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We analyze in detail the interaction correction to full counting statistics �FCS� of electron transfer in a
quantum contact originating from the electromagnetic environment surrounding the contact. The correction can
be presented as a sum of two terms, corresponding to elastic-inelastic electron transfer. Here we primarily
focus on the inelastic correction. For our analysis, it is important to understand more general—universal—
relations imposed on FCS only by quantum mechanics and statistics with no regard for a concrete realization
of a contact. So we derive and analyze these relations. We reveal that for FCS the universal relations can be
presented in a form of detailed balance. We also present several useful formulas for the cumulants. To facilitate
the experimental observation of the effect, we evaluate cumulants of FCS at finite voltage and temperature.
Several analytical results obtained are supplemented by numerical calculations for the first three cumulants at
various transmission eigenvalues.
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I. INTRODUCTION

Within the past years technological advancements have
enabled the fabrication of sufficiently small �nanometer�
solid state structures where electrons traverse the system as
coherent quantum waves. The electron transport in such a
quantum contact can be described with the scattering ap-
proach pioneered by Landauer and Büttiker.1–3 Within this
approach, the contact is completely characterized by the set
of transmission eigenvalues �Tn�, 0�Tn�1, regardless of its
concrete structure. The �differential� conductance is given by
the Landauer-Büttiker formula G=GQ�nTn, GQ=2e2 /h. The
same transmission eigenvalues determine superconducting
and noise properties of the structure.4,5 Break junction
experiments6 provide excellent examples of tuning and ex-
perimental characterization of Tn’s in concrete quantum con-
tacts. In the scattering approach, the electron-electron inter-
action inside the contact is commonly disregarded. There is a
good reason for that, eventually the same as for electrons in
bulk metallic solids. Close to the Fermi energy, the only
effect of interaction is to make a quasiparticle from an elec-
tron. These quasiparticles do not interact. This means that
any contact at sufficiently low energies can be described
within a noninteracting scattering approach.

This however presumes an ideal voltage bias of the con-
tact: the electrons are injected and absorbed by reservoirs
kept at a certain voltage. This assumption is too ideal: in
reality, the contact is embedded in a macroscopic electric
circuit, and this electromagnetic environment produces volt-
age fluctuations on the contact. The electrons traversing the
contact can emit/absorb energy to/from the environment and
interact by means of exchange of photons that are present in
the environment. The interaction due to the environment can
not be disregarded at low energies and therefore becomes the
most important interaction at low temperature and voltage.
The environment is completely characterized by a frequency
dependent impedance Z�, in series with the quantum contact.

The influence of the environment on electron transport
has been studied in detail for tunnel junctions where all Tn

�1.7 The tunnel rates in the presence of an environment can
be evaluated for arbitrary impedance. For sufficiently large
environmental impedances ZGQ /2�z�1 the interaction ef-
fects are large and the tunnel rates are strongly suppressed
below a certain energy. This is termed Coulomb blockade of
tunneling in a single junction.8 The opposite case of small
impedance z�1 is more realistic. In this case, the environ-
ment provides an interaction correction �z to the rates. This
correction can be experimentally identified from its specific
voltage and temperature dependence: it is seen as so-called
zero-bias anomaly.9,10

At arbitrary transmissions, the influence of the environ-
ment is more complicated and one cannot evaluate it for an
arbitrary impedance �a progress in this direction has been
reported in Ref. 11�. Still one can investigate the interaction
correction �z to the contact conductance, both theoretically
and experimentally. It has been demonstrated12,13 that this
correction is related to the second moment of current fluc-
tuations: noise. The correction is proportional to shot noise
�Tn�1−Tn�, and disappears at perfect transmissions Tn=1.
This prediction has been experimentally confirmed.14

The environment influences not only the average current,
but the whole statistics of electron transfers in the contact,
the full counting statistics �FCS�. The theory of FCS for a
quantum contact within the scattering formalism has been
developed in Ref. 15. Later, it has been successfully applied
to a variety of systems. The FCS is the statistics of current
measurements over a given time interval �, � being much
bigger than the typical time between electron transfers. It
gives the probability P��N� for N electrons to be transferred
during this time interval. It is convenient to work with the
generating function defined as

F�V,�� = �
N

P��N�ei�N. �1�

The parameter � is frequently called counting field since if
one implements the Keldysh formalism for FCS,16 � enters
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the formulation as a field conjugated to electric current. De-
rivatives of ln F��� with respect to � give an infinite set of
cumulants of charge transferred, where the first two are re-
lated to average current and current noise.

The environment influences the FCS in two distinct ways.
A classical effect is governed by the impedance at low fre-
quencies 	��max�eV ,kBT� and scales like ZG, G being the
total conductance of the contact. For the two first
cumulants—average current and noise—this effect is nothing
but voltage division between the contact and the external
impedance. The effect is not that trivial for higher
cumulants,17 and the pioneering measurement of the third
cumulant18 was shown to be affected by this environmental
effect. However, this effect can be made arbitrarily small by
a proper design of the low-frequency impedance to assure
ZG�1.

A more interesting effect comes from the impedance at
frequencies 	�
max�eV ,kBT� and scales as ZGQ. This is
the interaction correction discussed which eventually leads to
Coulomb blockade effects at higher impedance. It has been
shown in Ref. 19 that the correction can be separated into
inelastic and elastic parts; the latter presents a renormaliza-
tion of elastic scattering properties of the contact by interac-
tion. It is feasible to observe the interaction correction to
FCS in experiments, for instance, with well-characterizable
break junctions. Such experiments would be certainly pos-
sible for the first three cumulants, and the developments in
the field20–23 suggest that the higher cumulants can be ac-
cessed with proper measurement techniques as well. Appar-
ently, the correction will include both the elastic and inelastic
parts. To provide theoretical support for these experiments is
the main motivation and goal of the present work, which
concentrates on the inelastic part of the interaction correc-
tion.

In Sec. II we derive the interaction correction to the FCS
in first order perturbation in z starting from the general form
of the system-environment Keldysh action. The result allows
for the identification of an elastic and inelastic contribution.
In Sec. III we explain how one can reinterpret this result in
terms of correlations of elementary events of charge transfer.
We present concrete analytical results in the next section,
particularly for vanishing temperature.

While investigating the interaction correction in the limit
of small voltages, we have found sets of simple relations for
cumulants. Further analysis has shown that these relations
are not specific for the setup considered and hold for any
conductor regardless of its properties and presence or ab-
sence of interaction. In fact, these universal relations provide
the generalization of the fluctuation-dissipation theorem24 for
FCS. We discuss these relations at length in Sec. V. The
derivation is provided in the Appendix.

In the last section we present our numerical results for
arbitrary temperature and voltage. We have studied the ex-
perimentally interesting case of an RC environment and plot
the correction to the first three cumulants for conductors of
different transmissions and a diffusive conductor versus
eV /kBT as obtained from a numerical evaluation of the inte-
grals. In all cases we observe a crossover at eV�kBT that is
related to a transition from thermal to shot noise behavior.

II. ACTION

The system we consider consists of a quantum conductor
which can be described by the set of its transmission prob-
abilities, Tn, and a frequency dependent environmental im-
pedance, z� in series. The voltage drop over the whole
conductor-environment system is fixed. However, the voltage
in the node between the contact and the impedance can fluc-
tuate. For instance, an electron transfered will momentarily
charge the node creating a voltage pulse �z that persists for
some time and may influence further electron transfer. Thus
there will be a fluctuating voltage in the node depending both
on the probabilistic nature of the electron transfer in the
quantum conductor as well as on the impedance of the envi-
ronment. We study the corrections to electron transport due
to these fluctuations.

It is convenient to work with the phase rather than volt-
age, which is defined as �=	dteV�t� /	. Since we study a
quantum mechanical system, we have to describe quantum
fluctuations of this quantity. This is most conveniently pre-
sented in the language of Keldysh action that expresses
physical quantities in the form of a path integral over the
fluctuating phase on the Keldysh contour. Since the Keldysh
contour consists of two parts, the integration proceeds over
two sets of variables �±�t� corresponding to these parts.

The Keldysh action approach to mesoscopic quantum cir-
cuits has been pioneered in Ref. 25 and has been extended to
cover FCS and arbitrary quantum contacts in Refs. 17 and
26. As usual in the theory of FCS, it is the generating func-
tion F��� which is presented as a path integral over the fluc-
tuating phase. The action in the path integral is a sum of the
actions describing the constituent parts of the circuit: the
conductor action, Sc, and the environment action, Senv,

F��� =
 d�+d�− exp�− iS��+,�−�� ,

S��+,�−� = Sc��+,�−� + Senv�
 + �/2 − �+,
 − �/2 − �−� .

�2�

We use superscripts � to denote the phases at different parts
of the contour and use traditional notations � ��� for their
half-sum �difference�. Current, noise, and higher moments of
FCS follow as 
� ln F /��
�=0, 
�2 ln F /��2
�=0 ,¯. For a lin-
ear environment the action Senv is a bilinear function of the
phases depending on the impedance and temperature T only,

Senv =
1

2�



0

�

dt

0

�

dt����+�t�,�−�t��A�t − t����+�t��
�−�t��

�� ,

�3�

where the coefficient matrix, A, depends solely on frequency
and temperature:

A��� = �− i��z�
−1 + 2N� Re z�

−1� 2i�N� Re z�
−1

− �A+−�− ���* − �A++�− ���* � . �4�

N�= �exp�	� /kBT�−1�−1 is the Bose-Einstein distribution
function.

J. TOBISKA AND YU. V. NAZAROV PHYSICAL REVIEW B 72, 235328 �2005�

235328-2



The most concise way to write the conductor action is in

terms of Keldysh-Green functions L̂, R̂ of the left-right
reservoir:16

Sc =
i

2�
n

Tr ln�1 +
Tn

4
��L̂,R̂� − 2�� . �5�

This assumes that the energy dependence of Tn can be
disregarded on the energy scale of interest. The trace is over
Keldysh space and energy or frequencies. In Eq. �5� the fluc-
tuating phase in the node enters in the form of a gauge trans-

form in one of the reservoirs as L̂=ei�Grese−i�, R̂=Gres,
where �=�+� /2�z. The equilibrium Keldysh-Green func-
tion depends on time difference �or energy� only and reads in
a usual way

Gres = � 1 − 2f��� 2f���
2�1 − f���� 2f��� − 1

� , �6�

with f being the Fermi distribution function of the corre-
sponding lead. Equations �2�–�6� define our model and all we
have to calculate is the cumulant generating function F for a
given environment z� and conductor Tn. However, in the
general case this is a formidable task. A natural way to pro-
ceed is to assume z�1 and thus to treat the effect of the
environment as a perturbation. In zeroth order �no environ-
ment�, the phases are obviously related to the applied voltage
and do not fluctuate: �=eVt.

Putting this in Eq. �5� and taking the trace gives the well
known expression for the generating function of a meso-
scopic conductor in terms of its transmission eigenvalues15

ln F�0���� �
�

	
S�0� =

�

	
�

n

 d�

2�
ln�1 + Tn�ei� − 1�f l�1 − fr�

+ �e−i� − 1�fr�1 − f l�� . �7�

Here and in the following indices “l ,r” refer to the left or
right lead. We assign the voltage to the left lead, so that
f l��+V�= fr���= f���.

The first order correction is proportional to the fluctua-
tions of �, which are small �z. Expanding the logarithm in
Eq. �5� to second order in � gives a second order contribu-
tion

− i�Sc
�2� =

Tn

8
Tr�DA�2�� −

1

4
�Tn

4
�2

Tr�DA�1�DA�1�� �8�

=
Tn

8
D Tr�A�2�� −

1

4
�Tn

4
�2

DD+Tr�A�1�A�1�� , �9�

where the following relations hold under the trace:

A�1�A�1� = 4�2 − 4�L+�L − 2�L+R+�LR

− 2�R+L+�RL + 4�L+R+L+�R , �10�

A�2� = �L+�R + �R+�L − �2�RL + LR� , �11�

and

D−1 = 1 + Tn��ei� − 1�f l�1 − fr� + �e−i� − 1�fr�1 − f l�� .

�12�

All quantities with superscript “�” are taken at energy �
+� and integration over energy and frequency is implied.
For convenience we omitted the explicit dependence on �, �.
It is easily found from the definition of the trace. The
first term in Eq. �9� for instance would read
Tn /8 Tr	d� d� D��−�L�+���R�, where the trace is under-
stood over Keldysh indices.

These terms are quadratic in phase, and by virtue of the
path integral in Eq. �2� are to be replaced with their averages
given by the environmental action. These averages read

��
�
2 ��*

�*� 
�
2
�� →��2N� + 1�

Re z�

�

z�

�

−
z�

*

�
0 � . �13�

After some ordering of terms, the first order correction to
the cumulant generating function can be presented as

�ln F�����1� =
�

	



0

�

d�
Re z�

�
��2N� + 1�Sel

�1���� + N�Sin
�1���,��

+ �N� + 1�Sin
�1��− �,��� . �14�

We note that there are three different terms which can be
identified as being due to elastic electron transfer, and inelas-
tic transfer with either absorption �positive �� or emission
�negative �� of energy 	� from/to the environment. Explic-
itly, in terms of filling factors these terms read

Sel = − 2�
n

Tn�1 − Tn�
�S�0�

�Tn
, �15�

Sin = �
n

 d�

2�
�DD+�Tn�f l − f l

+� + 2Tn�ei� − 1�f l�1 − fr
+�

+ 4Tn
2�cos � − 1�f l�1 − f l

+��fr
+ − fr��

+ �1 − D��1 − Tn − D+�� + � l ↔ r

� ↔ − �
� . �16�

Since the expression is symmetric with respect to exchange
l↔r of the leads and simultaneous change of the sign of the
counting field, the cumulants are either even or odd functions
of the voltage applied. Following Ref. 19 we present the
elastic part of the correction as a change �z of transmission
eigenvalues. The analysis of expression �14� shows that the
inelastic part is contributed by frequencies of the order of
voltage and/or temperature, since the integrand falls off as
exp�−	� /kBT� at 	��eV ,kBT due to restrictions imposed
by energy conservation. Elastic processes do not have this
restriction and Sel contributes to the integral at all frequen-
cies.

III. INTERPRETATION

The advantage of the FCS approach to quantum transport
is that in many cases the FCS expression can be reinterpreted
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in terms of elementary events, thus providing some insight
into the relevant transport properties. A well-known example
of such interpretation is provided by the noninteracting Levi-
tov formula.15 At vanishing temperature, it allows us to
present the statistics as a superposition of �eV /	 elementary
“games” in each transport channel n, each “game” resulting
in either transmission �with chance Tn� or reflection �with
chance 1−Tn� of an electron coming to the contact. A recent
example of such a re-interpretation concerns spin statistics.27

In this section, we show how to interpret the inelastic inter-
action correction given by Eq. �16�. As we will see, the in-
terpretation is probably too complicated to be constructive.
Still it gives some insight to the form of the expression, in
particular, the presence of denominators D, D+.

To give an interpretation of the form of Sin let us go back
to relation �7� that holds for non-interacting electrons. In the
limit of large measurement time �, 	 /��max�kBT ,eV�, we
can discretize the integration over energies. The general
structure of the generating function28 is then

F�0���� = �
E

��E� , �17�

with ��E�=D−1. The product is taken over discretized ener-
gies as well as over transport channels. The right hand side
of equation �17� is a product, so each term in this product can
be regarded as an independent process �“game”�. The con-
crete form of ��E� suggests that three distinct outcomes of
each process are possible: �i� electrons transmitted from the
left reservoir to the right with probability P+=Tnfl�1− fr�, �ii�
transmission from right to left with P−=Tnfr�1− f l�, �iii� no
transmission �P0=1− P+− P−�. Indeed, the generating func-
tion for each process is then �=��P�X� with X�=ei��. Elec-
trons at different energy �and/or channel� are uncorrelated
since the complete generating function factorizes in terms of
��E�.

How can this picture change if one introduces electron-
electron interaction via the environment? It is clear that in-
teraction will bring about all kinds of correlations between
electrons at different energies and the simple picture pre-
sented above is not true anymore. The major change is, that
the factorization in uncorrelated elementary events does not
hold. Presumably, the generating function of an elementary
event � will depend on many different energies. The relation
�16� suggests that in lowest order in z it depends on two
energies only, ��E ,E��, where 
E−E�
=	� is the energy of
an absorbed or emitted photon. With this accuracy, the cu-
mulant generating function can be expressed as a product
over pairs of energies

F�0���� + F�1���� = �
E,E�

��E,E�� . �18�

Without interactions,

��E,E�� = ���E� if E = E�,

1 if E � E�
� �19�

so that electrons with different energy are uncorrelated. If
���E ,E�� is the interaction correction to �, the change of
the cumulant generating function reads

�ln F�����1� = �
E,E�

���E,E��
��E���E��

. �20�

This explains already the presence of denominators in �16�.
In addition, we conclude from �16� that contains a single sum
over transport channels, that the elementary events do not
involve electrons in different channels, even though they in-
volve electrons at different energies. This is probably valid
only for the first order correction.

To proceed, let us note that the correction ���E ,E�� con-
sists of terms to be divided into three classes. First, there will
be terms presenting new events, ��new�E ,E�� not taking
place for noninteracting electrons. An example is an electron
transfer from the left to the right with photon emission. As
we can assert from �16� it comes with probability �Tnfl�E�
��1− fr�E����1+NE−E��. Another example is a two-particle
process consisting of elastic electron transfer at energy E
accompanied by inelastic transfer, its probability being pro-
portional to Tn

2f l�E�fr�E��1− f l�E����1− fr�E���1+NE−E��.
Secondly, since the probabilities of elementary old events are
modified by interaction, there will be terms depending on a
single energy only, those can be seen as the modification of
��E�, ��E�→��E�+��old�E ,E�. They are incorporated into
the elastic part of the correction. Finally, the environment
will introduce correlations among pairs of old events, repre-
sented by ��corr�E ,E��. For instance, the correlation between
left-right transfer at energy E and right-left transfer at energy
E� will come with a factor Tn

2f l�E��1− fr�E��fr�E���1
− f l�E���.

These three contributions simply add up in the correction
to the generating function,

�ln F�����1� = �
E

��old�E,E�
��E�

+ 2 �
E�E�

��new�E,E�� + ��corr�E,E��
��E���E��

.

�21�

One recognizes this structure in the relations for Sel �first
term� and for Sin �second term�. In principle, in this way one
can recover the correction to the generating function of an
elementary event �� and find the �corrections to� probabili-
ties of all possible outcomes, new ones as well as old ones.
This gives a reinterpretation of the correction: any term of
Eq. �16� is assigned to a term of one of the three classes
discussed.

However, the procedure is cumbersome and hardly prac-
tical because of the large number of possible processes and
outcomes. For a two-electron process, each incoming elec-
tron can be in one of four possible states �coming from the
left or the right at E or E��, the same for outgoing electrons.
This gives in total 28 terms: it looks like a somewhat lengthy
interpretation of a relatively compact Eq. �16�. This pre-
vented us from accomplishing this program explicitly. We
are satisfied with the fact that the combinations of electron
and photon filling factors make sense for the terms contrib-
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uting to ��new,corr. The picture and the interpretation are ex-
pected to become even more involved for the corrections of
higher orders in z.

IV. ANALYTICAL RESULTS

At vanishing temperature we can easily perform the inte-
gration over � in Eq. �14�. The full correction to FCS then
reads

�ln F�����1� =
�

	
eVSel


eV/	

�

d�
Re z�

�
,

Sel = − 2�
n

Tn�1 − Tn�
ei� − 1

1 + Tn�ei� − 1�
. �22�

It has a simple and interesting structure revealing the rela-
tionship between the elastic and inelastic part of the correc-
tion. If we took the elastic part only, by virtue of �7� we
would obtain a similar expression. The difference is that the
integration over � would start at zero. Therefore, the inelas-
tic part of the correction precisely cancels the modification of
the elastic transmission for photon energies in the interval
0�	��eV. It is indeed expected from general reasoning19

that the low-energy divergences present in the elastic correc-
tion are cut off at energies �eV. Our somewhat unexpected
result is that at vanishing temperatures this cut-off is sharp
and clear. In agreement with expectations, the inelastic Sin
only contributes at frequencies 0�	��eV, reflecting the
fact that the only energy source for inelastic processes is
given by the voltage.

The correction to the mth cumulant S�m� is given by de-
rivatives of the above relation, we find:

�S�m� = − 2
�

	
eV�

n

Tn�1 − Tn�

�� dm

d�i��m

ei� − 1

1 + Tn�ei� − 1�
�

�=0



eV/	

�

d�
Re z�

�
.

�23�

Importantly, the correction is proportional to the �m+1�th
cumulant for the non-interacting case, �S�m� �S�m+1�. This
generalizes the results12,13 for the average current. The envi-
ronment enters the corrections as an integral over the imped-
ance and affects every cumulant in the same way.

A common and experimentally interesting model for a
frequency-dependent impedance is that of an RC environ-
ment, z�=z�1+ i� /�c�−1. The impedance is cut at �c

=1/ �RC� and approaches a constant value of z at ���c. The
integral governing the correction evaluates to



eV/	

�

d�
Re z�

�
= ln �1 +

	2�c
2

e2V2 � ln
	�c

eV
, if 	�c � eV .

�24�

That is, it diverges logarithmically at sufficiently low volt-
ages eV�	�c. This is the well known zero bias anomaly. As

has been shown it holds for any cumulant. Different cumu-
lants have the same functional dependence on voltage and
can be scaled by the prefactor of Eq. �24�, which depends
only on the transmission probabilities.

Even if z�1 the correction �z ln�	�c /eV� can become
big at sufficiently small voltages, eV /	�c �e−1/2z. It has
been shown in Ref. 19 that in this case one has to implement
the renormalization procedure neglecting the inelastic part.
The elastic correction can be consolidated in the energy de-
pendent renormalization of transmission eigenvalues given
by

dTn�E�
d log E

= 2zTn�E��1 − Tn�E�� . �25�

We do not consider this here. Rather, we expect that finite
temperature will lead to a rounding off of the singularity at
small voltages in the same way as for the current correction.

Equation �14� is too complex at finite temperatures so that
it is hard and non-instructive to perform the integration over
energies �. However, the correction to any cumulant of finite
order derived from the generating function is an integral over
a finite polynomial of Fermi functions. This integration can
easily be done for arbitrary temperature and voltage. The
analytical formulas obtained in this way are too long to be of
any use except numerical evaluation. The correction to any
cumulant is proportional to Tn�1−Tn�, thereby vanishing at
perfect and vanishing transmission.

For the correction to the average current we find

�I = − 2e�
n

Tn�1 − Tn�

�

0

�

d�
Re z�

�

� sinh
eV

kBT
−

eV

	
sinh

	�

kBT

cosh
eV

kBT
− cosh

	�

kBT

�26�

=− e

0

�

d�
Re z�

�
�
�I
�

2 � , �27�

where �
�I
�
2 � is the finite-frequency current correlator with-

out environment.13,29 The correction to the current is thus
related to the noise in the absence of an environment.

The correction to the mth cumulant is an �m+1�th order
polynomial in Tn. The term linear in Tn has the same func-
tional dependence as that in �27�. The reason for this is that
in the limit of small Tn the full counting statistics is that of a
tunnel junction: electron transfers are rare and consequently
independent. We get a superposition of two Poissonian sta-
tistics for electrons tunneling from the left to the right and
from the right to the left expressed as

ln F��� = ���LR�V,T��ei� − 1� + �RL�V,T��e−i� − 1�� ,

�28�

�LR,RL being tunneling rates in these two directions. The in-
teraction in this limit modifies �LR,RL, this being the only
effect on FCS. We will see below that these two rates
are related by the detailed balance condition �RL

INELASTIC INTERACTION CORRECTIONS AND… PHYSICAL REVIEW B 72, 235328 �2005�

235328-5



=�LR exp�−eV /kBT�. From this it follows that in the tunnel-
ing limit

e

�
S�m� = �I if m odd,

I coth� eV

2kBT
� if m even, � �29�

for any interactions.
Analytical work in the limit of small voltages eV�kBT

gave us some relations between the cumulants. However, we
have recognized that these relations are not specific for the
interaction correction but are of general nature. That is why
we discuss them in the next section.

V. UNIVERSAL RELATIONS FOR CUMULANTS

The detailed investigation of the interaction corrections to
FCS is hardly effective without appreciation of universal re-
lations for FCS cumulants that hold with no regard for inter-
action and/or concrete structure of the conductor. This is why
in the course of this research we had to understand the gen-
eral constraints imposed on the FCS by laws of quantum
mechanics and thermodynamics.

We show in the Appendix that this universal relation can
be most generally expressed in the following form:

F�V,�� = F�V,− � + ieV/kBT� . �30�

A didactic representation of this relation can be obtained by
recalling the definition of F as generating function of the
probability distribution of a certain number N of particle
transfers,

F�V,�� = �
N

PNei�N. �31�

Applying �30�, we observe that the probabilities of opposite
number of particles transferred are related by

PN�V� = P−N�V�eeVN/kBT. �32�

This relation is well known for independent tunnelling
events �see, e.g., Refs. 7 and 8� and is referred to as detailed
balance condition. We thus demonstrate that the detailed bal-
ance holds for any N irrespective of possible interactions and
correlations in and beyond the conductor.

Whatever didactic, the detailed balance condition is not
easy to apply to cumulants. We do this with the universal
relation �30� that obviously holds for ln F as well. A series of
relations for cumulants is obtained by taking derivatives of
this relation with respect to voltage at V=0. First of all, we
just go to the equilibrium limit V→0 to obtain

ln F��� = ln F�− �� , �33�

all even cumulants thus vanish at equilibrium. This relation
and all subsequent relations till the end of this Section are
valid only in the limit V→0.

Taking the first derivative with respect to voltage, we ar-
rive at

�

�eV
�ln F��� − ln F�− ��� = −

i

kBT

� ln F���
��

. �34�

If we expand this in �, we obtain a series of equations that
relate even cumulants with voltage derivatives of odd cumu-
lants

S�2n+2� =
2kBT

e

�S�2n+1�

�V
. �35�

The first equation in this series is nothing but Johnson’s
noise formula,

e2S�2� = 2kBT
�I

�V
, �36�

that relates zero-voltage conductance and equilibrium current
noise.

The next series is obtained by taking the second deriva-
tive with respect to voltage and making use of �34�,

�2

�V2 �ln F��� − ln F�− ��� =
− ie

kBT

�2

�V��
�ln F��� + ln F�− ���

�37�

which is only practical if even�odd� cumulants are not
even�odd� functions of voltage, that is, in the absence of
electron-hole symmetry. Since our model is electron-hole
symmetric, this relation is of no immediate relevance. The
first relation in the series reads

�2I

�V2 = −
e2

kBT

�S�2�

�V
. �38�

It relates dc current induced by low-frequency a.c. voltage
�rectification effect� to low-frequency current noise propor-
tional to dc voltage applied. This relation was discussed in
detail in Ref. 30 in the context of the photovoltaic effect.

Taking the third derivative with respect to voltage and
making use of �38� we obtain another series:

�3

�V3 �ln F��� − ln F�− ��� =
ie3

�kBT�3

�3 ln F���
��3

−
3ie

kBT

�3

�V2��
�ln F���

+ ln F�− ��� . �39�

The first relation in the series can be rewritten as

2e2�2S�2�

�V2 =
1

3
�2kBT

�3I

�V3 −
e4

�kBT�2S�4�� . �40�

The left-hand side gives the change of the current noise in-
duced by low-frequency ac voltage at nonmatching fre-
quency. This response coefficient, and its importance, has
been recently discussed in Ref. 31, where it has been termed
“noise thermal impedance.” The authors have conjectured
the relation of this coefficient to the fourth cumulant.

It is easy to see that Eq. �30� holds for the elastic part of
the FCS even before integration over energies in �7�, since
for any energy
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f l�1 − fr�
fr�1 − f l�

= eeV/kBT. �41�

The corresponding proof for the inelastic contribution can be
done only after integration over energies, is cumbersome,
and has provided a good check for the validity of expression
�16�.

VI. NUMERICAL RESULTS

We restrict the numerical analysis to the RC-environment
model discussed above. There are three energy scales in the
system: voltage, temperature, and the cutoff frequency of the
environment, �c. It is especially interesting to study the case
	�c�eV, kBT. In this case it is expected that all cumulants
show the logarithmic divergence at small voltages/
temperature, which is well known for the conductance: �G
�GQ ln�	�c /max�eV ,kBT��. This motivated us to the fol-
lowing choice of the presentation of the results: we plot the
second derivative of the correction to the first three cumu-
lants with respect to voltage versus eV /kBT �Figs. 1–3�. It is
the second derivative that approaches a limit independent of
�c upon increasing the ratios 	�c /eV, 	�c /kBT. To illustrate
the dependence on transmission and to assess differences be-

tween specific conductors �ballistic, tunnel,…�, we plot the
results for a single-channel conductor with transmission val-
ues ranging from 0.1 to 0.9. Another interesting reference
system is a diffusive conductor. The results for a diffusive
conductor can be obtained by averaging over transmission
eigenvalues with the distribution function ��Tn�
= �Tn

�1−Tn�−1.4,5 It should be noted that this procedure as-
sumes that the dwell time in the conductor �dwell is suffi-
ciently short32 such that 	 /�dwell�Eth�D /L2�eV, kBT. Un-
der these conditions the energy dependence of Tn can be
disregarded and the averaging is possible. Since all cumu-
lants are polynomials in Tn this is equivalent to replacing
Tn

m→����m� /��m+1/2�.
At eV /kBT�1 the corrections are dominated by Sel and

the emission term Sin
�1��−� ,��, since the environment does

not provide any energy at T→0. The functions plotted �z /V
for all cumulants, and are given by Eq. �23�. As discussed in
the paragraph below that equation, this leads to a suppression
of the conductance �and any other cumulant� at small volt-
ages which is termed zero-bias anomaly.

Let us now discuss differences between cumulants, start-
ing with the current �Fig. 1�. An apparent feature of the cur-
rent correction is that the corrections to different conductors
can be scaled to one curve by the common prefactor
�nTn�1−Tn� �Eq. �26��. The corresponding curve for a diffu-
sive conductor can be obtained, following from averaging
over transmissions, by multiplication with 2/3 �and remov-
ing the dependence on Tn in the normalization�. This feature
is unique for the correction to the current and independent of
the choice of a specific environment. Higher order cumulants
have a more involved dependence on transmission eigenval-
ues and environment.

In the opposite limit of large temperatures, eV�kBT, the
environment provides the energy for inelastic electron trans-
fer. Consequently the absorption term, Sin

�1��� ,�� becomes
more important in Eq. �14�. It is expected that in the same
way as for the zero-bias anomaly the correction to the con-
ductance is logarithmically diverging with temperature. Due
to the choice of presentation, this term is not visible in Fig. 1.
What is shown in this plot and the following is the lowest
order term in the expansion in powers of eV /kBT. For the

FIG. 1. Second derivative with respect to voltage of the correc-
tion to the average current, �2S�1� /��eV�2 �	kBT / �2eRGQ�nTn�1
−Tn���2I /��eV�2 vs eV /kBT.

FIG. 2. Second derivative with respect to voltage of the correc-
tion to the noise, �2S�2� /��eV�2 �	kBT / �2e2RGQ��2I�2� /��eV�2 vs
eV /kBT. The general tendency as a function of transmission Tn is
indicated by an arrow. The inset shows a zoom for Tn=0.4.

FIG. 3. Second derivative with respect to voltage of
the correction to the third cumulant, �2S�3� /��eV�2

�	kBT / �2e3RGQ��2I�3� /��eV�2 vs eV /kBT. The general tendency
as a function of transmission Tn is indicated by an arrow. The inset
shows a zoom for Tn=0.6.
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current �and any odd cumulant� this is a linear term, follow-
ing from the symmetry with respect to inversion of voltage
as explained below Eq. �16�. In summary, the correction to
the current shows a crossover from a temperature to voltage
dominated regime at eV�kBT.

In Fig. 2 we plotted the second derivative with respect to
voltage of the correction to the noise for several single chan-
nel conductors and a diffusive conductor. At small voltages,
all curves start with zero slope since noise is an even func-
tion of voltage. Interestingly with increasing voltage they all
cross the x-axis at eV�kBT, before approaching zero. As
expected, changes occur on the scale of temperature. The
limit of vanishing temperature, eV /kBT�1, namely the pro-
portionality to z /V, can be discussed along the same lines as
for the current. However there are several striking differ-
ences that were absent in the correction of the current.

Unlike for the current, curves for different transmission
can not be reconciled by scaling, rather we observe a strong
dependence on the value of the transmission. This depen-
dence is nonmonotonous. However at small voltages, con-
ductors with Tn�1 have positive correction while those with
Tn�1 have a negative. This sign change could have been
conjectured since it is well known that corrections to the mth
cumulant are related to the unperturbed �m+1�th cumulant.
Hence, the correction to noise should be related to the third
cumulant, whose dependence on the transmission eigenval-
ues ��Tn�1−Tn��1−2Tn�� changes sign at intermediate trans-
missions.

This behavior can be interpreted by looking at the ex-
treme cases of Tn�1 and Tn�1. It is plausible that either
conductor in the absence of an environment produces little
shot noise since in the first case the current is “most of the
time” zero with only rare transfers of charges. In the second
limit, electrons are transfered with probability close to one
and are only occasionally reflected.

The same conductors embedded in an environment how-
ever will feel a suppression of current due to fluctuations of
the voltage in the node as discussed in Sec. II. For the noise
of the tunnel conductor that means that the rare electron
transfers being the source of noise, will be suppressed, fur-
thermore leading to a reduction of noise �negative correc-
tion�. If Tn�1, the suppressed conductance means that the
quasi-constant flow of electrons will be interrupted more of-
ten, resulting in an enhancement of noise �positive correc-
tion�. Consequently there will be a crossover at intermediate
values of the transmission, which can be seen in Fig. 1.

Comparing the shape of the curves we observe that the
maximum �absolute� value lies for most conductors at V=0.
Remarkable exceptions are the diffusive conductor and such
with transmission close to the crossover �Tn=0.4, inset Fig.
2�. We might argue that the diffusive conductor inherits this
feature from intermediate transmissions, or rather that it is an
“interference” effect determined by the coefficients of lowest
and highest power in transmission �Tn ,Tn

3� in the expression
for the correction to the noise.

The corresponding plot of the correction to the third cu-
mulant, which reflects the asymmetry of electron transfer, is
presented in Fig. 3. It shares features of both current and
noise correction. Due to the different symmetry with respect
to voltage inversion, the corrections to the third cumulant

start at zero with linear slope. Again there is a crossover at
eV�kBT and a decay with z /V at large voltages reflecting
the zero bias anomaly. The dependence on Tn is nontrivial,
which is not surprising since the expression contains four
terms of different power in Tn, each of which can have a
distinct dependence on eV /kBT. However, ballistic or tunnel
conductors at small voltages separate in the same way �albeit
with opposite sign� as for the correction to noise to the lower
or upper part of the plot. Comparing curves of small Tn with
those for the current, we recover the tunneling limit dis-
cussed in Sec. IV. Interestingly the correction for intermedi-
ate transmission appears to be more feature-rich than for the
limiting cases. This is clearly an indication that terms of
different power in Tn contribute with equal weight to the
interaction correction while the correction for a tunnel con-
tact is dominated by just one term.

As the main result of our numerical analysis we note, that
the corrections to cumulants strongly depend on the trans-
mission of the contact. They can have either sign and a dis-
tinct dependence on the ratio of voltage and temperature.
Both of these facilitate the experimental detection of envi-
ronmental effects on transport properties. The plots in this
section were obtained for an RC environment. In principle
one could obtain results for any given z�. At least qualita-
tively we expect the corrections due to a �physical� environ-
ment to be similar to those presented.

VII. CONCLUSION

We have studied the interaction correction to full counting
statistics of electron transport in a quantum contact. It was
shown that the interaction can be modeled by an environ-
mental impedance Z� in series with the contact. In Sec. II we
presented a formulation of the problem in terms of a non-
equilibrium Keldysh action. Assuming ZGQ�1 we pro-
ceeded perturbatively and calculated the correction to the
cumulant generating function, that is, to any cumulant �Eq.
�14��. This correction splits into three parts corresponding to
elastic electron transfer and inelastic transitions with
absorption/emission of energy from the environment.

We looked in detail at the structure of the interaction cor-
rection and found a re-interpretation in terms of elementary
events. This provided a deeper insight into the physics in-
volved and presented a basic check for the obtained expres-
sion. Since the full expression, Eq. �14� is a complicated
function of temperature and voltage that is not easily under-
stood, we looked at certain limiting cases. In the limit of
vanishing temperature we found a particularly simple expres-
sion for the correction to any cumulant, Eq. �23�. For the
opposite limit of vanishing voltage, we realized that any ex-
pression between cumulants is due to a universal relation of
detailed balance for the generating function that holds irre-
spective of the concrete structure of the quantum contact and
possible interactions, Eq. �30�. In order to bridge those limits
and to enable the experimental observation of environmental
effects on electron transport in a quantum contact, we calcu-
lated numerically the correction due to an environment to the
first three cumulants for arbitrary voltage, temperature, and
different transmission eigenvalues. We have shown that the
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corrections show an interesting crossover behavior from
voltage to thermal noise at eV�kBT as well as a specific
non-trivial dependence on transmission eigenvalues. The
presented analytical and numerical results facilitate the mea-
surement of the interaction correction.
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APPENDIX A: DERIVATION OF THE UNIVERSAL
RELATION FOR FCS

In this appendix, we will present the derivation of the
universal relation �30� that is valid for FCS of any conductor
regardless of its concrete realization. A well-known example
of a relation of this type is provided by the fluctuation-
dissipation theorem that relates the linear response and
Gaussian fluctuations.24 The same approach can be extended
to provide similar relations for nonlinear frequency-
dependent responses and non-Gaussian fluctuations33–35 us-
ing Hermicity, time reversibility, and KMS36,37 relations.
These results cannot be immediately used for our purpose
since they are formulated in terms of relations between mul-
tipoint Keldysh Green functions rather than in terms of gen-
erating functions.

We apply this approach to the most general generating
functional of current fluctuations where both voltage applied
V and counting field � depend on time. The derivatives of the
functional with respect to ��t� give averages of current op-
erators. The Hamiltonian in the presence of the voltage
source can be written as

Ĥ�t� = H0 − 	
�t�Î/e, 
̇�t� = eV�t�/	 , �A1�

Î being the operator of full current in the conductor.

We make use of the interaction picture introducing Î�t�
=eiĤ0t/	Îe−iĤ0t/	. The generating function reads16,17,26

F���+�t��,��−�t��� = �Û†���−�t���Û���+�t���� , �A2�

Û���+�t��� = T� exp�i
 dt�+�t�Î�t�/e� , �A3�

Û†���−�t��� = T� exp�− i
 dt�−�t�Î�t�/e� , �A4�

�¯� = Tr�. . . �̂�; �̂ = e−Ĥ/kBT/Tr�e−Ĥ/kBT� , �A5�

where T� �T� � stands for �anti�time-ordering of the operators
and �±�t�=��t�±��t� /2. This expression is formally equiva-

lent to the generating functional for multi-point Keldysh
Green functions used in Refs. 34 and 35. The only difference
is that the Green functions generated are those of current
operators.

We shall assume time-reversibility of the Hamiltonian.
Since in this case

ĤT = Ĥ; ÎT = − Î; ÎT�t� = − Î�− t� �A6�

we observe the following transposing rule for S-operators:

�Û����t����T = Û��− ��− t��� . �A7�

Transposing operators in the average �A2�, we obtain

F���+�t��,��−�t��� = �Û��− �+�− t���Û†��− �−�− t���� .

In comparison with �A2�, U ,U† are interchanged. We want
them back to their original positions. The way to do this is to

make use of KMS relations: For any operator Â

�̂Â�t� = Â�t + i	/kBT��̂ . �A8�

We do this commutation with all operators comprising U† to
obtain

�̂Û��− �+�− t��� = T� exp − i
 dt�+�− t�Î�t + i	/kBT�/e!�̂ .

�A9�

We shift now the time argument of �+ by i	 /kBT to obtain

T� exp�− i
 dt�+�− t�Î�t + i	/kBT�/e�
= Û��− �+�− t + i	/kBT��� .

This step looks rather heuristic. Since nothing is assumed
concerning the analytical properties of � as a function of
complex time, the complex shift may be ambiguous. How-
ever we note that we are mainly interested in �±�t� that
change at time scales much bigger than 	 /kBT: for those, we
expect no ambiguity.

Finally, we cycle operators under the sign of trace to ob-
tain

F���+�t��,��−�t��� = F��− �+�− t + i	/kBT��,�− �−�− t��� .

�A10�

For quasistationary V ,� we substitute �±=eVt /	±� /2
and neglect the dependence on time-independent phase to
arrive at

F�V,�� = F�V,− � + ieV/kBT� �A11�

which is the universal relation to prove.
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