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Abstract 
Inelastic interaction and wave optics seem to be incompatible in that inelastic 
processes destroy coherence, which is the fundamental requirement for 
holography. In special experiments it is shown that energy transfer larger than 
some eV1510  undoubtedly destroys coherence of the inelastic electron with 
the elastic remainder. Consequently, the usual inelastic processes, such as 
phonon-, plasmon- or inner shell-excitations with energy transfer of several 
meV  out to several eV10 , certainly produce incoherence with the elastic ones. 
However, it turned out that within the inelastic wave, “newborn” by the inelastic 
process, there is a sufficiently wide area of coherence for generating “inelastic 
holograms”. This is exploited to create holograms with electrons scattered at 
surface-plasmons, which opens up quantum mechanical investigation of these 
inelastic processes. 
 
 
1. Introduction: Inelastic Interaction, EELS and Holography 
For decades, Christian Colliex and his coworkers very successfully explored the 
basics of inelastic interaction and developed methods exploiting them for 
powerful materials analysis in the (S)TEM. As a new fascinating contribution to 
the fields, recently, they published energy-filtered images of triangularly 
shaped Ag-nanoparticles recorded in the light of the surface plasmons energy 
losses, which show striking eigenmode-like features (fig. 1) [1]. These images 
clearly indicate the structure of probability for excitation of such plasmons. 
The question is whether an exciting beam electron just experiences the 
excitation probability locally given by the nanoparticle, or “sees” the whole shape 
of the nanoparticle; in the latter case, the pattern would be a property also of 
the exciting beam electron. If it sees the whole particle, just as it “sees” both 
slits in a double-slit experiment, then there should be some interference 
possible between different areas of the excitation probability distribution in 
the nanoparticle. This is what we are striving for. As a prerequisite for this goal, 
we report about first holograms recorded with surface plasmon scattered 
electrons. 
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Correlation ? Interference ?  
 

Fig.1 Surface plasmons at a triangular Ag-nanoprism. 
The EFTEM-maps recorded for different energies show eigenmode structures in the 
distribution of excitation of surface-plasmons. These structures are a property of the 
object. Do the exciting electrons see the whole object and correlation between the 
excitation peaks? Would they show coherence over the whole particle hence 
interference phenomena? Example taken from [1]. 
 
 
2. Electron Interference 
At least in the realm of elastic interaction, TEM is wave optics where the image 
wave is built up by interference of the waves diffracted at the object. This is a 
highly complicate situation of multi-beam interference. Much easier to 
understand is two-beam interference: 
 
Assume a point source emitting an electron. A well-defined spherical wave is 
propagating in space (fig.2). By means of a wave front splitter, one can select 
two partial waves. At some distance to the source, these are nearly plane waves 
described by 

 
)2exp()2exp()exp();,( 2,12/1 tikzixkiatzx    (1) 

 
They overlap under a small angle  ; they oscillate at a frequency hE /  given 
by the total energy E  and Planck’s constant h . 
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Fig.2 Scheme of Electron Interference 
The wave of an electron propagates in space. By some optical arrangement employing 
beam-splitters and lenses, two partial waves are selected and superimposed in the far 
field of the source. Since the two partial waves have been part of the same wave, they 
are mutually coherent hence form an interference pattern. Strictly speaking, this 
scheme represents only one electron. 
 
 
In the area of superposition, they give rise to the sum wave 
 

);,();,();,( 21 tzxtzxtzx                          (2) 
 
with the intensity distribution 
 

)2cos(2);,(*);,()( 21
2
2

2
1 xqaaaatzxtzxxI chol   .                   (3) 

 
It is a cosinoidal two-beam interference pattern with a “carrier spatial 
frequency” kqc  . This pattern is stationary in time, because both waves 
oscillate at the same frequency  . Please note that the pattern is also 
independent from z , since for simplicity we assumed infinitely extended plane 
waves.  
 
Experimentally, two beam interferences can most favorably be produced by 
means of the Möllenstedt electron biprism as a beam splitter (fig.3) [2]. The 
biprism is a wavefront-splitter, splitting the incoming wave in two partial waves 
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and superimposing them downstream by virtue of the attractive electrical field 
around the positively charged filament.  
 

detector

biprism





1/qc

electron source

+

shear d
 

 
Fig.3 Setup for two-beam interference using the Möllenstedt electron biprism. 
By means of the positively charged filament ( m1 , filament voltage several Volt), 
the incoming wave is split in two partial waves, which are deflected hence superimposed 
downstream. At biprism voltage 0fU , they would be separated in the detector plane 
by the shear d  given by the angular separation   of the two partial waves. 
 
 
The interference pattern represents the wave of a single electron; it is the 
probability of finding the electron at the point )(x  in the detector plane. In 
fact, the electron hits the detector somewhere in a very sharp impact (fig.4): 
The electron is not smeared out over the whole wave area; instead it behaves 
like a particle, detectable in an a-posteriori well defined but unpredictable 
position. The unpredictability makes the difference to a classical particle.  
Consequently, performing the experiment with a single electron, one cannot see 
the interference pattern. To see the pattern, one would have to repeat the 
experiment over and over again with exactly the same electron in the very same 
experimental setup, in order to fill the probability distribution )(xIhol  with the 
frequency distribution of many events.  
 
 
3. Electron Coherence 
Since, in reality, it is impossible to repeat the experiment with the same 
electron, we perform the experiment with many different electrons emitted 
from the source during exposure time (fig.4). 
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Different electrons have no fixed phase relation hence must be considered 
mutually incoherent. However, the phase differences between the respective 
partial waves of the different electrons in the detector may be very similar. 
The electrons emitted from different points of the extended source )( sri

  
contribute with a slightly shifted interference pattern; electrons with different 
wave number k  will contribute with one of a slightly different spatial frequency 

kqc  . All these specific single-electron interference patterns have to be 
summed up by intensity, i.e. incoherently. Then the intensity distribution 
resulting from the whole ensemble of recorded electrons is found as  
 

)2cos(2)( 21
2
2

2
1   xqaaaaxI chol              (4) 

 
This averaged pattern differs from the single-electron pattern in the degree of 
coherence )exp(  i , which is a statistical property of the ensemble of all 
electrons collected on the detector (fig. 5).  
 

exposure time

0.02 s

10 s

60 s

120 s

 
 
Fig.4 Built-up of the interference pattern with increasing exposure time. 
The electrons drop in one by one at well localizable but unpredictable spots. They are 
not smeared out over the whole interference pattern. Collecting many electrons at 
coherent illumination (“ensemble coherence”), the pattern is filled with events and 
becomes gradually visible. These electrons are mutually incoherent and independent: The 
time of flight through the microscope is much shorter than s1 , the time distance 
between two events is about ms1 ; consequently, each electron is virtually all alone in the 
column (“single electron interference”). If ensemble coherence is sufficient, their 
individual interference patterns are so similar that by integration an average 
interference contrast is visible.  
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coherent incoherent  
Fig.5 Experimental superposition of two electron waves by means of the electron biprism 
for demonstration of coherence. 
In the left, the two beams are mutually coherent hence form the fine cosinoidal 
interference fringes. In the right, the interference fringes are missing because of lack 
of ensemble coherence between the electrons of the two beams; the Fresnel fringes 
from diffraction of each beam at the respective biprism edge show, however, that there 
is a certain degree of coherence within each beam. Coherence always describes a 
bilateral relation: “a” is coherent with “b”.   
 
 
Therefore we call it “ensemble coherence”. It does not say anything about the 
single-electron wave, which, by definition, is everywhere perfectly coherent with 
itself, as long as we do not consider inelastic processes. 
 
Under the reasonable assumption that all source points emit the same spectrum 
of wave numbers, the degree of coherence can be written as  
 

tcsc                              (5) 
i.e. as the product of spatial coherence sc  and temporal coherence tc . Spatial 
coherence is given as 
 

ss

source

s
sc rdrqiri


)2exp()()(                      (6) 
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with ),( yx kkq 
  and kq /


  the angular distance at the source of the two 

partial waves superimposed. (“Van Cittert–Zernike Theorem”). The phase   in 
)exp(  i  stems from a possible asymmetry of the source )( sri .  

 
Temporal coherence may be described by  
 

 dknisn
source

tc )/2exp()()( 0
   (7)

 

 
as a function of the order n  of interference. It results from the spectrum )(s  
with 0kk   the spectrum coordinate relative to the nominal wave number 

hUemk a /2 *
00  , with the assumption 0k  usually met by far.  

 
Of course, this description of coherence is an approximation. In a more complex 
situation including dispersion with respect to the incident angle and the energy, 
e.g. at interaction with the specimen or with aberrations of lenses, one has to 
determine all the single intensities of the respective wave functions and sum 
them up incoherently in the final image plane. More details can be found, for 
example in [3]. 
 
 
4. Elastic interaction: Phase shift of the wave 
Elastic interaction means that each electron before and behind the object has - 
on the scale of eV1510   - the same total energy E  in the Schrödinger equation. 
This means that only the direction of the wave vector k


 changes under 

interaction with the object, but not its modulus k


. The coherence properties of 

the wave are preserved. In the semi-classical WKB-approximation, the wave 
propagating through an object represented by an electric potential distribution 
V  and a magnetic vector potential A


 is modulated in phase by the so-called 

eikonal  


path

sdk


 2

                    (8)
 

 
which – with respect to a wave propagating in field-free space - results in  
 

  sdA
h

e
Vds

hv

e 
 22              (9),  

where v  means the electron velocity; again, details are found in [3].  
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5. Consequences of energy transfer 
Assume that, for example in the setup described in the following, one of the two 
coherent partial waves experiences an energy transfer E .  Then we 
superimpose  
 

))(2exp()2exp()exp();,( 22 tikzixkiatzx                     (10) 
 
and the unchanged partial wave 
 

)2exp()2exp()exp();,( 11 tikzixkiatzx                          (11) 
 
We assume that in this case entanglement with the object can be neglected; this 
is justified for the experimental setup used for verification in the following, 
because any influence from the beam electron on the macroscopic apparatus, 
such as changing its potential by electrostatic induction, can safely be 
neglected. Consequently, assuming full ensemble coherence, we find for the 
resulting interference pattern 
 

)22cos(2);,( 21
2
2

2
1 txqaaaatyxI chol                       (12), 

 
which is no more stationary in time. Instead, the time dependent phase shift 

tt  2)(   provokes a lateral motion (“beat”) of the interference fringes. With 
t / , the time dependent phase shift )(t  is associated with an energy 

transfer  E , according to the Einstein relation. The fringes move by 
sfringe /1 , i.e. Hz1 , for eVE 1510135.4  . The effects of the 

corresponding change of the wave number k  with E , and hence of the spatial 
frequency cq , are negligibly small. 
 
Experimental Verification 
The time dependent phase shift )(t  was experimentally proven by means of the 
setup shown in fig.6 [4]. One wave is propagating through field-free space. The 
other one is passing through a metallic tube, which is connected to a voltage 
supply providing a voltage linearly increasing in time at a constant rate V . After 
time of flight flightt  through the tube, each electron has picked up virtually the 

same energy flighttVeE  , which gives rise to the “beat” frequency flighttV
h

e   

of the whole interference pattern.  
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Fig. 6 Beats of electron waves by energy transfer E  to one wave. 
The wave 2  is shifted in energy E  with respect to the wave 1 . The energy shift 
comes about under time of flight flightt  through the tube with a ramped voltage )(tV . 
Since the fringes move at a frequency  , time resolution of the detector decides 
whether fringe contrast appears (“ 1  and 2  are found coherent”) or not 
(“incoherent”). From [4]. 
 
 
Interpretation: Loss of coherence between the partial waves  
It depends on the time resolution   of the detector, whether one can still 
detect interference fringes in the recorded intensity 
 

      













  dttxqyxI chol





0

)22cos(
1

12),(

                                            (13)
 

which can be written as 
 






  )2/22cos()(12),(  xqyxI c

E
hol                                      (14)

 

with 




 



0

)2exp(
1

)2/2exp()()( dttiiEE

                                (15)
 

For const  one obtains 


 )sin(

)( E

                                       (16)
 

 
with the first zero given at  /1 . Consequently, it depends strongly on 
exposure time  , whether interference contrast, i.e. coherence, is found or not. 
The detector is an essential part of the whole experiment. For the usual 
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exposure times of about s1 , the energy threshold for “decoherence” is 
eV1510135.4  . 

 
This coherence E  is in principle different from “ensemble coherence”: The 
disappearance of the interference contrast would show up also at perfect 
ensemble coherence. Instead, here we deal with the coherence between the 
partial waves of the same state, because we encroach on the very state of the 
single electron by energy transfer with the consequence of destroying 
coherence with other parts of the previous wave; without energy transfer we 
would simply produce a phase shift under conservation of coherence. Therefore, 
we call this kind of coherence “state coherence” state , which equals 1 for elastic 
interaction. The difference between ensemble coherence and state coherence is 
the reason, why the comparably large energy spread of the electron source of 

eVE 1  entering temporal ensemble coherence may be many orders of 
magnitude larger than eV1510135.4  . Altogether, we have now the total degree 
of coherence  
 

statetcsc                                     .(17) 
 
In the above example, Estate    holds. In the following case, state  will 
describe the distribution of coherence in a wave created by inelastic scattering. 
 
 
6. Inelastic coherence 
Compared to eV1510135.4  , the energy transfer to a wave usually occurring at 
inelastic interaction is huge. Therefore, excitation of phonons with several 
meV , of plasmons at several eV , or of inner shell excitations at several eV10  
necessarily destroys the degree of state coherence with respect to an 
elastically scattered wave, or to an unscattered one: The beat frequency would 
be about Hz1712 1010  , and, after usual exposure times in the order of seconds, 
interference contrast in an image-plane hologram would be completely wiped out.  
 
Of course, considering the object simply as a source of inelastic electrons, the 
issued inelastic waves can be used for producing interference in the far-field of 
the object according to the scheme in fig.2; then the respective ensemble 
coherence – now given by the energy distribution delivered by the electron gun 
convolved with the energy spread from the inelastic events, and the size of the 
object - determines the interference contrast.  
 
The much more interesting question is, whether there is extended coherence 

state  within the arisen inelastic wave in the inelastically scattering volume, i.e. 
in the object or image, which would reveal wave-like phenomena, when adjacent 
areas are superimposed. In the following, we analyze this in more detail. We 
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start with an illuminating wave with infinite region of coherence per definition, 
i.e. state coherence 1state . In the scattered wave field of a single electron, 

the coherence distribution is determined by the nature of the scattering 
process. For example, purely elastic scattering is modulating the wave field in 
amplitude and phase without affecting coherence. But in case of an inelastic 
scattering event, such as a K-shell ionization in one oxygen atom, the electron is 
exciting the object locally. Thereby, the illuminating, extended wave collapses 
and a new one is “born” locally. For understanding, we have to investigate, 
whether or not we find extended coherence state  indicating the extension of 
the newborn inelastic wave. This is a non-trivial situation, because for coherence 
we need a fixed phase relation, which is not automatically guaranteed over a 
larger area. The equality of energy better than eV1510135.4   is a necessary 
condition, but, presumably, not a sufficient one. 
 
For investigation of the coherence properties of the inelastic electrons, we 
record holographic EFTEM-images by means of the setup shown in fig.7. 
Interferograms are recorded in the image plane of the object such that two 
closely adjacent areas of the inelastic field overlap. First findings with Al-
plasmons revealed coherence [5], and, with improved instrumentation, the 
extension of coherence was estimated nm10  [6]. Finally, the systematic 
investigation increasing the shear d  (fig.8) resulted in the coherence 
distribution shown in fig.9-10 [7]. Please note that these measurements were 
performed in the image plane of the object; this means that we measure the 
coherent extension of the scattered wave at the scatterer. 
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electron source
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imaging filter

energy-loss
hologram

object

image plane
hologram

energy 
spectrum

biprism

EFTEM-image  
Fig. 7 Setup for recording holograms with inelastically scattered electrons in an EFTEM. 
Both beams subsequently superimposed go through the object to make sure that both 
may suffer the same energy transfer at e.g. plasmon scattering. From the hologram built 
up by all electrons, elastic and inelastic, we select a certain window in the energy 
spectrum to reveal the corresponding energy-loss hologram. Please keep in mind that 
this is EFTEM-imaging, meaning that we have an image-plane hologram of the inelastic 
process.  
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Fig. 8 Scheme for measuring the extension of coherence in inelastic scattering. 
The plasmon is the source of the inelastic wave. We measure the extension of this 
source by measuring the coherent extension of the issued inelastic wave in the plasmon 
plane as follows: By means of the biprism voltage, the shear d  is increased. The 
contrasts of the respective hologram-fringes give the distribution of degree of 
coherence state  with d . The optics for imaging the plasmon into the interference plane 
is not drawn. 



 14

 
 

Zero 
loss

Plasmon
loss

shear d 13.2nm 19.6nm 24.7nm  
 
Fig. 9 Electron holograms recorded with plasmon-scattered electrons at increasing 
shear. With increasing shear, fringe spacing decreases and overlapping width increases. 
For subsequent normalization with the “ensemble coherence” of illumination, also the 
zero-loss holograms are recorded. The result is state  in the plasmon-scattered wave. 
Expectedly, the fringe contrasts in the plasmon-loss holograms are much lower than in 
the respective zero-loss holograms. For details see [7]. 
 
 

Degree of coherence vs. shear d (nm)

 
 

Fig. 10 Extension of coherence within in the inelastically scattered wave field. 
The curve Plasmon/ZeroLoss gives state  of the plasmon scattered electrons. 
Surprisingly, in spite of the generally poor coherence, coherent contributions have to be 
considered in areas up to nm30 wide at plasmon scattering. This is interpreted as the 
diameter of the newborn inelastic wave at the scatterer. From data of fig.8. 
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The interpretation is that there is an outgoing inelastic wave, which, contrary to 
elastic scattering, is now spatially restricted to a so-called interaction sphere of 
a certain inelastic scattering event (fig.11). This sphere is the dominating factor 
contributing to the region of coherence in the inelastically scattered wave field, 
as shown in [10,11]. Furthermore it was shown that the shape of the coherence 
region is given by the delocalized Coulomb field of the scattered electron and 
also determined by the physical properties of the object such as correlations in 
quasi-particle excitations, like plasmons, polaritons or phonons. The radius of the 
interaction sphere is determined by the amount of transferred energy and beam 
energy of the incident electron [8]. 
 

ill

el

object

inel

elastic inelastic

interaction 
sphere

 
Fig.11 Elastic and inelastic interaction of the electron wave with an object 
Left: At elastic interaction, the object exit wave el  is phase-modulated according to 
the electric and magnetic object potential under preservation of coherence properties.  
Right: At inelastic interaction, the illuminating wave ill  collapses and gives rise to a 
“newborn” inelastic wave inel  in the interaction sphere shown; the extension of the 
inelastic wave is determined by the coherence measurements. At the edge of an object, 
it may also reach out laterally into vacuum [7].  
 
 
7. Density Matrix description 
As a useful construction for further discussion, we use the more general density 
matrix approach, which is fully equivalent to the above wave function 
description. In case of pure states, the density matrix of a fast electron can be 
set up by multiplying the wave with its complex conjugate for all pairs of 
independent variables ),( xx  [9]: 
 

)'()()',( * xxxx                               (18) 
 

,xx   is the shear d  introduced above. 
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In case of real electron sources we have to regard an ensemble of beam 
electrons, which are mutually incoherent, generally described by a density 
matrix of a mixed state.   
 


Soucre

kk
kdxxkfxx 3* )'()()()',( 


                            (19) 

 
The integration runs over the energy and angular distribution in the electron 
beam. The distribution function has to be normalized 
 

1)( 3 
Source

kdkf


                                          (20) 

 
The emitted electron waves, which differ in energy and incident direction, can 
be written with respect to object plane as 
 

)2exp()()( 0 xikxx
k    .                              (21) 

 
This ansatz leads to simplification of the mixed state density matrix of the 
beam electrons: 

 

)'()',(

)'()'()(

))'(2exp()()'()()',(

*
00

3*
00

xxxx

xxxx

kdxxikfxxxx

in

Source




 







              (22) 

 
It collapses to a product of the incoming density matrix )',( xxin  and the 
complex degree of coherence )'( xx  . It shows directly that the off-diagonal 
elements are weighted by a factor, which is decreasing with increasing relative 
distance 'xx   for standard electron sources.   
 
For simplicity we assume to have an ideal, non-dispersing lens for the further 
imaging process. This is justified if we investigate waves, which are slowly 
varying over a length scale of 10 nm. This assumption allows that we only need to 
alter the incoming density matrix by the scattering process by the object, but 
do not need to average over the coherent wave transfer function of the optics 
for different incident beams. 
 
The scattering by the object leads generally to an entanglement with 
(orthogonal) object states. The measurement of beam electrons is described by 
integration over all degrees of freedom of the object ending up in reduced 
density matrix )',( xxout  [9]. 
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)'()()',()',( *

1

xxxxxx i
i

ioutin  


                  (23) 

 
We will see that the coherence of the whole beam ensemble is represented by 
non-diagonal elements of the reduced density matrix of the inelastically 
scattered fast electron. However, the diagonal elements are the only measurable 
parts of the density matrix. They represent the intensity distribution in a 
hologram and in a conventional TEM image [10]  
 

2

1
'

)()',()( 





i
ixxout xxxxI                        (24) 

This corresponds to an incoherent superposition of different inelastically 
scattered electrons as usually treated in scattering theory. Fortunately, by 
means of a biprism it is possible to shift off-diagonal elements into the diagonal, 
which makes them measurable by means of Off-Axis Electron Holography [11]. 
In terms of the density matrix approach, the hologram intensity for a certain 
shear d  may be written as follows [10]: 
 

 
  

elementdiagonaloff

)2/,2/()(2)2/,2/()2/,2/(),()(



 dxdxddxdxdxdxxxxI outoutoutholhol 

(25) 
 

This expression compared to equation (4) shows that the off-diagonal elements 
determine the interference term hence also the coherence. This coherence 
corresponds to ensemble coherence of the beam electrons )(d  and to the 
coherence due to all possible inelastic scattering processes 

)2/,2/( dxdxout   for certain shear d . The ensemble coherence of the 
incident fast electrons can be determined directly in a reference measurement 
without object under the same illumination parameters for the imaging 
conditions as assumed above. 
 
The reduced density matrix for the fast electron after an inelastic scattering 
event with energy transfer E  can be written as [14] 

 
                                                       (26) 
 
with   meaning convolution.  
 
This expression combines the influence of the Coulomb delocalization of the 
inelastic interaction with the correlations in the excited quasi-particle field. The 
interaction sphere is described by the Bessel functions 0K  of second kind and 
zeroth order, parameterized by the characteristic scattering vector 
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0)2/( kEEqE  . The correlation in the quasi-particle excitation is denoted by 
the density-density correlation function [14] 
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
         (27) 

 
with ),( zxr 

 , i and f  the density matrices of initial and final state of the 
object with energy difference E , and   the integration variable in energy, 
respectively; it is the 2D-Fourier transform of the mixed dynamic form factor 
(MDFF). In case of dipole transitions, some reasonable approximations confirm 
the experimental results for bulk plasmons satisfactorily [10-13]. In these 
cases, ),,( ExxS   is strongly attenuated for length scales larger than 1 nm, 
whereas the whole interaction sphere extends to about 10 nm for excitations 
with 15eV energy transfer. This means that the holographically measured 
coherence in the outgoing wave field is here determined rather by the Coulomb 
delocalization than by the correlation within the collective excitation [10].  
Since, at the end, we are interested in correlations within quasi-particle 
excitations, we need to either reduce the Coulomb delocalization by decreasing 
beam energy or look for excitations, which provide a correlation length 
comparable to the interaction sphere extension. We will exhibit that surface 
plasmons might be promising candidates for those investigations.  
 
 
8. Experiments with surface plasmons  
During the last years, astonishing works were presented concerning the 
modulation of coherence of light due to surface plasmon scattering [15-17]. 
They also motivated us for the study of coherence properties of inelastically 
scattered electrons on plane metal surfaces.  
 
For this purpose, holes with rectangular shape were etched in a thin aluminium 
foil by means of Focused Ion Beam (FIB). A platinum bar was deposited before 
etching, to mask a freestanding aluminium bar, which provides geometrically 
well-defined plane surfaces in beam direction. Since the etching process was not 
homogeneous over the whole area, the upper half of the Al bar is still covered 
with platinum, whereas the lower half seems to be pure aluminium with the 
exception of a thin platinum line at the lower edge (fig.12, left). Also the bright 
edges correspond to the pure Al bar, which is located underneath the partially 
with Pt contaminated surface. By means of the Gatan Imaging Filter (GIF 200) 
at a CM200 FEG Transmission Electron Microscope, Energy Spectroscopic 
Imaging (ESI) was performed in order to verify the existence of surface 
plasmons at the edges to the vacuum by means of averaged local spectra (fig. 12, 
right). For all measurements, the width of the energy-selecting slit was set to 1 
eV and the offset to the high tension was increased in 1 eV steps from –2eV to 
18eV. In order to increase the inelastic cross section, the high tension was 
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reduced to 80kV. Resonances at about 7eV and 15eV were found at the lower 
edge, whereas at the upper edge only the bulk resonance of the aluminium 
plasmon at 15eV [18] appeared (fig. 12, right). We associate the 7eV resonance 
to surface plasmons of the aluminium bar in presence of platinum as created by 
FIB; the values of 6.7eV for aluminium spheres [19] and 10.5eV for plane 
aluminium surfaces [20] indicate a strong shape dependence of the resonance 
energies. The 7eV surface resonance found here is of interest for the following 
coherence measurements. The upper edge will serve as a reference region for a 
measurement without that surface plasmon, which might be suppressed through 
the presence of the platinum coverage. 
 
 

 
Fig. 12 Aluminium plasmon energy-loss image (15eV energy loss, 1eV slit-width) of 
aluminium bar with averaged spectra at three different positions: red: below, green: in 
the middle of, blue: above the bar. The filtered image shows a dark area in the upper 
part of the bar due to platinum remaining from FIB preparation (Platinum plasmon loss: 
35eV [17]). The bright band shows the more or less pure aluminium part. The spectra 
reveal a surface plasmon resonance at about 7eV below the edge (red), whereas a 
broader tail without resonance is indicated by the spectrum above the bar (blue).  
 
 
Interference fringes were generated by means of a biprism oriented 
perpendicularly to the edge of the above-mentioned aluminium bar. Since the in-
focus image appears slightly above the biprism plane, a negative voltage has to 
be applied in order to generate interference fringes within the first image 
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plane. Fringes above and below the edge were recorded in an energy-filtered 
series with the mentioned filter settings. The results are obtained by evaluating 
the contrast in each line parallel to the edge, which is shown in figs. 13 a and b 
for 7 eV filtered electron holograms. The modulus of the degree of coherence 
given by the fringe contrast  
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minmax

II

II



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is measured by the ratio of difference and sum of maximum and minimum local 
intensity: 
 
 

 
 
Fig. 13a Energy-loss filtered electron hologram (7eV) of vacuum region and 
corresponding contrast profile 25nm above the edge of the bar. The averaged and zero-
loss normalized (i.e. corrected for ensemble coherence) contrast for this profile is 
about 0.35. 
 
 

 

 
 
Fig. 13b Energy-loss filtered electron hologram (7eV) of vacuum region and 
corresponding contrast profile 25 nm below the edge of the bar. The averaged and zero-
loss normalized (i.e. corrected for ensemble coherence) contrast for this profile is 
about 0.50.  
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For evaluation of contrast we chose vacuum regions at a distance of 25 nm to 
the edges. A difference of about 0.15 in mean contrast is observable between 
fringe profiles above and below the edge. To enhance the significance, the 
acquisition of the filtered series was repeated 5 times for the reference area 
above bar and 8 times for the surface plasmon resonance area below bar. The 
subsequently averaged contrast values appear with reduced noise. A further 
statistical evaluation gives access to rough estimates for error bars.  
 
 
8. Results 
The evaluation of the fringe contrast in both vacuum regions leads to significant 
differences for the regions above and below the aluminium bar. The measured 
contrast was normalized by the contrast of the zero–loss hologram fringes, in 
order to eliminate the contrast attenuation by ensemble coherence within the 
electron beam (Eqn. 4). The determination of fringe contrast is performed for 
each image of the filtered series, which provides a function of contrast in 
dependence on energy loss. Such a series was already examined in [13] by an 
energy filtered hologram series for bulk aluminium, but without surface 
resonances. The normalized contrast is represented in dependence on energy. 
 

 
Fig. 14 Normalized mean contrast of the fringes 25nm above (blue) and below (red) the 
respective edge. The red curve shows a maximum around 6eV, whereas the blue curve 
decreases monotonically. The contrast maximum is attributed to the surface plasmons. 
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The contrast is changing also in dependence on the distance from the edge. It 
appears that the contrast corresponding to the resonance increases with 
increasing distance to the edge, which is a similar behaviour as predicted in [10] 
and already measured in [7]. A very interesting explanation for that in a way 
counterintuitive result can be found in [21] in terms of an interpretation of the 
famous double slit experiment.  
 
These very first results show that a significant increase of contrast for the 
fringe pattern below the edge in the region between 5-7eV (fig. 14, red) 
coincides with the presence of a surface plasmon resonance in the spectrum of 
fig. 12 (right); on the contrary, the reference area above the edge only shows a 
monotonic decrease of contrast with increasing energy loss. Further 
experiments are necessary to increase the signal to noise ratio in the extracted 
contrast plots in order to interpret all details of the contrast profiles. 
 
 
9. Conclusions 
We interpret our findings as a correlation between the nature of the surface 
plasmons with the increase of coherence in the surface plasmon scattered wave 
field. The findings cannot be explained by a simple increase of intensity due to a 
higher excitation probability from the surface plasmon, because this increase 
would be proportional to maxI and minI  in the same way, hence would cancel out 
directly in the evaluating contrast formula 
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Consequently, because the Coulomb delocalization function 0K  is the same for 
both measurements above and below the bar (at least in the vacuum region), the 
increase of coherence must be related to object properties. This means that 
the density-density correlation function ),,( ExxS   for a surface plasmon 
appears to be the dominating factor. It is different in bulk plasmon scattered 
wave fields, where extension of coherence is predominantly determined by 
Coulomb delocalization [10].   
 
The results are encouraging for further studies of coherence effects in 
inelastically scattered wave field. These studies are necessary to obtain a 
deeper insight into the nature of collective excitations in solids, which become 
more and more important in technologic applications, e.g. in the field of 
plasmonics. The possibilities of inelastic holography for investigating surface 
plasmon coherence will be outstandingly interesting for understanding the very 
beautiful surface plasmon eigen-modes in triangular silver nano-particles by 
answering the initial question: Do the electrons see the whole shape of a nano-
particle? 
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