0 VA 0
B B
I -P.
—A —1
1 -
{y"'»=]0 0 0 7 o 0 Qv $+ < - $ (2.43)
B B
T 0 0 0 o 1 0 T 0
aA“é
q 0o 0 0 © 0 )| |a=0 0
SR R S agep L 1 L
iB iA

2.2.2.6 Station Transfer Matrix Relating a State Vector in a Plastic

Segment to a State Vector in a Real Hinged Segment [Real

Hinged-Plastic S.T.M.]

By substituting in equation (2.41) for App by zero we get

-9pp2p)
Yy, = y, = ~"—ZS—— (2.4y4)
B T 1 Ya BT,

(Pi
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Equations (2.27), (2.28), (2.29), (2.30) and (2.40) are valid.

Hence, the station transfer matrix becomes
- 9 = "] — .
y 1 0 O 0 0 0 y 0
y! 0 1 0 0 4] 0] y! 0
I a,-a
y" 0 0 EA 0 gI B 0 y" 0
B B
I -(P.~-q..a.)
_A 1 i 'PB'B
1" -
y"ty=]0 0 0 7 0 oy Ye{—g » (2.45)
B B
T ¢ 0 0O 0 1 0 T 0
q=0 0 0 O 0 0 0 Q=QA App
L ..iB S L aiAL —
2.2.2.7T Station Transfer Matrix Relating a State Vector in a Real
Hinged Segment to a State Vector in an Elastic Segment
Elastic-Real Hinged S.T.M.
Equations (2.27), (2.28), (2.29) are valid in this case. The

change will be in the terms relating the lateral force in the connecting
beams below the station.
The equation (2.36) of egn. of lateral force gives

P,
i

- o7 Q, - (2.46)
EIB A EIB
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Hence the station transfer matrix becomes

- ~ 8
1 00 0 0 0 vy ] 0
y' 0 1 0 0 0 0 y! 0
I a -a
yn 0 0 EA 0 gI B 0 y" 0
B B
I -a L & -P. &
y"'$= O O 0 -I—A o —éI—A <y"l + <E—Il
B B B
T 0 0 O 0 1 0 T 0
2
®AMB
=0 0 0 ¢ 0 0 5 q 0
ank
B"A
I I I L L
iB iA

(2.47)

2.2.2.8 Station Transfer Matrix Relating a State Vector in a Real

Hinged Segment to a State Vector in a Plastic Hinged Segment

[Plastic-Real Hinged S.T.M.]
Besides egns. (2.27), (2.28), (2.29), the following equations are
obtained from egn. (2.39)
I (P;-qp,a,)
yB = 1 yA - EI (2.48)

as

qB =0 (2.”9)
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T
q=0
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iB

Therefore station transfer matrix becomes

prearm—

1 0
0 1

0 0
0 o0
I
=0
B
I
0 1
B
0 o0
0 o

[aM
=
[ssJI\V]

W

o
=
= N

Q=0q,

iA
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4 —————> (2.50)

2.2.2.9 Station Transfer Matrix Relating a State Vector in a Real

Hinged Segment to a State Vector in a Real Hinged Segment

Real

Egns.

station also.

and (2.

LQ) as

inged-Real

(2.27),

(2.28),

inged S.T.M.

(2.29),

(2.30)

remain valid for this

By setting g and qPA equal to zero we get egns. (2.39)

(2.51)

(2.52)
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Hence the station transfer matrix for this station becomes

.. —_— - _
y 10 0 0 0 0 y 0
y' 0 1 0 0 0 0 y! 0
I (a_ -a_)
" 0 0 'EA 0 —-ﬁ;;iL' 0 y" 0
B B
I -P.
9 g >= o oo =2 0 0 ﬁ g }+ < —L > (2.53)
I EI
B B
T 0 0 0 0 1 0 T 0
aA”E
g=0 0 0 0 O 0 ( 2) q=0 0
agip
IS I . 1 L
iB iA

2.3 FORMULATION OF MIXED BOUNDARY VALUE PROBLEM
The transfer matrix technique gives a relation between the state

vector at the base and the state vector at the top as,

to}, = [F1 Lo} 5 + (L} (2.54)

There are six elements in each of the state vectors {¢}o and

{¢}nB. Qut of these twelve elements, six of them are known by the

boundary conditions at the top and bottom of the structure, i.e. for a
wall resting on flexible foundation it is shown that

At the base, (Ref. Tso and Chan [31])

Vo F 0 (2.55a)
EI
| o 11
Yo" k. Yo (2.55b)
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Eono +Vo
as q_ =
) a
1
EI T
n o )
and q, = 1, ( kK. Yo " ak

where Ke = equivalent rotational stiffness of foundation

K equivalent vertical displacement stiffness of the foundation

$

ne

adding these two and simplyfing for y o

2 2
a u B 2a v
" 1 1 (1] 1 1 (0]
y = - y., + T + 7 aq. - "—7
o} Ke o KGEI1 0 EI1 o} EI1
v
" o (2 )
= -Foyo + FgTp + Faq, - EI -55¢
At _the top,
"
ynB =0 (2.55d)
TnB =0 (2556)
"
EInynB + Vn
as an = a
n
EI P
n mne n (2 f‘)
% a ynB * a +55



Hence the mixed boundary value problem becomes
— — — —— — — -
0 YnB
E ll/ 1
ono Ke ynB
n 0
yo _ —
= F + L
. - " o
PVt T P05 O/EL YnB
To 0
EIn " Pn
—n + 2
qo a ynB a
n n
(2.56)
Expanding above six equations and eliminating the three unknowns
1"
yo, To’ % at the left hand side by Gauss Elimination Method, we get
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three independent equations in terms of three independent unknowns as

il Fl2
Fyq-bFs, Fyp-bFs,
E gt F g -F Foy-F Fy, FyotF Fop-F Fo-F Fep
- — -
YnB _L1_F16Pn/an
, o
$ Vo P SLo¥blo=(Fyc-bFo )P /2
"e — —_ —_ J— —
Yop -(Lu+FPL3-FSL5—FaL6) - (Fu6+F

Fiytefig

(F24_bF34)+(F26_bF36)e

y+FFoy-F Fey
e(Fyg+FFag-FFe-FaFge)

(Fu _FaF64)+

P V
- o T _n _90
rFaeFsFoeFFee) 3 = BT
9
(2.57)



EIn
where e = —— Fr =
an
EI
b= K Fs = EI
0
Py = BI
For fixed base, as b = Fr = Fs
Fi Fio Fiy+eFqg
Foy Foo Foy+eFog
Fuq-FaFeq

Fuo=FaFep Fuyy-F Feu+(Fyg-F, Fggle
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0, and egn. (2.57) simplifies to

—

ynB

{ ynB

ynB

-L4-Fq6Pn/2n
>:< —L2-F26Pn/an

_L4+FaL6_vo/EIO

L‘(Fus‘Fans)Pn/an
_
(2.58)




CHAPTER 3

WALL HINGE FATLURE FORMULATION

3.1 INTRODUCTION

In the previous chapter, the formulation of plastic hinges at
both ends of the connecting beams is the only source of inelastic action
considered. But in practice, when the wall-moment at the base of each
pier reaches its ultimate value, plastic hinges should also be formed at
its base. When a severe earthguake shakes a coupled shear wall of
practical proportion, plastic hinges start to form at the ends of
connecting beams before the hinges are formed at the base of the piers.
The final collapse mechanism of a typical coupled shear wall under the
action of severe earthquakes is the full plastification of the
connecting beams and the formation of hinges at the base of both piers.
The order and extent of formation of these hinges and hence, the final
nature of collapse mechanism depends on strength of lintel (connecting)
beams, strength of both piers, other dimensions of coupled shear wall,
and the distribution of gravity loading. This formulation of plastic
hinges at the base of the piers is considered in this chapter. The
analysis is based on the same transfer matrix technique used, but with
different boundary conditions at the base to denote the formation of the

plastic hinges.
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3.2 INTERACTION CURVE

In a typical coupled shear wall the bending moment and the axial
force caused by gravity loads and lateral loads will be acting at the
base of each pier as shown in Fig. (3.1). Under the combined action of
these forces, the cross-section at the base of each pier will have the
stress distribution pattern as shown in Fig. (3.1). This section can
take the combined action of these forces until it reaches the ultimate
state of stresses [Fig. (3.1)]. The corresponding bending moment at the
formation of plastic hinge state is known as the ultimate bending moment
(Mu)' The locus of these values of axial force and bending moment
causing the ultimate state, and hence the plastic hinge, leads to a
curve known as the "Interaction Curve". Theoretically, the Interaction
Curve is a smooth curve, but in the present work it is approximated by

the set of two straight lines as shown in Fig. (3.2).

3.3 BOUNDARY VALUE PROBLEM FORMULATION

When the hinges are formed at the base of the piers, the boundary
conditions of the problem become as follows.

At the base

yO =0 (3.1a)
EI
1] o "
Vo= Yo+ B= b B+ 8 (3.1b)
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where
B : slope at base due to the formation of hinge (unknown)
Bo: curvature at base (known); b = EIO/Ke
and as
"
EI yo + Vo
9 = a,
2il_°" Yo
and a, = ¥y K, Yo + B - a, K,

1y

adding these two and simplifying for yo .

2 2 2
v
. a1u1 . a1u1 u1 2a1 o
y. = - vy - B + T +-— -
o} Ke o} Ke KeEI (o} EIo o) EIo
\'f
n %
= - Fryo - FPB + FsTo + FaqO - EIO (3.14)
where
Ke = equivalent rotational stiffness of foundation
K‘S = equivalent vertical displacement stiffness of the foundation
a 2
™1
F =
r Ke
u2
1
F =
s KGEI
2a1
Fa &1
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At the Top
" -
ynB =0 (3.2a)
TnB =0 (3.2b)
e
ElnynB+V
q =
nB a,
P
mne n
= eynB + 3 (3.2¢)
n
where

e = Eln/an

Hence the mixed boundary value problem becomes

0 1 -__T i T ]
ynB
DB +8 '
Bo+ ynB
B — 0 _
< (o] >: F * }+4 L &
"e
_FrBo_FrB+Faqo+FsTo_Vo/EIo ynB
To 0
H P /
clo LeynB+ n_[an ]
- (3.3)

Expanding above six equations and eliminating the three unknowns

B,To,qo at left hand side by Gauss-Elimination Method, we get the three
] "y

independent equations in terms of three unknowns, YnB? ynB’ ynB'

Rearranging it in matrix form we get
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\ -
Fly Fiy FyyreFig o YnB
5, Fp FyyreFye { y;lB
F;H_F F61+FfF;_*1 Fsts1 -Fuz'FaF62+Ff?-22‘FsF52 (F, L4y FaF614+Ff 24 Fsu) y;;
+(Fyg-F Fg+F oFop-F T 6)e ]
__11_F16Pn/an ]
= T3-FgPa/anss, >(3.u)
—Lu+F Tg-Fe L. o*F L -(Fu6—F F66+FfF26+Féfg6)Pn/an - V/EI_ + (Fb-F )8
If the shear wall is fixed at the base initially,
b=F,= Fg = 0; and eqn. (3.4) simplifies to,
F Fio Fy+eFg —ynB-
Fa T2 FayreFyg ﬁyr'aB >
Py F T Py Ty P FootF oy FyyoF T oF T o (FF T oF F)Oe| |y 0
—— L J
Ep
= é :EZ—F36Pn/an+BO
'1:,4+Fat6 FfLZ V/EIL_ - (Fu6+FfF26-—F F, 6) P /a,
S141
where Fp = ET_ (3.5)
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3.4 DETERMINATION OF CURVATURE AT BASE

To solve the above mixed boundary value problem, the curvature at
the base (y: = Bo) should be known and this section explains a method to
determine its value.

It should be noted that the piers of coupled shear wall are
subjected to different axial forces, and the ultimate bending moment
(Mu) is not a constant value, but depends on the axial force, hence the
plastic hinges do not form simultaneously in the walls.

Consider the case of a fixed base coupled shear wall. From the
initial fixed-fixed condition as shown in Fig. (3.3a), first only one
hinge forms at the base of one pier [Fig. (3.3b)] with the base of other
pier fixed. Both piers will have the bending moments and axial forces
as shown in Fig. 3.3(b'). Let us consider the pier number 1 as the pier
where the plastic hinge is formed first and To as the axial force, due
to lateral loads, at the base. Then

Total Wall Moment

Overturning Moment - TO ao

n
e
therefore  (EI, + EIZO) Vo= M - T, ag (3.6)
As the plastic hinge is formed at the base of first pier, the above

equation (3.6) becomes

Tu 20

therefore M..=EI__vy (3.7

"
=

-T a - M
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. M” - TO a - M1u o
Bo = Yo = EI20 (3.
where,
Me : Total overturning moment at the base
To : axial force due to lateral loads at the base
a, ¢ c¢/¢ distance between the axes of both piers at the base

110: base moment of inertia of first pier

120: base moment of inertia of second pier

Io : 110 + 120
ultimate bending moment (capacity) of the first pier (with
combined effect due to axial force)

M20: bending moment at the base of second pier

B : curvature at the base.

Then as the load increases continuously, all the extra additional
wall moment at the base goes to the second pier as the first pier has
already attained its capacity. This second pier can take the moment at
the base until it alsoc reaches its bending moment capacity, causing
plastic hinges at the bases of both piers as shown in Fig. 3.3(ec). At
this condition both piers will have bending moments and axial forces at
the base as shown in Fig. 3.3(c').

This stage, when all the segments are in plasic hinged state and
hinges are formed at the bases of both piers, is taken as the "Complete

Collapse State".
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3.5 SCHEME OF COMPUTATION

In the actual analysis of coupled shear wall under the static or
earthquake loads, the loading steps are usually not small enough to
cause the axial force and bending moment at the pier base to fall
precisely on the interaction curve and some iteration scheme 1is
necessary.

From the initial fixed-fixed state shown in Fig. 3.3{(a), the next
hinged~fixed state [Fig. 3.3(b)] will be obtained. Let us assume that
in pier 1 the plastic hinge forms first. Here as shown in Fig. 3.4(a)
{step~II) the bending moment at base of first pier may fall beyond the
interaction curve. But as it cannot take more bending moment than the
ultimate capacity, the extra moment should be transfered to the other
pier according to the equation (3.7). At this stage an iteration
procedure is necessary because the boundary conditions are changed at
the base which may change the segment states and hinge conditions at the
base.

The iteration steps to be followed are:

1. The boundary value problem is solved with the corresponding

boundary conditions at the base.

2. Revised base conditions are determined.

If the base axial forces at the beginning and the end of the

L)

iteration are close enough within acceptable accuracy, and
the segment state and base conditions are the same as assumed

in the beginning, the iteration procedure stopped.
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4. Otherwise the next iteration is carried out from step no. 1,

using these new segment states and base boundary conditions.

It should be noted that, all these iteration steps are carried
out at the same loading étep.

Here this iteration procedure may lead to either of the two
possibilities, namely: A) The final bending moment at the base of second
pier may be less than its ultimate capacity, resulting the same Hinged-
fixed condition at the base Fig. 3.4(a) (final part III).; B) The final
bending moment at the base of second pier may reach its ultimate
capacity, resulting the Hinged-Hinged condition at the base and hence a

"collapse mechanism" at the same loading step [Fig. 3.4(b)].

3.6 STATIC ANALYSIS OF A COUPLED SHEAR WALL FOR WALL HINGE FAILURE
This phenomenon of formation of hinges at the base of piers is
studied by applying a monotonously increasing static triangular loading.
Two extreme cases are considered.
Case 1: All segments are in the plastic state i.e. all lintels between
the piers have plastic hinges at their ends [Fig. 3.5(a)].
Case 2: All segments are in elastic state i.e. all lintels are elastic.

In the first case the loading is increased from W,, a loading at

1

which all segments become plastiec. And in the second case the maximum
allowable shear intensity for connecting beam is assumed to be very

large so that the lintel is always elastic.

Two loading values w2 and W, are compared for both of these

3

cases.
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w2 is defined as the load at which the hinge forms at the
base of one pier.
and w3 is defined as the load at which hinges form at bases of
both piers.

The coupled shear wall under study is the same as considered by
Takayanagi and Schnobrich [30]. The properties and dimensions of this
shear wall are given in Fig. (3.6). The observed behaviour of shear
wall in both cases is shown in Fig. 3.7(a) and Fig. 3.7(b).

It is observed that once the first hinge forms at the base of one
pier, the second hinge will form shortly after a small increment of
loads. This is because, after one hinge formation in one pier, all the
additional wall moment has to be absorbed by the other pier, causing it
to reach the ultimate value more quickly.

This rate of formation of the second hinge, assuming all other
properties of shear wall to be same, depends on the state of segments.
In the case of plastic segments (case 1), the base axial forces remain
the same for any additional 1loading. Therefore all the additional
moment has tc go to the second pier. In the second case of elastic
lintels, the base axial force increases at higher load which acts as a
reliever to the base wall moments. Hence not all the additional moments
goes to the second pier. Therefecre, the ratio of w3 and W2 in case 2 is
more then that in case 1, i.e. the rate of formation of the second hinge

reduces if all the segments are not in the plastic state.
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These are the two extreme cases of the coupled gshear walls and in
practice, the actual shear wall will have a behaviour within these two
limits. Hence for the coupled shear wall of practical dimensions, it
may be concluded that the second hinge at the base forms almost
immediately after the first hinge has been formed.

Another important approximation worth mentioning is about the
point of contraflexure in the connecting beams. It is assumed to be at
the center of connecting beams and is maintained throughout the
analysis. This is quite accurate as far as both piers are fixed at the
base or rotate equally, but it is not true at the base, after one hinge
forms at the base of one pier. Since the load intensity which causes
one hinge to form is very close to that causes both hinges to form, it
is believed that the inaccuracy introduced due to this assumption on the
location of the point of contraflexure at center of connecting beams
will not introduce substantial error in the analysis. In other words,
if one hinge has formed at the base of one pier, the margin of safety of
the coupled wall against total collapse is so low at this stage that one

can treat that as a collapse load.



CHAPTER 4

DYNAMIC ANALYSIS OF SINGLE_COUPLED SHEAR WALL

4.1 INTRODUCTION

In this chapter, the behaviour of typical coupled shear walls,
representative of the coupled shear wall building, subjected to earth-
quake excitations 1is studied. Before using this computer program for
the dynamic analysis of these coupled shear walls, the 'analytical
technique is checked by performing a dynamic analysis on the coupled
shear walls which have been studied by Sozen-Ochoa and Takayanagi-~
Schnobrich [29,30] and comparing the computed results with the
corresponding results obtained by them.

Takayanagi and Schnobrich [30] in their analytical procedure,
have considered the inelastic properties such as cracking and crushing
of the concrete, yielding and bond slip of reinforcing steel, and
inelastic behaviour of wall by dividing it into the subelements. In
their beam-column model of shear wall, the constituent member
stiffnesses are evaluated based upon the force-deformation relationships
of the rotational springs of the beams and the subelements of the walls.
Lumped mass concept is used by concentrating the masses at each floor
level. The damping matrix is evaluated as the sum of a part
proportional to the mass matrix and a part proportional to the

structural stiffness matrix. The response under dynamic base motions is
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calculated numerically by Newmark's method of step-by-step integration.
The effect of load history in each constituent element is taken care of

by using a set of hysteresis rule of Takeda.

4.2 CHECKING FOR METHOD OF DYNAMIC ANALYSIS

4.2.1 Coupled Shear Walls

This section explains the properties and dimensions of the
coupled shear walls. These are the same as considered by Takayanagi-
Schnobrich [30].

Two types of models are considered here. These are a weak lintel
beam model and a strong lintel beam model. 1In further discussion they
are referred to as structure-1 and structure-2, respectively. The main
difference between these two models is the amount of steel reinforcement
used in the connecting beams. The dimensions of these walls are shown
in Fig. (4.1). A weight of 0.5 kips is placed at each floor level to
represent the loadings at each floor 1level. The dimensions,
reinforcement and capacities are given in Table 4.1. The material

properties for these models are listed in Table 4.2.

Wall Conn. Beam{ Conn. Beam| Wall Shear Ib
WALL Thickness Depth Reinf. Reinf.} Capacity m
(in) (in) Asb Asw qp(klp/ln) in
Structure-1 1 1.5 2{8% 848% 0.08667 0.169
Structure-~2 1 1.5 L48% 8#8% 0.1611 0.268

*¥ Flexural Reinforcement: No. 8 gage wire

Table 4.1 Dimensions, Reinforcment and Capacities of Structure-1 and
Structure-2
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Concrete Compressive Strength (f;) 4,50 ksi
Young's Modulus (Ec) 3000 ksi
Strain at f; (ec) 0.003

Steel Yield stress (fy) 72.0 ksi
Young's Modulus (Es) 29000 ksi
Yield Strain (ey) 0.00248

Table 4.2 Assumed Material Properties of Structure-1 and Structure-2

4.2.2 Dynamic Model and Method of Excitation

The dynamic model for structure-1 and structure-2 is given in
Fig. (4.1).

The base motions for structure-1 and structure-2 are refered to
as base motion-1 and base motion-2, respectively. The waveforms of
these base motions are the acceleration signals of El-Centro (1940) N.S
component. The original time axes are compressed by a factor of 2.5 and
the amplitudes of acceleration are modified relative to the original
record as appropriate to the analytical work of Takayanagi and
Schnobrich [30]. Only the first 3 sec. of the recorded base motion are
used in the calculations, because the maximum responses and most of the
damages to the structures are observed to be taken place within this
time interval. This compressed duration of 3 sec. corresponds to 7.5
sec. of the original record. The typical modified waveform is shown in
Fig. (4.2). The maximum accelerations of the base motions are listed

below.
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Maximum Acceleration Modified Duration Time
Base Motion-1 119 g 3.0 sec.
Base Motion-2 91% g 3.0 sec.

The time intervals used in the iteration procedure for the
dynamic response calculation of structure-1 and structure-2 are 0.0005
and 0.0006 sec. The "B" factor in Newmark's method of step-by-step

integration procedure is taken as 0.25.

h.,2.3 Effect of the Percentage Critical Damping

Before we study the two cases posed above, it is necessary to
study the effect of the modal critical damping ratios. This section
presents a parametric study of the effect of the percentage critical
damping on the total responses. Five sets of different modal critical
damping ratios are considered and the behaviour of structure-1 under
motion-1 is studied. A dynamic model of five segments and five masses
is considered. Table 4.3 shows the range of the values of responses in
each run.

From this table it is clear that the percentage of critical
damping for the first mode is the most important. Also it is observed
that the percentage change in the response is lesser than the percentage
change in the damping. For the present analysis of structure-1 and

structure-2, the percentage critical damping for five modes are taken

= 4%, £ =5%, E_ = 6%.

. - - S
as: & = 2%, 52 = 3%, & 4 5

1 3



Percentage of Top Top Base Base
Critical Damping Displacement Acceleration Base Shear Axial Force ]| Moment
for Mode (%) Range Range Range Range Range
2| 3| u (in) (%) (kips) (kips) | (kips./in)
3 L 5 -0.64 to 0.50) -0.87 to 1.40| -1.3 to 1.4] -5.9 to 7.0] -125 to 144
2 2 2 -0.66 to 0.54} -0.87 to 1.40}| -1.3 to 1.4} -5.9 to 7.0] -130 to 148
5 4 3 -0.51 to 0.36} -0.77 to 1.10] -1.3 to 1.4] -6.1 to 6.9] -118 to 131
6 6 6 -0.49 to 0.34} -0.80 to 1.10( -1.3 to 1.3] -6.1 to 6.9} -115 to 128
6 T 8 -0.53 to 0.39] -0.81 to 1.20] -1.4 to 1.4} -6.0 to 6.9] -120 to 135

Table 4.3 Comparison of Response Parameters: Structure-1, Motion-1

€6
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4.2.4 Dynamic Response of Structure-]

The initial mode shapes and the periods for those modes are
computed for structure-1. The mode shapes agree with the previous

analysis and the periods are compared in the Table 4.Y4,

MODE 1 2 3 it 5

(1) Present Work 0.208 sec | 0.0U46 sec}| 0.0202 sec ] 0.0119 sec |0.0086 sec

o earme] 2

(2) Takayagani et all 0.200 sec| 0.0U47 sec] 0.0208 sec - -

()
(2)

X100 104% 97.9% 97.1% - -

Table 4.4 Comparison of Periods of Structure-1

The output time history responses of the top displacement, base
overturning moment, base axial force and top acceleration are shown in
Figs. (4.3) and (4.6). Figures (4.3), (4.4) and (4.6) also compare the
computed responses with the responses obtained by Takayanagi and
Schnobrich [30]. This shows that the nature of computed responses is
similar to the nature of the responses obtaining by Takayanagi and
Schnobrich. In case of top displacement, the first mode components are
dominant throughout the time history of the motion. Also the dominance
of the first mode components in the makeup of the response waveforms of
the base moment with a slight second mode compeonent contribution should
be noted in Fig. (4.4). This means that each member behaves in the same
way as the structural system does. The shearing force intensities of

the segments are given in Figs. (H4.7) through (4.11). Also the
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contribution of the higher modes 1is clear in these shearing force

intensity responses, when the segments are in plastic state.

Listed below in Table 4.5 are the maximum values of the parameter

of interest discussed above for the structure-t.

Top Displace- Top accele- Base Base Axial Base
ment ration Shear Force moment
(in) (% &) (kips)| (kips) (kips-
in)
Present work 0.64 1.40 1.40 7.0 144.0
| Takayayani & |  0.72 | 1.42 1.30 8.0 148.5
Schnobrich

Table 4.5 Comparison of Maximum Responses of Structure-1 under Motion-1

4.2.5 Dynamic Response of Structure-2

The nonlinear response history of structure-2 subjected to base

motion-2 1s computed and discussed in this section.

The ¢

alculated

responses are compared with those of the analytical work of Takayanagi

and Schnobrich [30].

The periods of different modes are computed before the ground

excitation and are compared in Table U4.6.

MODE 1 2 3 4 5
(1) Present work] 0.197 sec} 0.041 sec{ 0.018 sec| 0.0109 sec| 0.008 sec
(2) Takayagani &| 0.222 sec| 0.048 sec | 0.020 sec - -~
Schnobrich
(1)
—z—; X100 88.7% 85.4% 90% - -
2

Table 4.6 Compariscon of Periods of Structure-2




The response waveforms of top displacement,

moment ,

through

(4.15).

Shown 1in Figs.

(4.12),

axial force and top acceleration are shown in Figs.

(4.13) and

(4.15)
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base over~turning

(4.12)

are

comparisons of the computed responses with the responses obtained in the

analytical work of Takayanagi and Schnobrich [30].

Table 4.7 compares the maximum responses.

Top Top Base Base Axial Base
Displacement | acceleration| Shear force moment
(in) (% g) (kips){ (kips) (kips-in)
Present Work 1.20 2.85 4.8 14.0 255
Takayagani & 1.55 2.60 4,54 - 234
Schnobrich

Table 4.7 Comparison of Maximum Responses of Structure-2 under Motion-2

The time history responses of both structures in present work
show a reasonably good agreement with those obtained by Takayanagi and
Schnobrich [30].

The maximum responses are also comparable. The top

displacements in the present work are low, probably because this
analysis does not consider the cracking and non-linear behaviour of
walls pinching action and strength decay of the connecting beams. These
characteristics are probably more important in case of strong beam model
(structure-2) subjected to a strong earthquake excitation (motion-2) and
hence causes more deviation in the responses. It also should be noted
that the waveforms of motion-1 and motion-2 considered by Takayanagi and

Schnobrich are not exactly the scaled waveforms of El-Centro (1940) N.S
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component. But these waveforms are produced by the earthquake simulator
at the University of Illinois using modified El-Centro (1940) N-S
component as an input. Figure (4.16) shows the waveform of motion-1
used by Takayanagi and Schnobrich [30] and the modified waveform of
El-Centro (1940) N.S component used in the present analysis. Both
waveforms here are plotted with the same scale and it shows that these
two responses are not exactly the same. This, probably, is the reason
for the difference in the time~history responses obtained in present
work and those obtained by Takayanagi and Schnobrich.

Considering the assumptions in the present analysis as against
the overall complexity in the behaviour of the elements of the coupled
shear wall, the material properties and the analytical procedure of
Takayanagi and Schnobrich [30], it is felt that the present analytical
procedure gives a reasonable description of the inelastic dynamic
behaviour of the coupled shear walls. This comparison with the work of
Takayanagi and Schnobrich provides a good check on the correctness and

accuracy of the present method of analysis.

4.3 OBJECT OF INVESTIGATION

After checking the correctness of the present analytical method
and the computer program, the behaviour of an interior and an exterior
coupled shear wall, representative of those found in the coupled shear
wall building, is studied in the following sections of this chapter.

The dynamic analysis of one coupled shear wall has been done

previously by El-Shafee [9]. But in the present analysis a different
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state vector is used. This state vector {y y' y" y"' T q} gives a
direct appreciation of the behaviour of the coupled shear wall as the
parameters of the interest, namely, axial force (T) and shear force
intensity (q), are given explicitly by this state vector. Also in the
future formulation of two interconnected coupled shear wall problem this
representation of the state vector is more convenient, as will be

discussed in later chapters.

4.4 COUPLED SHEAR WALLS

Consider a multi-storey flat slab-shear wall building. It is
assumed that the building is symmetrical in plan and consists of a
series of planar coupled shear walls., It is assumed that all internal
coupled shear walls are identical and also the two end coupled shear
walls are the same. In addition, it is assumed that the internal walls
are coupled by the floor slabs, while the exterior end walls are coupled
by stiff connecting beams. The building is a twenty storey coupled
shear wall-flat slab structure. The walls of the structure, the storey
height and the connecting beam stiffnesses are constant throughout the
height. The walls are assumed to rest on a rigid foundation. Figure
(4.17) shows the plan and the wall dimensions of the building. The
shear walls of this building under study are same as those considered
and designed by El-Shafee [9]. The dimensions, reinforcement and
capacities are given in Table 4.8 and Figs. (4.18) and (4.19). The
walls are designed to resist an acceleration ratio A = 0.16 according to

NBCC 1975 [(16]. Since the building is symmetrical, its
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overall behaviour can be understood by studying the responses of a

typical interior coupled shear wall and a typical exterior coupled shear

wall.
Wall Connecting{ Connecting Wall Shear Ib
WALL Thickness | Beam depth| Beam Reinf. Reinf. Capacity y
Asb erc. Asw | Perc. q f
p t
Exterior 12 24 4#10 1.70% | 22#11 ] 1.20% | 20.0 0.56
Interior 12 6% 3#5/f4 1.27% | 18#11 ] 1.06% | 2.68 0.0235

¥ Effective connecting slab width = 3.5 ft

Table 4.8 Dimensions, Reinforcement and Capacities of Exterior and
Interior Walls of the Example Building

L.4.1 Dynamic Modeling of Interior and Exterior Coupled Shear Wall

The dynamic model for the exterior and interior wall is given in
Fig. (4.20).

For buildings with rigid floor diagrams, the lateral loads caused
by the ground acceleration are distributed according to the stiffness of
the lateral force resisting elements. 1In order to have the building to
vibrate as a unit, it is necessary to have the mass of the complete
structure being distributed in proportion to the stiffness of the
walls as shown in Fig. (4.20). Table 4.9 gives the periods of the
exterior and interior walls of the twenty storey building. The masses
of the walls are assumed to be distributed uniformly throughout the
height in accordance with the wall stiffnesses, and then lumped into

five masses.
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MODE 1 2 3 4 5

(1) Exterior walll] 1.48 sec| 0.290 sec] 0.121 sec} 0.072 sec| 0.053 sec

(2) Interior walll 1.48 sec}0.305 sec| 0.114 sec| 0.060 sec| 0.041 sec

(2)

-?-; X100 100% 105% 94.2% 83.3% T7.4%
1

Table 4.9 Corresponding Periods of the Walls of Twenty Storey Building

From the table above, it is seen that the fundamental periods of
the two walls are the same. However, the periods of the other modes are
different. The difference between the corresponding periods increases
as the mode number increases. This is because the end walls with the
stiffer connecting beams behave differently from the interior walls for
higher modes of vibration. To obtain the identical periods for all
modes in the two walls, it would become necessary to distribute the
masses nonuniformly along the height of each wall. For simplicity the
masses are taken to be distributed uniformly along the height of the

walls in proportion to their stiffness in this chapter.

4.4,2 Seismic Response

In this section the seismic responses of an exterior and an
interior coupled shear wall of the twenty storey building are presented.
The parameters of the interest are:

(i) Top Displacement

The study of the top displacement is essential for understanding
the overall behaviour of the structure. The flexibility of the

structure 1is proportional to the tcp displacement and the overall




119

ductility of the structure can be calculated from the top displacement.

(ii) Base Moment of the Piers

The most critical section for the piers is at the base. The base
moments in the left and right piers in combination with the couple
arised from the axial force in the piers are responsible for resisting
the external overturning moment at the base caused by the seismic loads.
The piers of both shear walls are identical, so that the bending moment
of the left pier will be same as the bending moment of the right pier.
Hence only the bending moment at the base of one pier is presented in
the present work. As the base moment in each pier is affected by the
axial force in the piers, this moment is sensitive to the condition of
the connecting beams.

(iii) Axial Force at the Base of Piers

As the axial force is the integration of the shearing force
intensity in the laminae, it is directly affected by the changing of the
connecting beams state. When the dead load is included in the axial
force, the resultant net axial force at the base of each pier can be

obtained.

These parameters are used to evaluate the performance of the
structure under seismic excitation. The shearing force intensity in the
connecting laminae is also presented in some cases to clarify the
behaviour, especially when large inelastic deformations occurred in the

connecting laminae.
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The El-Centro (1940) N.S component earthquake record is used in
the present analysis. This record is normalized to the maximum
horizontal acceleration of 16% g and 32% g. In the present work these
two normalized records will be called as "moderate" and "severe"

earthquake, i.e.,

Maximum Acceleration Duration
Moderate Earthquake 16% g 15.0 sec
Severe Earthquake 32% g 15.0 sec

The typical waveform is shown in Fig. (4.21).
The modal critical damping ratios are taken as: £q =‘4%, £y =

5%, £, = 6%, £, = 7%, £, = 8%.

3
Realistic values to account for the limited rotational ductility

of the connecting beams of the two walls are considered. A very large

ductility factor W = 500 is also included to study the effect of

ductility on the response.

Table 4.10 shows the details of the cases of different earthquake

excitation studied for the elasto-plastic dynamic analysis of coupled

shear walls.

Run No. Earthquake Rotational Ductility fictor for
WALL Excitation the Connecting Beams (u)
1 moderate 500
Exterior 2 moderate 15
3 severe 15
Yy moderate 500
Interior 5 moderate 5
6 severe 5

Table 4.10 Summary of Assumed Conditions for Dynamic Runs
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The responses of an interior and an exterior coupled shear walls
in these different cases are compared by considering each parameter
separately.

a) Top Displacement

Figure (U4.22) shows the superimposed responses of an interior
coupled shear wall and an exterior coupled shear wall under the moderate
earthquake. This clearly shows that the top displacement responses of
an exterior wall and an interior wall, under the same excitation, are
identical.

Figure (4.23) compares the response of the interior coupled shear
wall under moderate and severe earthquake. The intensity of the severe
earthquake is twice of the moderate earthquake and this figure shows
clearly that the response under severe earthquake is also twice of the
response under moderate earthquake.

All these responses indicate that the top displacement is mainly
due to the first mode of vibration.

b) Axial Force at the Base

Figure (4.24) shows the responses of an exterior wall under
moderate earthquake excitation with the rotational ductility factor for
the connecting beams as ¥ = 500 and 15. The maximum axial force and
overall pattern is almost similar up to 2.0 seconds. The response
decreases in case of limited ductility after 2.0 seconds due to the
formation of the real hinges along 40% of height of the wall.

Therefore, the tensile force is reduced considerably. Figure (4.25)
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compares the responses of an exterior wall under moderate and severe
earthquake. The waveforms in both cases are similar with higher
response under the severe earthquake up to 2.0 seconds. The response
under severe earthquake excitation on the other hand is less due to
immediate formation of real hinges in 60% of the lintels. Figure. (4.26)
compares the responses of an interior wall under moderate and severe
earthquake. The response under severe earthquake after 2.0 second is
not exactly two fold of the response under moderate earthquake
excitation. This 1s due to the difference in the order of
plastification.

All these responses show clearly that, the axial force response
contains contribution from higher modes.
e) Wall Moment at the Base of Left Pier

Figure (U4.27) compares the responses of the interior wall under
moderate and severe earthquake excitation. Both responses are similar
in nature with the increase in magnitude of the response under severe
earthquake excitation. Figure (4.28) gives the comparison between the
responses of the exterior and interior wall under moderate earthquake
excitation. The exterior wall response is larger than the interior wall
response. This is because the forces are proportional to the inertial
masses and the exterior wall is assumed to take a mass 2.4 times that of
the mass ascribed to the interior wall. Figure (4.29) shows the
comparison of the responses of the exterior and interior wall under
severe earthquake conditicn. In both Figs. (4.28) and (4.29) the

responses of the exterior wall are not exactly 2.4 times that of the
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interior wall. The difference in the order of plastification and real
hinges formation may account for the difference. It is seen that the
accelerations at the mass levels of the exterior wall are sometimes less
than those at corresponding mass levels of the interior wall.

It should be noted from Figs. (4.27) through (4.29) that there is
a sudden increase in the magnitude of moments around 2.0 seconds. This
is because of the formation of the real hinges at that time, affecting
the ability of the couple due to the interaction of the walls to resist
the overturning moment.

d) Shear Force Intensity

Figures (4.30) through (4.34) show the shear force intensity
responses of the interior wall subjected to the moderate earthquake
(Run-5). These responses are limited up to the shear force intensity
capacity of the connecting beams. In Figs. (4.33) and (4.34) the
shearing force intensity drops to zero when the end rotation of the
laminae exceeds the ultimate rotation value and the segments change to
real hinged segments. The contribution of higher modes is clear in the
shearing force intensity responses.

Listed below are the maximum values of the parameters of interest

discussed above for the interior wall.
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Maximum Ductility} Base Base top Np¥*
intensity| of Conn. moment A.F. deflec~-| Segment
of El1- Beams (kips-ft) | (kips)| tion Number NP | NR
Centro _ (ft)
earth- u 11213
quake
16% g 500 14000 425 0.18 0121t2 L 0
16% g 5 22000 390 0.18 0{31{2 31 2
32% g 5 48200 380 0.32 O| 4|4 312
A: indicates the formation of real hinge
Np#*: No. of plastifications of each segment during the course of
the earthquake
NP: maximum number of plstic hinged segments at any instant
NR: maximum number of real hinged segments at any instant
Table 4,11 Maximum Responses of the Intericr wall

It should be noted from the above table that, when the dead load

(1965 kips) is included in the axial force,

compressive forces all the time.

shown in Fig.

(4.26).

the piers remain under

This can be seen in the responses

This is because of the relatively low shear force

intensity capacity of the connecting beams and the high dead load

carried by the interior walls.

tributary area of the interior wall as shown in Fig. (4.17).

The high dead load arises from the large

Listed below are maximum values of the parameters of interest

discussed above for the exterior wall.
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Maximum Ductility | Base Base top Np¥*
intensity | of Conn. moment A.F. deflec~| Segment
of El- Beams (kips-ft) | (kips)| tion Number NP [NR
Centro _ (ft)
earth- u 11213415
quake
16% g 500 26700 2950 0.18 0lJ311101]0 2 0
16% g 15 32500 3270 0.18 o0l2111110 3 2
Al A
2% g 15 56500 2510 0.33 o{2111 113 2 3
Al A} A

A: indicates the formation of real hinge

N_: No. of plastifications of each segment during the course of
the earthquake .

NP: maximum number of plastic hinged segments at any instant
NR: maximum number of real hinged segments at any instant

Table 4.12 Maximum Responses of the Exterior Wall

It should be noted from above table and Figs. (4.24) and (4.25)
that the piers may be subjected to tensile forces even after including
the dead load (1440 kips). This is because the connecting beams have a
high capacity to transmit shear forces between the two walls, while the
tributary area carried by the end shear wall is small compared to the

interior shear wall.

4.,4.3 Qverall Behaviour

In this section the relation between the overall ductility demand

of the coupled shear walls i; and the connecting beam rotational

verall

ductility factor U is studied. The pattern of the formation of the real

and plastic hinges at the connecting beams during the earthquake is also
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presented in this section.
The overall ductility demand, which will be referred as "Top
Deflection Ratio" (T.D.R.), is defined by

Au

Hoverall :-Z; (4.1)

T.D.R. =

where Au: maximum top displacement response
Ay: top displacement at the time when the segments first change
from elastic to inelastic state, due to a triangularly
distributed static load.

Table 4.13 indicates that the connecting beams ductility factor W
is of minor influence when we use the definition of Au as the maximum
top displacement. It should be noted that the maximum value may occur
after the formation of the real hinges in the connecting beams when the

structure becomes more flexible.

Ground Acceleration WALL Ductility of Connecting Beams
Limited (=5 for int | High (= 500)
=15 for ext)
Exterior Wall 1.55 ... 1.45
16% g
El-Centro Interior Wall 1.67 1.67
Exterior Wall 2.97
32% g
El-Centro Interior Wall 3.33

Table 4.13 Top Deflection Ratio for the Exterior and Interior Wall

The damage happened in the shear walls due to the earthquake
loads 1is measured qualitatively by the number of segments which are
changed to the real hinged state and the maximum number of segments

changed to the plastic hinged state at any instant of time.
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This 1is tabulated in Tables 4.11 and 4.12 of the previocus
section. It can be seen that the interior walls will suffer more damage
than the exterior walls, although the latter share more than the former
in resisting the lateral seismic 1loads. This is due to the lower
bending capacity of the connecting slabs in the interior walls.

It should also be noted that the shear walls carry much higher
bending moments at the base when the ductility of the connecting beams
is limited. Therefore, the rotational ductility factor ¥ has
considerable influence on the inelastic behaviour of the coupled shear
wall.

In the exterior shear walls, the occurrence of the tensile forces
(with the gravity dead loads included) at the base of the piers is more
frequent when the ductility of the connecting beams is high. This shows
that the increase in ductility of the connecting beams may not be
favourable, especially in case of the exterior shear walls with a higher
capacity to trasmit axial forces and a lesser section of tributory area.

The damage pattern of the interior coupled shear wall subjected
to 32% El-Centro record will be considered in details. The state of the
segments at different times are found out and the segments state time-
history is shown in Fig. (4.35). As shown in this figure, the inelastic
action started at 1.20 seconds when the plastic hinges start forming at
the ends of connecting beams of second and third segment. This
inelastic action moved upward up to the top segment and at 1.68 seconds
the end rotation of the laminae of fifth segment is exceeded the

ultimate rotation value and the segment changed to the real hinged
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segment. At 1.92 seconds the fourth segment also became a real hinged
segment and these two segments remained in real hinged state throughout
the earthquake excitation. The plastic hinges are formed in second
segment, occasionally, for some time. This clearly shows that major
inelastic action has occurred from 1.20 secs to 2.1 secs of the
excitation where the earthquake record has most of the significant

peaks.

4.5 DYNAMIC BEHAVIOUR CONSIDERING WALL HINGE FORMATION AT THE BASE
In the previous secticns, the formulation of the plastic hinges at

both ends of the connecting beams was the only source of inelastic
action considered. In reality, when the wall moment at the base of each
pier reaches its ultimate value, plastic hinges may form at its base.
The final collapse mechanism of a typical coupled shear wall under the
action of strong earthquake is the full plastification of the connecting
beams and the formation of the hinges at the base of both piers. The
behaviour of the exterior and the interior coupled shear wall subjected
to moderate and severe earthquake excitations with the consideration of
possible formulation of plastic hinges at the base is presented in this

section. The following table gives the details of the cases considered.
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WALL Case No. Earthquake Rotational Ductility Factor for
Excitation the Connecting Beams (%)

1 moderate 5

Interior
2 severe 5
3 rnoderate 15

Exterior
4 severe 15

Table 4.14 Summary of Assumed Conditions for Different Case Studies
Censidering the Wall Hinge Formation at the Base

The interior wall is safe under moderate earthquake and no hinge
is formed at the base of the piers. This is because, the base moment
always falls within the interaction curve throughout the time history of
the record. Hence the time history responses of the top displacement,
base moment, axial force at the base and shear force intensities in the
segment are the same as given in Figs. (4.22), (4.27), (4.26) and (4.30)
through (4.34).

Case-2

Figures (4.36) through (Y4.44) show the top displacement, bending
moments at the base of left and right pier, axial force at the wall base
and shear force intensities in five segments. This coupled shear wall
fails by formation of the plastic hinges at the base of both piers at
2.10 seconds. It should be noted that the piers of the coupled shear
wall are subjected to different axial forces (considering the dead
loads). Therefore, the bending moment response at the base of both
piers has to be considered separately in deciding whether a hinge has

been formed or not.
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The step-by-step formation of the hinges at the bases is shown in
the Fig. (4.45), As shown in that figure, up to 2.04 seconds the
bending at the base of each piers falls within the interaction cCurve and
fixed-fixed condition is maintained at the base (stage "I"). At the
next time step at 2.10 seconds both base moments fall beyond the
interaction curve (stage "II") and both hinges are formed at the same
time (stage "III"). Hence the state of collapse is achieved at time
2.10 seconds.

Case-3

Figures (4.46) through (4.49) show the top displacement, bending
moments at the base of both piers and axial force at the wall base. 1In
this case the exterior coupled shear wall almost reaches the state of
collapse. Figure (4.50) shows the behaviour at the critical time. At
2.10 seconds the bending moment at the base of first pier is greater
than the ultimate value (stage "II"). Therefore, the remaining moment
has to be taken by the other pier. At the end of the iteration, the
moment at the base of second pier is found to be still within the
interaction curve (stage "III"). At the next time step, the bending
moments at the base of both piers become less than the ultimate value
and the same is true for the remaining pprtion of the response.
Therefore, no collapse occurs although the wall is close to the collapse
state.

Case-4
Figures (4.51) through (4.54) give the responses of the top

displacement, bending moments at the base of both piers and axial force



Axial Force (kips)

Axial Force (kips)

1[ 155
11747
Pier-1 (Left)
80004
4000 (44888, 4048)
0 ] 11 I
T $ N ey o
L0000 60000
Bending Moment (kips.f%t)
~3370
.I : State at time = 2.04 sec.
ITI : State Before Iteration at
11747 Time = 2.10 sec.
[Fix-Fix |
ITT : State After Iteration at
8000 t Time = 2.10 sec.
[ Hinge-Hinge |
4000 ¢
(44888, 4048)
it
0
+ ' e S—
L0000 60000
Bending Moment (kips-ft)
- 0
337 Pier-2 (Right)
FIGURE L4~45 WALL HINGE FORMATION AT THE BASE OF PIERS

OF INTERIOR WALL UNDER SEVERE EARTHQUAKE




TOP DISPLa (FTw)

«50
»40
»30
=20
«10
—00
-«10
—a20

-#30

—!50

/\/\/\ /\/\[\J\/\[\[\
EAVARTTAR VAN VRV,
—i i R | { { { | A -]
00 1.5 3.0 4.5 B <0 7a5 9 .4 105 120 13.5 15 .0

FIGURE 4-46 TOP

DUCTIL. OF CON. BEMAMS =

DISqu,ELEENTRO'COMP-NORTH-

TIME (.SEC)
15, EXTERIOR WALL

16 PERCs g -

961



BuMa—La WALL~(-FTe+ KIP)

50000400

4000000

30000 .00

20000 .00

1000000

"‘.UO

-10000«00

-20000 00

-30000 .00

-40000 .00

-50000.00

.\,/V\ Fawm ‘ A'Ahk V=Wa ’\A VAAM _A‘A - 4; o AA»\ A va‘AVAAA A TR A‘.'A\v TAVAVA
AUA I A
i { { { { | ] 4 1
0.0 1.5 3.0 4.5 60 7 25 9«0 10.5 12 .0 13.5 1640

| TIME (SEC)
DUCTIL. OF- CON. BEAMS = 15, EXTERIOR WALL

FIGURE 4-47 B.M.L.-WALL, ELCENTRO COMR.NORTH. 16 PERCs g

LST



BaMa~Rue WALL-(-FT e+ KIP)

3000000

40000.00

30000.00

20000 .00

10000400

-0

—-10000400

—-20000.00

—-30000 .00

-40000.00

~50000.00

Ahu P-Wal AA Por Ay e '..v i AA AAVA;AA Dot sipaay AA A A“A-\v VAYAVA
LA A LA
! | ! 1 i { | { 1
00 1.5 | 3.0 45 640 75 3.0 105 120 1345 15.0
TIME (.SEC")

BUCTIL. OF CON. BERMS = 15, EXTERIOR WALL

FIGURE 4-48 B.M.R.WALL, ELEENTRO COMR«NORTH 16 PERCag

8CT



AX.FORCE ( KIPS)

3500400
2800 .00
210000
1400400
700.00
~«00
-700.00
-1400 .00
-2100.00
-2800.00

—3500,.00

0.0

Nl | pLmr ‘
\ r V V\] |
i i 1 { i | /| i ]
1.5 3.0 445 6«0 75 3.0 10«5 120 1345 15.0
TIME ( SEE-)
DUCTIL «. OF- CONs BERME = 15, EXTERIOR WALL

FIGURE 4-49 AX.

FORCE’

ELCENTRO COMP.NORTH. 16 PERCa.

g

66T



160

12453
o Pier-1 (Left
26000 ier-1 (Left)
=
Q
£
24000 - (50704, Lo27)
—
«
-
5
< 0 . . ]
IIT o 40,000 60,000
I 1T Bending Moment(kipsft)
-h118 ‘ I : State at Time 2.04 sec.
TT : State Before Iteration at
[ Time = 2.10 sec.
12453 [Fix-Fix]
. State After Iteration at
E; Time = 2.10 sec.
o [Hinge-Fix]
{8000 }
Q
O
g
=
| Hooo (50704, 4027)
o
o
5
<¢
0 : . 3
, 40,000 60,000
Bending Moment (kips-ft)
-4118
" Pier-2 (Right)

FIGURE 4.50 WALL HINGE FORMATION AT THE BASE OF PIERS OF

EXTERIOR WALL UNDER MODERATE EARTHQUAKE




TOP DISPLa (FTa)

250

1’4’0

«30

«20

« 10

Ta 00

“a’lo

_IEO

_I30

~wd(

—150

1 | I | I 1 1 J

00

145

FIGURE L4-51

3.0 445 6.0 7«5 9.0 1045 12.0 1345

TIME (.SECJ
RUCTILa OF- CON.. BEAMS =- 15, EXTERIOR WALL

TOP DISPL., ELCENTRO COMRWNORTH. 32 PERC. &

15.0

191



BaMe-Ls WALL~(FTs+ KIP)

65000400
52000.00
33000.00
26000400
1300000
—200
~13000.00
-26000 .00
-3900000
-52000 .00

-65000.00

] l !

0.0

1.5 3.0 4.5 6.0 245 9.0

DUCTILs OF CON. BEAMS =

FIGURE 4.52 B.M.L.-WALL4ELCENTRO COMP.NORTH.

.1.0.5 1’2 IU 13 -5 15 IO

TIME (SECH
15;, EXTERIOR WALL

32 PERCs g

91



WALL~( FTa+ KIP)

BlM.’-Rl

65000.00

52000.00

33000400

26000.00

1300000

= 30.0

~13000.00

~26000.00

~39000.00

—65000.00

P e W A Y
vV
—
1 ] ] i { ] ] 4 1
0.0 1.5 3.0 4,5 6«0 7«5 9.0 105 12 .0 13,5 1540
TIME ( SEC)
DUCTILs OF CONs BEAMS =- 15, EXTERIOR WALL

FIGURE 4.53 B.M.R-WALLe ELCENTRO COMP«NORTH 32 PERCa. &

€91



AX+FORCE (-KIPS)

3500.00

2800.00

2100400

1400.00

700.00

—200

-700.00

~1400.00

~2100.00

-2800.00

-3500.00

| ] |

0s0

FIGURE 4-54 AX. FORCE,ELCENTRO COMP.NORTH

1.5

3.0

445

DUCTIL »

60

OF- CONa

725

BEAMS =-

3.0

1045 12.0 13.5 15.0

TIME (. SEC)
15, EXTERIOR WALL

32 PERCa &

791



165

at the wall base. 1In this case, the exterior wall fails by formation of
the plastic hinges at the base of both pilers. The formation of the
plastic hinges is explained in different stages by Fig. (4.55). As
shown in this figure the wall moments at the base of both piers are
greater than the ultimate values (stage "II"). After the balance of
moments at the end of the iteration, it is concluded that both hinges
have formed at the base of the piers. This formation of collapse
mechanism occurs at 2.10 seconds (stage "III").

From the behaviour of these coupled shear walls, it may be
concluded that the collapse mechanism is most likely under the severe
earthquake lcading and the coupled shear wall may survive under moderate
earthquake excitation. Specially the interior coupled shear wall, in
spite of its flexible connecting beams, has more chances of survival
than the exterior wall of the same capacity if it is shaken by the
mederate earthquake. This is primarily because of its smaller overall
stiffness and it shows that the increase in the stiffness of the
connecting beams may not necessarily give an improvement in the

behaviour of the coupled shear wall.

4.6 DESIGN CONSIDERATIONS FOR CQUPLED SHEAR WALLS

In the coupled shear walls, the bending moments are reduced
considerably by the higher magnitudes of induced axial forces developed
due to the higher shear force carrying capacity of the deep connecting
beams. But high axial forces reduce the flexural ductility capacity of

the wall and may cause more cracks and fractures.
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It is seen in the present work that the connecting beams undergo
numerous cycles of large yielding reversal under high shear.
Consequently, deep coupling beams which cannot normally sustain very
large ductility under high reversal shear should be avoided. If these
deep beams fail, high moment couples will be redistributed back,
increasing wall moment possibly beyond the yielding capacity.
Therefore, it is preferable and more practical to have a coupling system
with moderately stiff connecting beams with maximum ductility that can
be achieved by proper arrangement of the flexural reinforcement.

In addition, specially detailed and sufficient shear
reinforcement should be provided to ensure that full flexural capacity
can be developed in all connecting beams. Alsc the openings in the
connecting beams should not be permitted as they can be detrimental to
the shear strength of the beam section.

In a coupled shear wall system, the walls provide a major part of
the lateral stiffness, thereby controlling 1lateral storey drift and
limiting the nonstructural desmages during an earthquake. The elastic
walls maintain structural stability, while the coupling beams dissipate
earthquake energy through an inelastic action. It is seen that if the
inelastic action occurs at the base of the walls, it will most likely
lead to the collapse cof the entire system. Therefore, the walls in a
coupling system should be designed not to undergo an inelastic yielding
during an earthquake excitation.

For a planar wall with rectangular section, a strong wall can be

achieved by concentrating the flexural reinforcement and confining
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enclosed concrete at the ends of the wall sections. In addition to
reinforcing the walls for elastic behaviour, some ductility capacity

should also be provided as a second line of defense.



CHAPTER 5

ELASTO-PLASTIC ANALYSIS OF TWO INTERCONNECTED COUPLED SHEAR WALLS

5.1 INTRODUCTION

In the previous chapters, the behaviour of a flat-slab coupled
shear wall building is studied by considering the behaviour of a typical
coupled shear wall. It is assumed that the building considered is
symnetrical in plan and consists of a series of planar coupled shear
walls such that all interior coupled shear walls are the same with two
identical end coupled shear walls that are different from the interior
walls. Hence, while studying the behaviour of these interior and
exterior coupled shear walls, it was assumed that these walls take the
lateral load in proportion of their elastic stiffnesses. This
proportion of load 1is assumed to be constant throughout the
elasto-plastic analysis of the wall. This assumption is true as long as
the shear wall is in the elastic state, but when the plastic hinges
start forming at the ends of the connecting beams, the distribution of
the lateral loads between the interior and the exterior walls will be
different. A transfer of lateral load takes place between these two
types of walls. The part of the wall which is in the plastic hinged
state will pass some load to its counterpart. This phenomenon of the

transfer of loading may lead to different behaviour of the coupled shear
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walls of the building. This behaviour is studied in this and the next
chapter by considering a mathematical model consisting of two coupled

shear walls joined together.

5.1.1 Modeling of the Building

Normally, a typical apartment multistorey building of shear-wall
flat slab construction contains sets of parallel coupled shear walls as
shown in Figure (5.1) to resist the lateral loads in the short
direction. To study the response of a shear wall building under lateral
loadings, this original system of coupled shear walls, the exterior and
interior walls, can be modelled as two coupled shear walls, one
representative of the exterior walls and the other representing the
interior walls, connected by a pin-pin rigid member at each floor level.
This pin-pin rigid member can transfer only horizontal force from one
coupled shear wall to the other coupled shear wall, thereby to ensure
the deflection of the two coupled shear walls at the floor levels be the
same. As shown in Figure (5.2), this equivalent system will then have
one coupled shear wall which has the sum of the stiffness and strength
of all the interior coupled shear walls, and the other coupled shear
wall which represents the exterior coupled shear walls having the total
stiffness and strength of the two external shear walls.

To study the problem, this equivalent system of two coupled shear
walls can be divided into the segments of one or more storey heights. A
typical segment of this equivalent system with the internal forces

acting on it is shown in Figure (5.3).
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5.1.2 Segment States

Depending on the shear intensity qi(x,t) {i = I, II} of each
coupled shear wall, as explained for the one coupled shear wall analysis
in the beginning of the second chapter, the segment of each coupled
shear wall may be in one of ¢the three states, namely, Elastic,
Plastic-hinged or Real-hinged state. Hence it is necessary to develop
nine field transfer matrices to cover all the combinations of segment
variations as shown in Figure (5.4).

Furthermore, to connect these segments, each station will have
four segments (two segments at the top and two at the bottom. of the
station) and each of these segments may be in one of the three states,
namely, Elastic, Plastic~hinnged or Real-hinged state. Hence to cover
all the combinations of segment-state variations, it is necessary to
develop eighty-one (3x3x3x3 = 81) station-transfer matrices as shown in
Figure (5.5). For simplicity, the station is identified by the state of
segments with top-left segment at first. For example if the top segment
of first shear wall is in Plastic-hinged state, the top segment of
second shear wall in Elastic state, the bottom segment of first shear
wall in Plastic hinged state and the bottom segment of second shear wall
is in Real-hinged state, then that station 1is named as

"Plastic-Elastic~-Plastic~Real" station. [See 67 of Figure (5.5)].
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R R R R
E R R E
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52. E1. E1. - Real P1. Station 53. P1. Real-El. E1l, Station
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E R R E
R P P P
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R R R P
E P E R

74. Real Real - E1. P1l. Station 75. Real P1l. - E1
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/ P P R P
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78. Pl. Real - P1. E1. Station 79. Real Real - P1. El. Station
R P P R
R E R E

80. Real P1. - Real El. Station 8%. Pl. Real - Real El. Station

FIGURE 5-5 STATION COMBINATIONS




184

5.2 DEVELOPMENT OF TRANSFER MATRICES

In this section, nine field transfer matrices are developed to
cover all combinations of the states of the segments for both walls. 1In
addition, eighty-one station transfer matrices are presented which cover

all the combinations of segment-state-variations.

5.2.1 Field Transfer Matrices

The field transfer matrix will relate the states at the base of
the segment to the states at the top of the segment [Figure (5.3)] in

the following form

{6}, = [F], {4} (5.1)
sx1®  8x8t 8x1t

where {¢}A : the states at the base of ith segment.

: column {y y' y" y"' Ty Typ Qg qII}(i-1)A’

{#}, : the states at the top of ith segment.

B
: column {y y' y" y™ Ty TII qg qII}iB‘
[(F1, : the field transfer matrix for ith segment relating above
two states
As the two shear walls are connected at each station, as shown in
Fig. (5.6). The deflection of each wall at the station level should be

the same as that of the center line, i.e. that of the two shear wall

system. Hence

Yy
(5.2a)

¥
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As shown in Figure (5.6),

wall should be similar.
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the deflection pattern of each shear

Hence it is assumed that the slope,

curvature

and variation of curvature of each wall is the same at station levels.

Writing in mathematical form, they become

At the bottom of the segment,

Y1a T Y118
" "

Yip = ¥11a
ne "

Yia = Y118

L
f
n

A

y

=yA

\J

and

]

Yig =

y

ne

V1B

1B -

at the

ne

Y118

top of the segment,

Y118 ©

Y118 ©

1
Y
1t
I

"y

Y

(5.2b)

(5.2¢)
(5.2d)

Now the field transfer matrix for each coupled shear wall is

individually given by a (6x6) matrix and can be written as

v 11
]
y F21
"
y $ F31
ﬁ y" ] = F).l_“
T F51
q r
L] . 61
I
11
or {4} = [F]
I
I,II
where 1

,IT

14
24
34
4
54
61

15
25
35
45
55
65

¢ corresponds to first shear wall

IT : corresponds to second shear wall

(5.3)

Using eqn. (5.3) and also the compatibility conditions given by egns.

(5.2), we get
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Vo +y T _II I _II 1 _II I _II
Ty "I, FFy, PP 0 Bty Fatfy |
Yp =72 = o Ygtr o T ¥gtT o T Ygr o o Yy
1 11 I II
s Fis Fl6 F16
+ — T + T + T q + 7T q
2 1zt 2 1yt o2 Y1pt o2 Y
L 1
V. +y I _II I _II I _II I _II
e WL PYRLPY Foo*tFao | Fa3tfay  Fourfoy
Yo = 2 = 2 Ygt o Ygt o T ¥gtT o Y
I II I 11
Fos Fos Fot o6
+ (0 T. +—=—T + > q, + - 4q
2 1yt 2 g T2 i toe Y
Ry I _II I _II I _II I _IT
Y. +Y
Fo . +F Fo_+F Fo_+F FL 4+F
Lo Ia Iy FageFgy 32%32 , f33%33 , Tawtawo
Yp =7 2 =T o ¥ptT T ¥gtT ,  YgtT o Yp
I I1 I II
F F F F
35 35 36 36
+ — T + — T + o q + - q
2 17 2 g 1,7 2 1
ne (iR}
Y. o+ 1 _II 1 _II 1 _II I _II
N Ry W T AT Fio*fuz  Fugtfys o FgtFyy
Yp * 2 = 2 Ygt*t o Ygpt o T ¥gt 2 Y3
I II I II
Fis Fus Fus Fis
+ - T + T + 7 q + T q
2 1t e gt Yt
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The axial force T and lintel shear q for each of the coupled

shear walls at the bottom and at the top of the segment are related by

TIA = F§1yB + F%Zyé + Fé3yg + Féuyg' + FéSTIB + 0 + Fé6qIB + 0
TIIA - Fé%ys * Fégyé * Fggy; * ngy;' * 0+ F%éTIIB 0+ FéngIB
qIA = F£1YB * Fézyé * Fé3y; * Fguyg' * FésTIB + 0+ FéGQIB *+ 0

%1, * Fg1vp * Foalp * Fégy; +Feyyp + 0+ FééTIIB * 0+ FéngIB

Writing this in matrix form, we get the field transfer matrix for

two coupled shear walls system as,

v ] Ty Fpy ?23 ?ZM F§5/2 F$;/2 F$6/2 Fls’? v ]
v' oY O ?23 ?;u Fés/z Fgé/z ng/z Fe/2| | v
y" ?31 ?;2 ?;3 ?gu ng/z F§é/2 F§6/2 Fgé/z y"
y Py Ty E13 ?lu Fyg/2 Fis/2 Fig/2 Fygrel | v
< T > - F5 Fo oy Fay Fas 0 Fig 0 J B

Tr1 F;$ Fég Fé; F;i 0 F;é 0 Fgg Tr1
a7 51 Foa Fés Fou Fg5 0 Fg 0 9

91 Fgf Fég Fé; Féi 0 Féé 0 Fég 91

~(1-1) —i -
A B

(5.4a)



189

that is,
(s}, = [F1; {o}y (5.14b)
where: FIj : element in ith row, Jjth column in FTM for first shear wall
Fiﬁ : element in ith row, jth column in FTM for second shear
wall
I 1T
F* +F
kg ~ 2
i,j= 1,6
k,2 = 1, 4

It should be noted that depending on the states of the connecting
beams in the segment of the first and the second wall, the corresponding
field transfer matrices (of order 6x6) should be used to get the
appropriate field transfer matrix (of order 8x8) to relate the states vy,
y', y*, y"', TI’ TII’ qI and qII in the two interconnected coupled shear

wall problem.

5.2.2 Station Transfer Matrices

Listed below are sixteen basic station transfer matrices with
their derivations. The remaining sixty-five matrices may be derived

from combination of these basic matrices as mentioned below.
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5.2.2.1 Station Transfer Matrix Relating a State Vector in an Elastic

Segment of First Wall and an Flastic Segment of the Second Wall

to State Vector in an Elastic Segment of First Wall and an

Elastic Segment of Second Wall Respectivel Elastic EFlastic-

Elastic Elastic S.T.M.j] EiE

!
E\E

From the continuity conditions of the walls at the station as

deflecton and slope should be the same at bottom and top of the station.

Yp = ¥p (5.5)
| 1

Vg = Y, . (5.6)

from the equilibrium of vertical forces at the top and bottom of station

1 =T (5.7)
(5.8)

Equilibrium of moment about the central point "0" [Ref. Figure

5.5(1)] gives

Mia * Tra @1a * Mpgp * Tiza 217a

= M + T

18 * Tip g+t Mg+ T

IIB 118 21IB
Substituting for moment and axial force from eqns. (2.13), (5.7)

and (5.8) gives

n "

El.y, + T a. + EI y, + T a
I
A A IA IA IIA A IIA IIA

" "
=EI_y,. + T a.  +EI__y_ +T_ _ a
IB B IA IB IIB B IIA IIB
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therefore
a, -a a.. -a
I, I 1I IT
" IA " A "B T A B T (5.9)
Yo =7 ¥V, + +
B IB A EIB IA EIB IIA
where I, =1 + I s I I + I
A IA IIA » °B IB IIB
Equilibrium of lateral forces gives
v + V + P, =V + V
IA IIA i IB IIB
therefore from egn. [2.6)
EI "t EI 1" P
- y, + Qr a, - Y, — Q7 2 + P,
IA A IA IA IIA A IIA IIA i
EI. yo EL _ y. (5.10)
= Yo + Q. a. - y, + 4 a .
IB B IB IB IIB B IIB IIB

as from equation (2.33), shear intensity at the bottom and top

station "i" are related by

a2
AYB
qIB = ( R > ) qIA (5.
B¥A I
2
)M
B*A 11
Hence equation (5.10) will be
2 a 2 2 a
I - - P
" o Mg o - I, i
Yg = I vy o+ 2 ) EI, qIA + 2 ) EIg qIIA T Bl
L i S
(5.

of

11)

12)

13)
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The station transfer matrix then becomes

-y D ———— — - - -
y 100 0 0 0 0 0 ¥ 0
¥ 010 0 0 0 0 0 y' 0
I (ay-ap) (ap-ap)
Iy I I "
y" 0070 =% EL 0 0 y 0
B B B
Ty _aIA ”S —aIIA “g -y
- — — ns —
g 000 7 0 0 =) e =) | Y =
B u B B
> A A < <
T, 000 O 1 0 0 0 T 0
T 000 O 0 1 0 0 Trq 0
aA“g 0
a; 000 O 0 0 ( L s ) 0 ay
B A
aA“g
ay 000 0 0 0 0 D ar 0
a,
- I — —A—E———-——— L. - R . «J
iB iA
(5.1%)

5.2.2.2 Elastic¢ Elastic-Elastic Plastic Station Transfer Matrier]E
éTf
t |

From the continuity and equilibrium conditions at the bottom and

top of the station, equations (5.5), (5.6), (5.7), (5.8) and (5.9)) hold
good.

Equilibrium of lateral forces gives the same equation no. (5.10).
But as the segment of the second wall at the bottom of station is in a

plastic state [Fig. 5.5(2).]



1

911%9%11
— —iB

q q (5.15)
IIB IIPB
Hence from equation (5.11) and (5.15), eqn. (5.10) becomes
a 2 a (P.-q ar- )
IA IA ¥g I1 i IIPB IIB
—y, +=—(—S-1.a -z—a. -
IB A EIB “i I IA EIB IIA EIB
Hence the station transfer matrix becomes
1 0 O 0 0 0 0 0
O 1 0O 0 0 0 0 0
Ia (ay-ag)y (ap-agdyy
0 0 I 0 FI FI 0 0
B B B
I -a; w2 Taqr
0 0 0 — 0 0 A(1 -B) A
IB EIB T2 EIB
Al
0 0 0O 0 1 0 0 0
0 0 O 0 0 1 0 0
2n “g
0 0 0 0 0 0 ( 5 /1 0
ap ¥y
a 2
u
0 0 0 © 0 0 0 ( A g )II
—— ag Uy
y - - 0 -
y' 0
y" 0
~-(P.-q a__ )
. i IIPB IIB
v +
ET
S
TI 0
TII 0
ag 0
1| ia 0 (5.17)
4 - »
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5.2.2.3 Elastic Elastic-Plastic Elastic Station Transfer Matrix ElE

4

P

|E

Equations (5.5) to (5.9) and (5.12) hold good, and with segment

of the first wall at the base of the station in the plastic state, we
have
ay = q (5.18)
IB IPB
Equation (5.10) becomes
1 3y S S (Py-arp 2ary)
"e A A A B PB B
VYo =7T°Y, - o7 q; + (5 -1 4 - (5.19)
B IB A EIB IA EIB “i 11 IIA EIB
Hence the station transfer matrix becomes
] 1 0 0 O 0 0 0
' 0 1 0 0 0 0
I (ay-ap)  (ap-ap)
" A I 1T
y 0070 EI Bl 0 0
B B B
I, 21, “Ar1, ug
v 0 0 0 T 0 0 Bl B, (17 T2 )11
> B B B "
A
TI 0 0 0 0 1 0 0 0
TII 0 0 O 0 0 1 0 0
aA“g
B"A
aA“E
qII 0 0 O 0 0 0 0 (a 2)11
i B A

iB
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] = 0 .
y' 0
y" O
-(P.-q, a )
g i Ipg I
ET,
s .
T, 0
Tr 0
d 0
11 0
- A . ) -

(5.20)

5.2.2.% Elastic Plastic~-FElastic Elastic Station Transfer Matrix

elp
-
E!E
Equations (5.5) to (5.9) and (5.12) remain valid, and with the

second wall segment at the top of station in the plastic state

q;7 = ( ) g (5.21)
Iy a > 11 tpa

from egqns. (5.11) and (5.21), eqn. (5.10) becomes

=
lssJAV]

[Pi—a

—
i
—_
~
£

IIA

H
H

=
]
-
o
=

e
4
o N

(5.22)



y"

y" 1

~iB

Hence the station transfer matrix becomes
paet———

0 0

1
0

1

0

I

I

A
B

0 0 0 0
0 0 0 0
0 I 11 0
EI, EI,
-a
Ia Iy
I 0 0 gL (-
B B
0 1 0 0
0 0 1 0
2
a. u
0 0 0 ( A& g
ag "4
0 0 0 0
0
2
B
P.-a ( —= -1)..q
1771y uz IT°IL,,
+1-{ A ]
> EIB
0
0
0
s 2
( e ) a
2 11
ag uy II "PA |
iA

3>1: n Iw’: n
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(5.23)
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5.2.2.5 Plastic Elastic-Elastic Elastic Station Transfer Matrix

P;E

ElE

Equations (5.5) to (5.9) and (5.12) remain valid, and with the
first wall segment at the top of the station in the plastic state
2
A "B

a; = ( ) aq (5.24)
I 2 I
aB uA PA

a

From equations (5.24) and (5.12), equation (5.10) becomes

2
"B
[P,-a; (—5 -1) q
a 2 i1 2 I
I I1I i A u 1 PA
ne ny A( B 1) A
b =T Yy, + - - a -
B IB A EIB “i IIA EIB
(5.25)
Hence the station transfer matrix becomes
'y 1 1 0 o o 0 0 0
y! g 1 0 0 0 0 0 0
1 (ap-ag)  (ap-ap)
" _A I i1
y 00 7 0 BT I 0 0
B B B
-a 2
I II u
yh o0 0 T 0 0 0 5 (- —3)
< > B B uA 11
TI 0 0 0 0 1 0 0 0
TII 0 0 O 0 0 1 0 0
9t 0 0 0 0 0 0 0 0
a u2
q 0 0 0 O 0 0 0 ( b2 )
11 a u2 II
5 B A
- e r——————

iB
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- -
B B 0
y'
y"
2
B
-[(P.-a_ ( —= -1) q ]
i1, “i I lpa
1t
y EI
N }
T, 0
Ty 0
K
a.=q (4 B ) q
I, ag “i T Tpa
| %1 N 0 .
i

(5.26)
5.2.2.6 Plastic Plastic-Elastic Plastic Station Transfer Matrix
|
E'P
L
Elp
i
Equations (5.5) to (5.9) and (5.12) hold good, and with the

second wall segment at the top and bottom of staton in the plastic state

q = g (5.27)
IIB IIPB
Eqn. (5.10) becomes
q 2 (P.+q a._ -q a._ )
o, I, up RSP PR § S 8 88
Vo =7y, +3— (-1 q -
B IB A EIB Ui I IA EIB

(5.28)
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Hence the station transfer matrix becomes

- — —
10 0 0O 0 0 0 0
y' 01 0 0 0 0 0 0
I (ap-ag)  (ay-ap)
" A I II
y 60 30 EI ET 0 0
B B B
-a 2
"ne }_A IA iB_
y 0 0 0 0 0 (1- ) 0
I, EI, 2 7.
} A
T, 0 0 0 0 1 0 0 0
Ty 000 0 0 1 0 0
3 “g
a; 0 0 0 O 0 0 ( > ) 0
aB Hp I
Qs =q 00 0 0 0 0 0 0
II JIIP
iB
~ - _ -
y
y'
y" 0
[P ~(qpgap-apy3,) ]
y"' II
EI,
\ 3
T 0
T 0
ag 0
a:129 q
117911, ] II,, |

Tip
(5.29)



1. 0 0 0O 0 0 0 0
y' 01 0 0 0 0 0 0
IA (aA-aB)I (aA-aB)II
y" 6070 EI EI 0 0
B B B
-a 2
LR _I_A. IIA _‘_{5
y 0 0 0 7 0 0 0 g7 (1- 5 )
B B Wy II
T; 0 0 0 O 1 0 0 0
i1 0 0 0 0 0 1 0 0
=97 0 0 0 O 0 0 0 0
P
2
2, ¥p
qQ 0 0 0 O 0 0 0 ( )
1I 2 '
] . ap Ha
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5.2.2.7 Plastic Elastic-Plastic Elastic Station Transfer Matrix
r
P|E
P\E
4
Equations (5.5) to (5.9) and (5.12) remain valid, and with the

first wall segments at the top and bottom of the station in the plastic

state
@ = q (5.30)
I Ipg
Equation (5.10) becomes
a 2 (P.-q. a, +q, a- )

b, haow 1 g I Ty Iy 4
Yp =7 ¥, + (—= -1 q - (5.31)

B IB A EIB “i 11 IIA EIB

iB
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- - ~
vy ] 0
y' 0
y" O
g ~[P;-(appag-ap,2, )7
EI
B
< .
T, 0
T 0
a-=q a
Iy Tpp
a1 0
L. - iA L -

(5.32)

5.2.2.8 Elastic Elastic~Plastic Plastic Station Transfer Matrix

EE
Ao
plp
|
Equations (5.5) to (5.9) and (5.12) remain valid, and with the

segments of both walls at the bottom of the station in the plastic state

2
a4 Hp
q; = ( ) a; =4q (5.33)
I 2 I I
B aB uA I A PB
a u2
A B
q = ( ) q = q (5.34)
g a_ w2 11 1t Hpg
B "A
Therefore eqn. (5.10) becomes
a a (P.-q, a. -q arr )
" IA " IA IIA t IPB IB IIPB IIB
Yo =57 Yy - =7 97 - o1 4 - (5.35)
B IB A EIB IA EIB IIA EIB



Hence the station transfer matrix becomes

O -

0 o0 0 0 0
0 0 0 0 0
(a,-a,) (a,-a,)

EAO [y AT ,

I EI EI,
-a
I Ty
0 T 0 0 T
B B
0 0 1 0 0
0 0 0 1 0
2
a, u
0 O 0 0 (Ag
ag Uy
0 0 0 0 0
0

~-(P.-q. a. -q acc )
i IPB IB IIPB IIB

EI

iA

202

(5.36)
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5.2.2.9 Plastic Plastic-Elastic Elastic Station Transfer Matrix

-
E'E
|
Equations (5.5) to (5.9) and (5.12) remain valid, and with the

segments of both walls at the top of the station in the plastic state

.
A VB
g, = ( ) q (5.37)
I 2 1
B ap uy I "PA
a “g
q; = ( ) aq (5.38)
I 2 11
B ag w, II PA
Equation (5.10) becomes
2 2
"t IA 1" - uB uB
B ST, T Py = lay 05 =Napyly - [a, (5 -Daqp, 117 1/EIy
u
A A
(5.39)

T—0 0 0 0 0 )
y! 0 1 0 0 0 . 0 0
IA (aA-aB)I (aA-aB)II
" —it
y o o 1 0 BT Bl 0 0
B B B
Iy
y Lo lo o T 0 0 0 o
B
T 0o 0 0 0 1 0 0 o0
11 0 0 0 O 0 1 )
ag 0 0 0 0 0 0 0 o0 L
911 0 0 0 o 0 0 0 0




y"

y" \

q.+=4
II IIP

o

5.2.2.10

’

iA

¢
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Elastic Plastic-Plastic Plastic Station Transfer Matrix

ElpP
-
P|P

p
0 ]
0
0
u2 112
B B
-[P.-a_ ( —= -1) q, =-a.. (= -1) q 1
i 2 I 1. 2 11
Wy I PA Wy I PA
EI
B
0
0
2
( 2, ¥ .
ap “i I ‘pa
( “a'p q
B ag “i 11 lpa

(5.40)

Equations (5.5) to (5.9)and (5.12) remain valid, and the first

wall segment at the bottom and the second wall segments at the top and

bottom of the station are in the plastic state

Equation (5.10) becomes

a
IA

"

Yo - q
A EIB I

A

g = q
IB IPB
q = q
IIB IIPB
(P.-a. q, =-a.. q +a__ q )
i I IPB IIB IIPB IIA IIPA
EIB

(5.41)

(5.42)

(5.43)



Hence the station transfer matrix becomes

i 1

qr=q
I IP

Arr¥911
L JP

iB———

y"

y" 1

b
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iA

0 0 0 0 0
0 0 0 0
(ap-ap)  (a;-ap)
0 L 1L 0 0
ET, EIg
I -a
EA 0 0 EIIA 0
B B
0 1 0 0 0
0 0 1 0 0
2y “g
0 0 0 ( 5) 0
aB uA I
0 0 0 0 0
0 -
0
0
-[P.-a. q. -(g,,2,-95,2,) ]
1719, 7 et
EIB $
0
0
0
q
I,y

(5.44)
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5.2.2.11 Plastic Elastic-Plastic Plastic Station Transfer Matrix
. ?iE

—Pfg

Equations (5.5) to (5.9) and (5.12) remain valid. The first wall

segments at the top and bottom and the second wall segment at the bottom

of the station are in the plastic state and equations (5.41) and (5.42)

are also valid with

2
3\ ¥
q = ( ) q (5.45)
II 2 1T
B ag u, IT A
Therefore equation (5.10) becomes
a (P.+q. a. ~q. a. -q a )
.S I " IIA i IPA IA IPB IB IIPB IIB
Yp =7 ¥, - %7 4 - (5.46)
B IB A EIB IIA EIB
Hence the station transfer matrix becomes
-
1 0 O 0 0] 0 0
! 0 1 0 0 0 0 0
1 (ap-ap)  (ay-ap)
1 _A I IT
y 0070 EI Rl 0 0
B B B
I -a
yn 0 0 0 EA 0 0 0 E%IA
$ B B
TI 0 0 O 0 1 0 0 0
TII 0 0 O 0 0 1 0 0
dy=qdg 0 0 O 0 0 0 0 0
P
a 2
AMB
qII'qIIP 0 0 0 O 0 0 0 ( 5 )
ag uy 11

- iB
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r- = -
y ° |
y' X
yll 0
-[Pi'(qPBaB'qPAaA>I_qIIPBaIlé
y" ] ‘ )
El,
{ “
T °
Tr1 ’
a:=9 :
o Iop
L Jip & ]

(5.47)
5.2.2.12 Plastic Plastic-Elastic Plastic Station Transfer Matrix

g

|
12

|

P

=

Equations (5.5) to (5.9) and (5.12) remain valid, as the first
wall segment at the top and the second wall segments at the top and

bottom of the station are in the plastic state, equation (5.42) remains

valid and
2
%p ¥p
qIB = ( R > )I qIPA (5.48)
A ¥B
Therefore equation (5.10) becomes
2
]JB ]
[P.+q arr ~q ar. -q; a. (=5 -=1)
o I o i IIPA IIA IIPB IIB IPA IA “i 1
Vg S T_9Y, - BT (5.49)

B B



Hence the station transfer matrix becomes

1

1 0 0 0 0 0 0 o
y! 0 1 0 0 0 0 0
I (ay-ap) (ay-ap)
y o o 2 o L Ll 0
I Elg EI
I
g 0 0 0 EA' 0 0 0
& B
T 0 0 0 0 ] 0 0
Trq 0 0 0 0 0 1 0
ar 0o 0 0 0 0 0 0 0
a77=asy 0 0 0 0 0 0 0
SREEY: ——
[y [~ 0
yl
y"
2
B ) ]
-[P.+(q..a.-q.,a_) -q. a_ ( — -1
PASATPB™B’ L, T, “i L
y"'
B,
Loy
T 0
Ty 0
2
q=q ( "4 'p ) q
179 2 I
P ag uy I PA
qII'-'-q q
II I,

208

(5.50)
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5.2.2.13 Plastic Plastic-Plastic Elastic Station Transfer Matrix

P‘P
—T—

PIE

Equations (5.5) to (5.9) and (5.12) remain valid, and as the
first wall segments at the top and bottom and the second wall segment at

the top of the station are in the plastic state, eqn. (5.41) remains

valid
2
3 ¥p
q = ( ) a (5.51)
11 2 11
B aB UA II PA
Therefore equation (5.10) becomes
2
( (B 1y
P.-q. a_ -+q, a. -q a -
we A, 1 7 Ipg Ip Tpy Iy Topy 1T, ui T
e — g - (5.52)
B IB A EIB
Hence the station transfer matrix becomes
i T 0 0 0 0 0
' 0 1 0 0 0 0 0 0
I (ay-ap) (ay-ap)
" A I 1T
y o 0o 70 EI EI ¢ 0
B B B
IA
y"! 0 0 0 T 0 0 0 0
> B
TI 0 0 0 0 1 0 0 0
TII 0 0 0 0 0 1 0 0
qlqu 0 0 0 0 0 0 0 0
P
ar o 0 0 0 0 0 0 0

iB
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~ -~
y i
y'
y" 0
2
HB ]
-[P.+(q,,a,-9,.8.) -0, a., ( —= ~1)
i CPATATIPBTR UL I, “i I
y"l
< > < EI, $
+
b 0 :

I

T1g 0
q,=q q

I, Iog

a p2
Q=4 ( AB ) q
II IIP A uz 1 IT,,
B "A
] J L )
iA

(5.53)

5.2.2.14 Plastic Plastic-Plastic Plastic Station Transfer Matrix
= |
PP
-..+--
P: P

Equations (5.5) to (5.9) remain valid and as all the segments at
the top and bottom of staiton are in the plastic state, the egns. (5.41)
and (5.42) remain valid.

Equation (5.10) becomes

(P.+a. q, -a. q; +a,; Q -arr Qv7 )

e IA " i IA IPA IB IPB IIA IIPA IIB IIPB

V. =y, - (5.54)
B IB A EIB




Hence the station transfer matrix becomes

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0
IA (aA-aB)I (aA-aB)II
o 0o T 0 - - 0 0
B B B
I
0O 0 O I 0 0 0 0
B
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
|
iB
1 r 0 -
y' 0
y" 0
g ~[P;+(apyay-appap) 1+(dp,a,-dppag) 1]
Elg
+
A :
i 0
a.=q q
I IP IPB
Q71=q q
1174, 18
1A —

211

(5.55)
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5.2.2.15 Elastic Plastic-Plastic Elastic Station Transfer Matrix

Elp

g -
t
P ]

Equations (5.5) to (5.9) remain valid, and as the first wall

segment at the bottom and the second wall segment at the top of station

are in the plastic state egn. (5.11) remains valid

2
2 ¥B
q = ( ) a (5.56)
1I 2 II
B aB uA 11 PA
Therefore equation (5.10) becomes
2
[ (2 .11
a P.-q a. -q a - -
. I ) IA i IPB IB IIPA IIA ”i II
Y. =Ty, =--—q. - (5.57)
B IB A EIB IA EIB
Hence the station transfer matrix becomes
y 1 1 0 0 0 0 0 0 0
! 0 1 0 0 0
IA (aA-aB)I ( —aB)
yY 0 0 — 0 0 0
IB EIB EIB
I -a
A
y! 0 0 O }f‘ 0 0 EIIA 0
B B
TI > 0 0 0 0 1 0 0 0
Ty1 00 0 O 0 1 0 0
% “g
qI=qI 0 0 0 0 0 0 ( > ) 0
P aB uA I
qII 0 0 O 0 0 0 0 0

iB
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- . _ . -
' 0
y" 0
2
B4y
-[P.-q; a; -q;; a;; (= -1
T Ipg Ig Mgy 1D, ”i II
y"'
ET,
< K
T 0
i1 0
ar 0
2
q.7=9 ( "2 B ) q
117911, L w2 pp 1o,
L B A
- -1 iA -
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5.2.2.16 Plastic Elastic~Elastic Plastic Station Transfer Matrix

PIE

-

E:P
Equations (5.5) to (5.9) remain valid, and as the first wall

segment at the top and the second wall segement at the bottom of the

station are in the plastic state, eqn. (5.12) remains valid and

9 = ( > ) ap (5.59)

Therefore eqn. (5.10) becomes

=

B
(P ( -1).1]
A “PA I

Y 1 Yy T &I qIIA - EI (5.60)
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Hence the station transfer matrix becomes
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5.2.2.17 Station Transfer Matrices Relating Real Hinged Segment/

Segments with Elastic, Plastic, Real Hinged Segment/Segments

Each of the remaining sixty-five station is a modified form of
one of these sixteen stations. Hence the station transfer matrix for
the remaining station can be obtained from the station transfer matrix
for corresponding station by setting the appropriate shear intensity/

intensities (qIA and/or a7 and/or Ar1a and/or qIIB) equal to zero.

5.3 FORMULATION OF MIXED BOUNDARY VALUE PROBLEM

The transfer matrix technique gives the relationship of eight
equations between eight states at the base and eight states at the top

of structure as

{9}, = (F}] {¢}nB + {L} (5.62)
There are eight elements in each of the state vectors {4>}o and

{6}

nB* Out of these sixteen elements, eight of them are known by the

boundary conditions at the top and bottom of the structure i.e.

At the Base: (for fixed base)

Yo = 0 (5.63a)

v, =0 (5.63b)

qI =0 (5.63c)
o]

Qrp = 0 (5.63d)

At the Top:

=0 (5-639)
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T =0 (5.63f)
I
nB
TII =0 (5.638)
nB
Elr1n " (Py=Ving) )
q = Vo + ——/————— (5.63n
IIs %m "B %1 1n

Hence the mixed boundary value problem becomes:

~ 1 —— T - - .
0 ynB
t
0 ynB
n
Yo 0
AiA] mne
Yo _ YnB _
, > - F < } +-J L
i TI 0
o]
TII 0
L1 ] /
0 0InBynB * VInB aIn
0 " v, )/
°1mnB'nB * “'n” 1nB’/%IIn
L d | I — . L o
(5.64)
where
EIIn
o] =
InB aIn
EIIIn
0IInB = a

IIn
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Expanding the above eight equations and eliminating the four

n 1ne

unknowns Yy YO y T 0! at the left hand side by Gauss-Elimination

Io’ TII

method, we get the four independent equations in terms of four

| 1"ne
independent unknowns at top ynB’ ynB’ ynB, VInB as

_§11 E12 Fw*“:[nFW*"IIan F17/ S Y %11n| |¥nB '31'518%/ 4I1n
Fm o F214""1’.r1§27+"11n_F-28 F27/ 2 1n~F28"%11n ﬁyr'xB & (Ezjzspn/ %11n
11 Fro Pt nrorratrs Fp/f1aFre/om| |Vas ) L FgPu/ary,
E81 F82 -§8u+01n§87+011n§88 587/ arn-Fgg/ #1In LVInB L—ES_F88Pn/ %1In

(5.65)



CHAPTER 6

DYNAMIC ANALYSIS OF TWO INTER-CONNECTING
COUPLED SHEAR WALLS

6.1 COUPLED SHEAR WALL SYSTEM

In this chapter, the behaviour of two inter-connecting coupled
shear walls subjected to earthquake excitations is studied. This
analysis is based on the mathematical model which is explained and
derived in the previous chapter.

The example building considered here is the same as that
considered in Chapter Y4, as shown in Fig. (4.17). The behaviour of each
coupled shear wall obtained by this formulation is compared with the
behaviour obtained in Chapter U where each coupled shear wall is treated
separately.

In this study of the two interconnecting shear wall problem, one
coupled shear wall represents the two exterior coupled shear walls and
other coupled shear wall represents all interior coupled shear walls.
That is, as shown in Fig. [6.1(a)], the first coupled shear wall has the
sum of stiffness and strength of the two exterior coupled shear walls
and the second coupled shear wall has the total stiffness and strength
of the interior coupled shear walls. These two coupled shear walls are
then connected by a pin-pin rigid member at each floor level. 1In the
dynamic model as shown in Fig. [6.1(b)] the mass of the entire building
i.e. the mass of these two representative coupled shear wall is lumped

together at each station level. In the present approach there is no
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need to attach a predetermined mass distribution to the shear walls.
The transfer matrix technique in the dynamic analysis takes care of the
balancing of the loading automatically, based on the requirement that
all coupled shear walls shall have same deflection at floor levels.

In the present analysis) the dynamic model of two interconnected
coupled shear walls have five lumped masses located at the top of five
segments of equal height, as in Fig. (6.2). Table 6.1 gives the summary

of the dimensions and capacities of wall-1 and wall-2.

Wall Thickness Conn. Beam Moment of Inertia q
WALL Depth of Conn. Beams p
(in) (in) (££%) (kip/ft)
Wall-1 24 24 1.120 40.0
Wall-2 72 6% 0.141 16.08

¥Effective connecting slab width = 3.5 ft

Table 6.1 Dimensions and Capacities of Wall-1 and Wall 2

6.2 METHOD OF EXCITATION

The earthquake record of El-Centro (1940) N.S component is used
to excite this twenty storey building. This reocrd is normalized to the
maximum horizontal accelerations of 16% g and 32% g for analysis
purpose and they will be referred to as "moderate" and "severe"
earthquake respectively.

The modal critical damping ratios are taken as: E1 = 4%, 52 =

5%7 g = 6%7 Eu = 7%’ g - 8%'

3 5
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Limited rotational ductility factors Ei = 15 and i&l = 5 are

considered for the connecting beams of wall-1 (exterior) and wall-2

(interior) respectively. Also for moderate excitation very large
ductility factors Ei = 3&1 = 500 are used for both walls. For severe
excitation large ductility factors ;} = 30, HiI = 5 are also considered

to study the effect of ductility on the responses.

The following table summarizes the cases studied.

Earthquake Ductility of the
Excitation Connecting Beams
Run-A moderate 500 500
Run-B moderate 15 5
Run-C severe 15 5
Run-D severe 30 5

Table 6.2 Summary of Cases Studied for Dynamic Analysis

6.3 SEISMIC RESPONSE

In this section the seismic responses of the two coupled shear
walls are presented and compared with the corresponding responses of
these walls obtained in single coupled shear wall analysis given in
Chapter 4.

The parameters of interest are: (i) the top displacement, (ii)
the bending moment at the base of one pier and (iii) the axial force at
the base. These parameters are used to evaluate the performance of the
structure under seismic loads. These are the same parameters considered

for the single coupled shear wall response analysis.
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Also the phenomenon of the transfer of 1loading during the
earthquake is studied based on the time~history of a "Load Sharing
Factor". This is defined as the ratio of the over-turning moment on the
exterior wall and the over-turning moment on the interior wall. The
Load Sharing Factor is calculated as follows.

The overturning moment in a coupled shear wall is given by

MS =M, + T, ay (6.1)
where
Mi: overturning moment at the base of ith segment
Mi: wall moment ét the base of ith segment
Ti: axial force at the base of ith segment
a;: ¢/c distance between the axes of two piers of the ith

segment.
Hence the Load Sharing Factor (L.S.F.) for the exterior coupled

shear wall at the base of ith segment is given by

e
i ext (Mi * Ti ai)ext

L.S8.F. = S = (6.2)
Miogng My + Ty a5)4n¢

where the subscript "ext" refers to the parameters of the exterior
coupled shear wall and "int" refers to the parameters of the interior
coupled shear wall of the building.

As wall-1 consists of two exterior coupled shear walls of the
building and wall-2 consists of six interior coupled shear walls of the
building, the Load Sharing Factor for the exterior coupled shear wall is

given by
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(M, + T, a,)
i i i1

L.S.F. (6.3)

= X 3.0
(Mi + Ti ai)II

where subscripts I and II are referred to the representative wall-1 and
wall-2 respectively in the mathematical model.

This Load Sharing Factor is calculated, at each time step, at the
bases of first and third segment and its time history is plotted.

For the single coupled shear wall problem considered in Chapter
4, the time history of the overturning moment is obtained for the
exterior and the interior coupled shear wall as a punched deck and time
history of Load Sharing Factor is computed for comparison. To
facilitate the direct comparison of this factor for the single coupled
shear wall problem and the two inter-connected coupled shear wall
problem, the time history of L.S.F. of both problems is given in this
chapter.

The time-history responses in Run-A are same as those in Run-B
i.e. the behaviour of the coupled shear walls under moderate earthquake
is not affected by limiting the rotational ductility factors of the
connecting beams of wall-1 and wall-2 up to E} = 15 and ‘iil = 5
respectively. This leads us to consider only last three cases in
detail.

For future reference, this present formulation of two inter-
connected coupled shear walls will be referred as "Problem-2" and the

previous single coupled shear wall formulation as "Problem-1".
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6.3.1 Top Displacement Response

Figure (6.3) shows the comparison between the responses of the
interior coupled shear wall under moderate earthquake excitation in
Problem-1 and Problem-2. Figure (6.4) compares the responses of the
interior coupled shear wall under severe earthquake in Problem-1 and
Problem-2. As the top deflection of the exterior and interior coupled
shear walls are identical under same earthquake, the comparisons of the
responses of exterior wall will be the same as that of the interior
wall. These figures show that the response of the coupled shear wall
analysed as separate single shear wall is almost identical to the
response in two inter-connected shear wall problem. Figure (6.5) gives
the comparison of the responses in Run-C and Run-D. This shows that the
rotational ductility factor of the connecting beams has no effect on the

top deflection response,

6.3.2 Base Axial Force Response

Figure (6.6) compares the responses of an exterior coupled shear
wall under moderate earthquake in Problem-1 and Problem-2. The
responses are almost the same initially. After 2 seconds the response
in Problem-2 is slightly higher. This is because of the difference in
the order of formation of hinges in the two problems. Real hinges are
formed in 40% height of the coupled shear wall in Problem-1. On the
other hand no real hinges are formed in Problem-2. The same observation
applies for the interior coupled shear wall and this is clearly seen in

the Fig. (6.7). Under severe earthquake excitation, real hinges are
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formed in H40% of the connecting beams of the interior shear wall in
problem-1 and problem-2; hence, there is 1little difference in the
responses in these two problems. There is some difference between time
equals 2.0 sec. and 4.5 sec because of the early plastification and the
real hinges are formed at 2 seconds in problem-1 as against at 4.5 sec
in Problem-2. This is shown in Fig. (6.8). Figure (6.9) compares the
responses of the exterior coupled shear wall under the severe earthquake
in Problem-1 (Run-3) and Problem-2 (Run-C). Figure (6.10) compares the
same response of the exterior coupled shear wall in Run-3 with that in
Problem-2 (Run-D). In both cases the responses in Problem-2 are higher
than those in Problem-1. This is because the number of real hinged
segments in Problem-2 is less than that in Problem-1.

The difference in the two responses of Fig. (6.10) is more than
those of Fig. (6.9). This 1is because of the difference in the
rotational ductility factors of the connecting beams of the exterior
coupled shear wall (wall-1). In Run-D the rotational ductility factor
of the connecting beams of the exterior wall is 30 while that in Run-C
is 15. The higher rotational ductility factor of the connecting beams
in Run-D allows higher axial forces because of the higher limitations on
the rotation of the ends of the connecting beams and hence preventing
the formation of the real hinges. This effect of rotational ductility
factor is compared directly in Fig. (6.11) by considering the responses
of the exterior coupled sheaer wall in Problem-2 (Run C and Run-D).
Figure (6.12) compares the responses of the interior coupled shear walls

in these two cases. There is a very little difference in these two
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responses. It is to be noted that in these two cases (Run-C and Run-D)
the rotational ductility factor of the connecting beams of the interior
coupled shear wall is the same.

This shows that there is a considerable effect of the rotational
ductility factor of the connecting beams of the coupled shear wall on
its behaviour, but a very little effect on the other coupled shear wall
which is interconnected to it. Hence the improvement in the member
ductility of only one or some of the coupled shear walls may not be of
much advantageous for the behaviour of the other coupled shear walls of

the same system.

6.3.3 Base Moment Response

Figures (6.13) and Fig. (6.14) gives the comparison between the
response of the interior coupled shear wall under moderate and severe
earthquake excitation respectively. 1In both figures it is seen that
the responses in Problem-1 are underestimated, with peak response by 7%
to 12%. This is because the interior coupled shear wall is assumed to
take less load (mass) in Problem-1. For the same reason, the responses
of the exterior coupled shear wall in Problem-1 are overestimated. This
is seen in Figs. (6.15) and (6.16) which compares the responses of the
exterior coupled shear wall under moderate and severe earthquake
excitation respectively. The difference between the responses under
moderate earthquake is increased [Fig. (6.15)], because of the formation
of real hinges over 40% height of the wall in Problem-1 (Run-2). This

formation of real hinges reduces the axial forces at the base of the
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coupled shear wall and hence leads to a larger base moment.

Figure (6.17) compares the responses of the interior coupled
shear walls under severe earthquakes in Run-C and Run-D. They are
almost identical and this shows that there is very little effect of the
rotational ductility factors of the connecting beams on the base moment
response. Figure (6.18) shows the comparison between these response of
the exterior coupled shear wall and this also shows the same trend. 1In
fact both figures are almost identical. This shows that the base
moments in the exterior and interior wall in the two inter-connected
coupled shear wall formation are the same, & direct consequence of the
assumption of constant curvature at the station levels and also at the

base of shear walls.

6.3.4 Load Sharing Factor for Exterior Wall

Figures (6.19) and (6.20) give the responses, under moderate
earthquake, at the base of first and third segment respectively.
Figures (6.21) and (6.22) give the same responses for the single coupled
shear wall paroblem. These figures show that the phenomenon of 1load
sharing is different in the two interconnected coupled shear wall
problem from that in the single shear wall problem. For the single
coupled shear wall problem it fluctuates around 2.4. The reason is that
the exterior wall takes a mass in proportion to its stiffness and it is
2.4 times stiffer than the interior wall. These fluctuations are due
to the different order of formation of plastic hinges in the exterior

wall and the interior wall. The response in the two interconnected
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coupled shear wall problem fluctuates more and the fluctuations are not
about the value of 2.4. This is because the transfer of loading between
the two walls is not fixed, but depends on the instantaneous stiffnesses
of the two coupled shear walls. The same observation applies to the
shear walls which are shaken by a severe earthquake as shown in Figs.

(6.23) through (6.26).

6.4 COMPARISON BETWEEN SINGLE COUPLED SHEAR WALL PROBLEM AND TWO
INTERCONNECTED CQUPLED SHEAR WALLS PROBLEM

After studying the behaviour of the exterior and the interior
shear wall, by analysis as single individual coupled shear walls in
Chpater 4 and in the two interconnected coupled shear wall problem in
the previous section, it is worthwhile to compare the responses of these
two walls in both problems under same loading and geometrical
conditions.

Table 6.3 gives the maximum values of the parameters of interest
discussed above for the interior and exterior wall under 16% g El-Centro
N.S record excitation. It also includes the number of plastifications
in the segments during the entire time-history of the earthquake loading
considered. These numbers and the maximum number of plastic and real
hinged segments give some indication to the nature of plastification
along the entire height of the structure. Also the number of occurrence
of the tensile force at the base of the wall gives the idea of the
nature of severity at the base during the entire loading history.

Table 6.4 gives the same parameters for the interior and exterior

wall when subjected to 32% g El-Centro earthquake loading.
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Table 6.3 Comparison of Maximum Responses of an Exterior and an Interior Wall,

No. of No. of
Maximum | Occurrences Plastification
Maximum Base of Tensile Maximum in the Maximum No. | Maximum No.
WALL Base Axial Axial Top Segment Number | of segments | of Real
Ductility Moment Force Force Deflection Plastified Hinged
m (kips.ft) | (kips) at Base (ft) 112131415 at one time | Segments
5 Problem-1 26700 2950 8 0.18 ol3]1]0]0 2 0
9 500
1% Problem-2 23700 2350 6 0.18 0(2]1]101]0 2 0
o
O r
e
Y Problem-1 32500 3270 2 0.18 of2t1f 110 3 2
5 15 Al A
- Problem-2 23700 2350 6 0.18 ol2}t1jo0]o 2 0
o Problem-1 14000 425 0 0.18 0t{2}121513 4 0
5 500
& | Problem-2 23700 10 0 0.18 ol2l2i413 4 0
o
O
o
H =l Problem-1 22000 390 0 0.18 0]3)2)2{2 3 2
= 5 AlA
— Problem-2 23700 410 0 0.18 ol 2] 2412 3 0
Problem~1: Single S.W. Problem Problem-2: Two S.W. Problem A: Real Hinge

16%g E1 Centro

VAT



No. of No. of
Maximum | Occurrences Plastification | Maximum No.] Maximum No.
Maximum Base of Tensile [Maximum in the of Plastic of Real
WALL Base Axial Axial Top Segment Number Hinged Hinged
Ductility Moment Force Force Deflection Segments Segments
iy (kips.ft) | (kips) at Base (ft) 1412131415 at one time| at one time
5 Problem-1 56500 2510 4 0.33 Ol2111{11(3 2 3
2 15 Al ala
“ | Problem-2 53500 2590 8 0.32 ol8f{ul2to0 3 2
o
o~ Al A
o
53
o Problem-2 30 53300 2925 16 0.32 O 6] 4] 1¢(1 4 0
=
“ Problem-1 48200 380 0 0.32 Of By By 211 3 2
@
] 5 A) A .
& | Problem-2 53500 395 0 0.32 0] 3|1 2] 2] 2 4 2
U — Al A
o~
o é(j
8 ~ | Problem-2 5 53300 395 0 0.32 | o] 6] 2 2|2 4 2
= Al A
=
Problem-1: Single S.W. Problem Problem-2: Two S.W. Problem A: Real Hinge

Table 6.4 Comparison of Maximum Responses of an Exterior and an Interior Wall:; 32%g E1l Centro
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The overall "Top Deflection Ratio" (T.D.R.) is also calculated in

these cases by equation (4.1) and is given in Table 6.5.

Ground Acceleration WALL Ductility of the connecting Beams (1)
Limited (=5 for int; High (=500)
= 15 for ext)

16% g El-Centro Exterior 1.45 1.45
Interior 1.45 1.45
Exterior 2.91

32% g El-Centro Interior 2.91
Exterior 2.91
(n = 30)

Table 6.5 Top Deflection Ratio for an Exterior and an Interior Wall

From the comparison of the parameters in Tables 4.3 and 4.4 it
can be seen that the order of formation of plastic hinges and real
hinges is different for problem-1 and problem-2. This may be because of
the difference in the percentage loading shared by each wall. In
problem-1, as initially the exterior wall is 2.4 times stiffer than the
interior wall, the exterior wall is assumed to have the mass as 2.4
times that of the interior wall. While in problem-2, the exterior wall

seems to take a load around 1.5 to 2.0 times that of the interior wall.
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The bending moments at the base of the interior wall are under-
estimated in problem-1. The base moment in the exterior wall on the
other hand are over-estimated in problem-1.

The extent of formation of the real hinges is over-estimated in
problem-1.

For limited ductilities the occurrence of tensile axial force at
the base of the exterior shear wall is less frequent in problem-1.

From the Tables U4.12 and 6.2, it can be seen that the overall
"Top Deflection Ratio", i.e. the overall ductility demand is slightly
over estimated in problem-1 for the limited member ductilities.

From the tables 6.3 and 4.4, considering the effect of rotational
member ductilities, it may be concluded that, the occurrence of tensile
axial force at the base of the exterior shear wall increases by
increasing the member ductility. The limited member ductility increases

the maximum values of base moments and axial forces.
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in the

(1)

CHAPTER T
CONCLUSIONS, DESIGN RECOMMENDATIONS AND
FURTHER INVESTIGATIONS

CONCLUSIONS

The following conclusions are drawn based on the work presented
previous chapters.

The continuum approach in combination with the transfer matrix
technique can provide an efficient means to obtain a full time
history response of single and two interconnected coupled shear
walls subjected to ground motions. The proposed method is
capable of handling plane non-uniform coupled shear wall
structures subjected to any ground accelerations. The effect of
flexible foundation can be incorporated in the analysis.
Complexity in the structural configuration and/or the inelastic
regions are conveniently handled by dividing the structure into a
series of segments where each segment has uniform structural
properties within itself. To save computer time the number of
lumped masses need not be equal to the number of segments. A
large number of segments can be used to achieve the necessary
accuracy. The number of segments here can be taken an integer
multiple of the number of masses. Independent of the number of
stories of the structure or the number of the segments into which

the walls are to be divided, the resulting transfer matrices are
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six by six matrices in single coupled shear wall problem and
eight by eight matrices in two interconnected coupled shear walls
problem. Therefore, computer with limited memory capcity can be
used to analyze high rise building using the proposed method.

The present simplified modeling technique of coupled shear walls
gives a fairly realistic inelastic behaviour of the coupled shear
walls.

The P-A Effect appears to have a minor influence. This is due to
the piers are assumed to remain elastic throughout the analysis.
But when the formation of the plastic hinges at the base of the
piers is considered, the P-4 Effect is likely to become
important.

Due to the high shearing force transmitting capacity of the
connecting beams, the axial force in the piers due to the lateral
load may exceed the dead load carried by each pier. In such a
case the tensile force will occur at the base of the pier. This
situation is observed in case of end walls where deep coupling
beam is used and yet the tributary area for gravity load is
small. To decrease the tensile forces in the piers, it is useful
to arrange the shear walls in such a way to keep the tributary
areas proportional to the wall stiffness.

For the coupled shear wall of practical dimensions, it may be
concluded that when the monotonously increasing load is applied,
the second plastic hinge at the base forms almost immediately

after the first hinge has been formed.
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Based on the present limited study, it may be concluded that the
model structure will suffer light damage and may survive against
collapse if it is exposed to moderate earthquake shaking. On the
other hand, if it is exposed to severe earthquake, then heavy
damage may occur and the walls may even fall as collapse
mechanism with the formation of hinges at the bases.

The behaviour of the coupled shear wall will be improved if the
ductility of the connecting beams is increased. This improvement
is more important for the survival against severe earthquakes and
hence increase in the ductility of the moderately stiff
connecting beams will lead to better performance.

The improvement in the member ductility of only one or some of
the coupled shear walls is not advantageous to the behaviour of

the other coupled shear walls of the same system.

The following conclusions are drawn to compare the conventional

method of single coupled shear wall analysis with the present method of

two interconnected coupled shear walls analysis.

(1)

(2)

The order of formation of plastic and real hinges at the ends of
the connecting beams in single coupled shear wall problem is
different from that observed in the two interconnected coupled
shear walls problem.

The bending moments at the base of the interior coupled shear
walls are underestimated by 7% to 12% in single coupled shear

wall problem. The bending moments at the base of the exterior
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shear wall are overestimated by 12% to 20% in single coupled
shear wall problem.

The occurrence of the tensile axial force at the base of the
piers is less in single coupled shear wall problem when the
rotational ductility factor of the connecting beams is limited.
The overall "Top Deflection Ratio" i.e. the overall ductility
demand is slightly overestimated in single coupled shear wall

problem.

DESIGN RECOMMENDATIONS

Based on the behaviour of the coupled shear walls observed in the

present study, the following recommendations can be made for the design

of coupled shear walls.

(1)

(2)

(3)

It is desirable to design the walls to maintain an elastic
behaviour throughout an earthquake response for minimum
nonstructural damage, and to ensure the moderate ductility
capacity as a second line of defense. A strong and ductile wall
can be designed by concentrating the flexural reinforcement at
the two extreme ends of the section and detailing the transverse
reinformcement to confine the concrete effectively.

The coupling beams should be designed so as to be moderately
stiff enough in order to render an effective coupling system.
These beams should be carefully detailed with the diagonal,
transverse reinforcement for ductile behaviour without brittle

shear failure under a large number of reversals so as to reduce
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the possibility of significant yielding in the walls.

FURTHER INVESTTIGATIONS

The following points require further investigations:

The formulation of plastic hinges at the base of the piers should
be included in two interconnected coupled shear walls problem, to
understand the complete behaviour of the building when exposed to
the moderate and strong earthquakes.

The variation in the behaviour of the coupled shear walls can be
studied in detail by considering the walls of different
flexibilities and by arranging the walls to give different

tributary areas for each of them.



APPENDIX A
CALCULATION FOR THE INTERACTION CURVES FOR
THE COUPLED SHEAR WALLS CONSIDERED IN EXAMPLES
This appendix presents the calculation for determination of

interaction curves for the walls considered in the example building.

A1 EXTERIOR WALL
The dimensions and stress, strain distribution at the base the
pier of 20 storey exterior coupled shear wall is shown in Fig. (A.1).

Taking the material properties as

3

Es = 2.9 x 10~ ksi
Eec = 3.5 x 103 ksi
1]
f = 4 ksi

c
fy = 60 ksi

the distance of then eutral axis "xb" is given by

*p 0.003
d ~ (fy/Es)+0.003
87000 d
therefore Xb = ?;:55665‘
87000 x 201.9
= 60000 + 87000
= 119.49 in.
therefore a = 0.85 Xb = 101.57 in
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therefore C = 0.85 f' ab
[¢] o]
= 0.84 x 4 x 101.56 x 12
= 4143.98 kips
t
CS = fy Ast1 = 0.85 fc Ast1
= 60 x 34.32 - 0.85 x 4 x 34.32
= 1942.51 kips
therefore e; = 0.003 (119.49 - 9.1)/119.49
= 2.77 x 1073 > ey = 2.069 x 1073 .°. 0.K.
T=f, Ast1
= 60 X 34.32
= 2059.2 kips
therefore Pb =C +C_ -T
C S
= 4143.98 + 1942.51 - 2059.2
= 4027.29 kips
a
‘_b. n 1 1" "
My=P e =C (d-5"-d)+C (d-d -d)+Td
101.66
= 4143.98 (105 - 5 ) + 1942.5(105 - 9.1) + 2059.2 (105-9.1)

608L49.6 kips in.

50704.14 kips ft

o
1

0.85 Pc(Ag - Ast) + fy Ast

0.85 x 4 (2520-34.32 x 2) + 60 x 34.32 x 2

12453 kips
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Pe

fy Ast

60 x 34.32 x 2

4118.4 kips

therefore for the part AB of interaction curve

My My,
X = y - P
(Pb—Po) (Pb-Po) o
50704 50704
= (4027-12453) Y T (4027-121453) 12453
= -6.0175647 y + T4936.7
for the curve BC
M, My Py
X

= y +
(P0+P1) (Pb+PQ)

50704 50704x4119
= (4027+4119) ¥ T (4027+4119)

6.224L0L6 v + 25638

The interaction curve for this exterior wall is shown in Fig.

(A.2).

A2 INTERIOR WALL

The dimensions and stress strain distribution at the base of the
pier of 20 storey interior coupled shear wall is shown in Fig. (A.3).
Taking the same material properties as exterior wall.

87000 d

Xp = 87000 + £,
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87000x201.9
= 87000+60000

= 119.49 in

therefore a

0.85 X,

101.57 in

C.=10.85x 4 x 101.57 x 12

4143.95 kips

Cs = 60 x 28.08 - 0.85 x4 x 28.08
= 1589.33 kips
T = 60 X 28.08
= 1684.8 kips
therefore Pb = CS + Cc - T
= 1589.33 + 4143.95 - 1684.8
= 4048.48 kips
101.57
Mb = Pb ey = 4143.95 (105 =~ > ) + 1589.33(105-9.1) + 1684.8(105-9.1)

= 538653.32 kips in
= L44887.78 kips ft
P, =0.85 x 4 (2520 - 28.08 x 2) + 60 x 28.08 x 2

= 11746.66 kips

P = 60 x 28.08 x 2

= 3370 kips

therefore for part AB of interaction curve
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14888 44888
(50u8-11787) ¥ ~ (wous-11747) 17T

-5.830595 y + 19626
for the part BC

44888 44888
X = (3048+3370) ¥ T (4048+3370

) 3370

6.0512267 y + 20392.6

The interaction curve for this interior wall is shown in fig. (A-L4).

A.Y4 STRUCTURE-1

This coupled shear wall is the same as considered by Takayanagi
and Schnobrich [30]. The dimension and stress strain distribution at
the base of the pier of this coupled shear wall is shown in Fig. (A.5).

Taking the material properties as

ES = 29000 ksi
Ec = 3000 ksi
%
fc= 4.5 ksi
f = 72 ksi
y T si
0.003 d

therefore Xp = ?;7E;:5?66§

0.003 x 6.25
= 72/29000+0.003

3.42 in

therefore a (0.85 - 0.95 x 1/2) 3.42

2.8215 in
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therefore Cc = 0.85 x 4.5 x 2.8215 x 1.0
= 10.7923 kips
Cs = 72 x 0.0824 - 0.85 x 4.5 x 0.0824
= 5.61762 kips
T = 72 x 0.0824
= 5.9328 kips
therefore Pb = Cc + Cs - T
= 10.7923 + 5.61762 - 5.9328
= 10.4771 kips
2.8215
Mb = Pbeb = 10.7923(315 - > ) + 5.6176(3.5-0.75)+5.9328(3.5-0.75)

54,311 kips in

PO = 0.85 x 4.5 (7T - 0.0824 x 2) + 72 x 0.0826 x 2
= 38.01 kips
Pl = 72 x 0.0824 x 2

un

11.8656 kips
therefore for part AB of interaction curve

54,311 54,311
= 10.4771-38.01 ¥ ~ 10.4771-38.01

38.01

-1.9725855 y + 74.980

for part BC

54,311 54,311
® 10.4771411.8656 ¥ * 10.4771+11.8656

11.8656

2.4308163 y + 28.843

The interaction curve for this structure-1 is shown in fig. (A-6).
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