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Inelastic light scattering is an intensively used tool in the study of electronic properties of solids.
Triggered by the discovery of high-temperature superconductivity in the cuprates and by new
developments in instrumentation, light scattering in both the visible (Raman effect) and x-ray part of
the electromagnetic spectrum has become a method complementary to optical (infrared) spectroscopy
while providing additional and relevant information. The main purpose of the review is to position
Raman scattering with regard to single-particle methods like angle-resolved photoemission
spectroscopy, and other transport and thermodynamic measurements in correlated materials.
Particular focus will be placed on photon polarizations and the role of symmetry to elucidate the
dynamics of electrons in different regions of the Brillouin zone. This advantage over conventional
transport (usually measuring averaged properties) provides new insights into anisotropic and complex
many-body behavior of electrons in various systems. Recent developments in the theory of electronic
Raman scattering in correlated systems and experimental results in paradigmatic materials such as the
A15 superconductors, magnetic and paramagnetic insulators, compounds with competing orders, as
well as the cuprates with high superconducting transition temperatures are reviewed. An overview of
the manifestations of complexity in the Raman response due to the impact of correlations and
developing competing orders is presented. In a variety of materials, observations which may be
understood and a summary of important open questions that pave the way to a detailed understanding

of correlated electron systems, are discussed.
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I. INTRODUCTION
A. Overview

Raman scattering is a photon-in photon-out process
with energy transferred to a target material. Most of the
light is elastically scattered from the sample, a fraction is
color-shifted and collected at the detector.

Light couples to electronic charge in solids and
can scatter inelastically from many types of excitations
in a sample, as shown schematically for
(Y.9:Cago3)Ba,Cus0g5 in Fig. 1. Optical phonons pro-
duce sharp peaks at well-known positions and orienta-
tions of the incoming and outgoing photon polarizations,
while a large broad feature centered at much higher en-
ergies due to two-magnon scattering occurs in com-
pounds with antiferromagnetic correlations. This review
article largely places emphasis on the electronic Raman-
scattering continuum upon which the phonons and mag-
nons are superimposed.

Light scatters off of electrons by creating variations of
electronic charge density in the illuminated region of a
sample. By observing the frequency shift and polariza-
tion change of the outgoing photon compared to the
incoming photon, the properties of charge-density relax-
ation are measured. However, measuring the Raman ef-
fect of photons scattering from electrons is a difficult
proposal to carry forward precisely because of the cou-
pling of the real photon vector potential and the ex-
change of virtual photons which mediate the Coulomb
forces between electrons. In simple metals, variations of
the charge density will be largely screened by mobile
electrons, and the system of electrons responds collec-
tively at a characteristic plasma frequency of several
electron volts. In semiconductors or well-developed
band insulators, the creation of charge-density fluctua-
tions occurs only via the population of excited states
across a band gap—again on the scale of several electron
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volts. Therefore it is difficult to investigate the behavior
of electrons at low energies. In fact, hardly any measure-
ments of electronic Raman scattering in simple metals
exist precisely for this reason, and in semiconductors fo-
cus is usually placed on plasma excitations. Since the
dynamics of electrons lying near the Fermi surface gov-
ern the behavior of transport in most systems, this would
give the impression that Raman would have but little to
offer in simple metals and insulators.

Yet the Raman effect is extremely well suited to study
electrons in systems with nontrivial electron dynamics.
First well studied in the context of breaking Cooper
pairs in superconductors in the period from 1980 to
1990, the field of Raman scattering from electronic exci-
tations has grown tremendously over the past few de-
cades to study the evolution of electron correlations in a
variety of systems in which many-body interactions are
essential to the physics of novel materials and their po-
tential device applications.

Raman spectroscopy has become an indispensable
tool in the arsenal for understanding many-body physics.
One of the most celebrated achievements of electronic
Raman scattering has been the ability to focus on the
nature of electron dynamics in different regions of the
Brillouin zone. This distinguishes Raman scattering
from most other transport and thermodynamic measure-
ments, allowing the study of the development of corre-
lations in projected regions of the Brillouin zone. By
simply aligning the polarization orientations of the in-
coming and outgoing photons, charge excitations can be
selectively mapped and analyzed using group-theoretical
symmetry arguments. The search for conventional as
well as exotic excitations in strongly correlated matter
has been greatly enhanced. Raman spectroscopy has
provided new and valuable insights into unconventional
superconductivity and collective modes, excitations in
charge, spin, and/or orbitally ordered systems as well as
the competition between the various ordered phases. In
addition, new insights into electron dynamics of metal-
insulator transitions, quantum phase transitions, and the
concomitant quantum critical behavior could be ob-
tained. The purpose of this article is to review the es-
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FIG. 1. (Color) Characteristic Raman-scattering spectrum taken on (Y ¢,Cagg)Ba;Cu3Og3. Light scattering contributions from
phonons, magnons, and electrons are plotted in blue, green, and red, respectively. p denotes the number of carriers per copper
oxide plaquette. The inset shows the photon polarization in the CuO, plane and the realted form factor in the corresponding

Brillouin zone. Courtesy of Matthias Opel.
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sence of these new developments in a snapshot of the
current state of investigation.

The overall agenda of the paper is to provide a vehicle
to sort through the extensive literature, learn about the
outstanding problems, and become aware of the level of
consensus. In order to present a detailed picture of the
current status of electronic light scattering, other types
of excitations, such as phonons and magnons, are mainly
ignored. There have been many reviews on inelastic
light scattering from phonons and magnons. The reader
is referred to earlier reviews by Klein (1982b) for a fun-
damental treatment of scattering from phonons, while
studies of phonons in high-temperature superconductors
are summarized by Thomsen and Cardona (1989),
Thomsen (1991), and Sherman et al. (2003). Recently
Lemmens et al. (2003) and Gozar et al. (2005) reviewed
magnetic light scattering in low-dimensional quantum
spin systems and cuprates. Due to space limitations we
cannot give adequate commentary on these exciting and
developing fields.

The outline of our review is as follows. After a brief
historical summary, the fundamental experimental as-
pects and theoretical developments for electronic Ra-
man scattering are presented in the first part of the ar-
ticle. A general treatise on the theory of electronic
Raman scattering is given in Sec. II with a view toward
the formalism for both weak and strong correlations.
Results from model-specific calculations can be found in
Sec. II.D. Readers who are more interested in summa-
ries of experimental work may want to skim these sec-
tions and skip to Sec. III, where a review of Raman-
scattering measurements in a variety of correlated
materials is given with a view toward common features
manifest from strong correlations. The presentation is
generally organized in systems with increasing complex-
ity of correlations and competing orders.

In this framework, the canon of work on high-
temperature superconductors in the last part of our re-
view is presented in Sec. IV. This detailed part of the
review is organized in conceptual issues of correlations,
superconductivity, normal-state properties, and the pro-
pensity toward charge and spin ordering in various fami-
lies of the cuprates. In all subsections in this part, data
on a variety of cuprate materials are summarized.

The review closes with a general discussion of open
questions for both experimental and theoretical devel-
opments in Raman scattering, and points out new direc-
tions in which our understanding of electronic correla-
tions may be further enhanced.

B. Historical review

Inelastic scattering of light was discovered indepen-
dently in organic liquids by Raman and Krishnan (1928)
and in quartz by Landsberg and Mandelstam (1928) who
properly explained the observed effect: The energy of
the incoming photon is split between the scattered one
and an elementary excitation in the solid. Shortly there-
after in 1930 C. V. Raman was awarded the Nobel prize,
and his name was associated with the effect (Pleijel,
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1930; Fabelinskii, 1988; Ginzburg, 1998). Although the
phenomenological description by Smekal (1923) in terms
of a periodically modulated polarizability qualitatively
captures the relevant physics including the selection
rules, the effect is genuinely quantum mechanical as de-
scribed first and ahead of the experimental discovery by
Kramers and Heisenberg (1925) in the context of the
dispersion in dielectrics.

Soon after the observation of light scattering from vi-
brational excitations, Verkin and Lazarev (1948) and
Khaikin and Bykov (1956) attempted to use the new
technique for studying electronic excitations. They
picked one of the most ambitious subjects, i.e., light scat-
tering from superconducting gap excitations in conven-
tional metals. It is not at all surprising that they could
not succeed. In a seminal paper Abrikosov and
Fal’kovskil (1961) not only calculated the Raman re-
sponse of a typical elemental superconductor but also
demonstrated that the sensitivity in the early experi-
ments was by approximately 5 or 6 orders of magnitude
too low. In 1980 light was finally scattered successfully
from superconducting electrons in 2H-NbSe, (Soorya-
kumar and Klein, 1980). Balseiro and Falicov (1980) and
Littlewood and Varma (1981, 1982) argued that the su-
perconducting excitations in this system become Raman
active mainly via their coupling to a charge-density-wave
(CDW) mode. After the observation of gap excitations
in the A15 compounds NbsSn and V;Si (Hackl ef al.,
1982, 1983; Klein, 1982a; Dierker et al., 1983) it was clear
that light can be scattered directly by Cooper pairs
(Dierker et al., 1983; Klein and Dierker, 1984). Tiitto and
Zawadowski (1992) demonstrated that both types of
coupling contribute.

Collective excitations of normal electrons were first
observed in semiconductors (Mooradian and Wright,
1966) following theoretical studies by Pines (1963) and
Platzman and Tzoar (1964). As a function of doping the
plasmon peak moves across the phonon energies leading
to strong electron-lattice interactions. In heavily doped
silicon, with the plasma energy well beyond the vibra-
tion spectrum, the evolution of the phonon line shape
(Fano, 1961; Cerdeira et al., 1973) clearly demonstrated
the existence of an electron continuum. In 1977, fluctua-
tions of electrons between pockets of the Fermi surface
of silicon were observed by Chandrasekhar et al. (1977)
and explained subsequently by Ipatova et al. (1981). In
magnetic fields, transitions between Landau levels were
found (Worlock er al., 1981).! Strong phonon renormal-
ization effects also occur in metallic alloys with A15
structure (Wipf et al., 1978; Schicktanz et al., 1980). The
origin of the broad continuum, which interacts with
phonons and is redistributed below the superconducting
transition (Klein and Dierker, 1984), is certainly elec-
tronic but as of today is still not fully understood.

The full power of the method became apparent after
the discovery of copper-oxygen compounds (Bednorz

"The subject has been reviewed in detail by Abstreiter et al.
(1984).
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and Miiller, 1986) with superconducting transition tem-
peratures above 100 K. It turned out that, in contrast to
infrared spectroscopy, momentum-dependent transport
properties can be measured with Raman spectroscopy,
since different regions of the Brillouin zone can be pro-
jected out independently by appropriately selecting the
polarizations of the incident and scattered photons (De-
vereaux, Einzel, Stadlober, Hackl, et al., 1994). New the-
oretical ideas were not only applied to the supercon-
ducting but also to the normal state. The spectra extend
over energy ranges as large as electron volts (eV) (Bo-
zovic et al., 1987; Cooper, Klein, et al., 1988; Cooper,
Slakey, et al., 1988; Kirillov et al., 1988) and are similar to
those in the A15’s or in rare-earth elements (Klein et al.,
1991). Both elastic (Zawadowski and Cardona, 1990)
and inelastic (Kostur and Eliashberg, 1991; Itai, 1992;
Virosztek and Ruvalds, 1992) relaxation of electrons in-
deed produces light scattering over a broad range of en-
ergies. However, it soon became clear that a continuum
extending over an eV cannot originate from elastic scat-
tering, but only from inelastic processes or interband
transitions. It has not been straightforward to pin down
the types of interactions.

At very low energies, spin- (Yoon et al, 2000) and
charge-ordering fluctuations were reported in mangan-
ites and, respectively, in ladder compounds (Blumberg et
al., 2002) and in the cuprates (Venturini, Zhang, et al.,
2002; Tassini et al., 2005). In clear contrast to typical
order parameter behavior, the characteristic energies of
the related peaks decrease rather than increase upon
cooling (Yoon et al., 2000; Blumberg et al., 2002; Caprara
et al., 2002, 2005; Venturini, Zhang, et al., 2002; Tassini et
al., 2005). Hence, the functional response evolves oppo-
site to that of an ordered spin or charge density wave
(SDW/CDW) state (Klein, 1982c; Benfatto et al., 2000;
Zeyher and Greco, 2002).

Along with the early studies of charge excitations,
Fleury and co-workers observed Raman scattering from
spin waves in antiferromagnetically ordered FeF,, MnF,,
and KoNiF, (Fleury et al, 1966, 1967; Fleury and
Guggenheim, 1970). Elliot and Loudon (1963) and
Fleury and Loudon (1968) presented a detailed theoret-
ical description which allowed them to semiquantita-
tively understand the spectral shape and cross section.
With the discovery of cuprates by Bednorz and Miiller
(1986) this field also experienced a renaissance in par-
ticular for the study at low doping close to the antifer-
romagnetic Néel state (Lyons et al, 1988; Sugai et al.,
1988; Sulewski et al., 1991; Gozar et al., 2004, 2005). Ra-
man scattering is probably the most precise method for
determining the exchange coupling J though the theoret-
ical understanding is still incomplete. In this context,
spin-Peierls systems (van Loosdrecht et al., 1996) and
ladder compounds (Abrashev et al., 1997) shifted very
much into the focus of interest (Dagotto, 1999).

Very recently, light scattering from “orbitons,” i.e.,
from a propagating reorientation of orbitals, has been
proposed to explain new modes in the Raman spectra
(Saitoh et al., 2001). However, there is no agreement yet
on whether or not orbitons can be observed indepen-
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dent of phonons or other excitations (Griininger et al.,
2002; Kriiger et al., 2004; Choi et al., 2005).

C. What can one learn from electronic Raman scattering?

We give now a qualitative introduction into the rela-
tionship between Raman spectroscopy and other experi-
mental techniques. We begin by drawing the distinction
between one-particle and many-particle properties.

Typically, electronic states in solids are characterized
by their energy dispersions as well as the characteristic
lifetime of an electron placed into such a state. This state
is represented by the single-particle propagator or
Green’s function for the electron,

1
w-§-2(k o)

Here & denotes the bare energy-band dispersion calcu-
lated from a solvable model. 3 represents the electron
self-energy which encompasses all information pertain-
ing to interactions of the single electron in state k to all
other excitations of the system. Usually the self-energy
can only be obtained via approximate methods. Some of
these approximations are quite good, such as electron-
phonon interactions in metals [known as Migdal’s ap-
proach (Migdal, 1958)] for example, while others are
more difficult, such as the Coulomb interaction between
other electrons. The self-energy is a complex function
3=3'+i3", which, in general, depends on temperature,
momentum, and energy. The real part of the self-energy
determines how the energy dispersion & is renormalized
by interactions while the imaginary part determines the
lifetime of the quasiparticle placed into the state k.
The spectral function is directly related to the analyti-
cally continued electron’s Green’s function for frequen-
cies on the real axis via the replacement iw— w+i6:

1
~lim G"(k.w + i5). )
m 5—0

Gk,w) = (1)

Ak, w)=—

which is measurable via modern angle-resolved photo-
emission (ARPES) techniques and has provided an im-
mense amount of information on strongly correlated sys-
tems (Campuzano et al., 2002; Damascelli et al., 2003).
For noninteracting electrons, A(k,w) is a § function
peaked at the pole of the propagator when the fre-
quency w equals the bare band energy &. Interactions
broaden the spectral function and give it nontrivial tem-
perature and frequency dependences as well as non-
trivial anisotropies in momentum space if interactions
among electrons are anisotropic. The spectral function
describes real electrons, hence integrals over all energies
must obey sum rules, such as (i) fdwA(k,w)=1 and (ii)
Jdof(0)A(k,w)=n(k) with the Fermi-Dirac distribution
flw) and the momentum distribution function n(k).

If the electronic interactions are weak, one usually
uses the nomenclature of Landau and refers to dressed
quasiparticles replacing the electron as the fundamental
excitation in the solid. These interactions may be char-
acterized by the residue of the pole (usually denoted by
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Z,) and the quasiparticle effective mass m"/m;,=(Z,)",
with m,, the bare band mass for quasiparticles lying near
the Fermi surface. Zy is related to the real part of the
self-energy 3’ which can be expanded for electrons near
the Fermi surface as 2'(k,») =2/ (k) + 02’ (k,w=0)/ dow.
According to Luttinger’s theorem, the Fermi surface av-
erage of (k) is absorbed by the chemical potential wu.
The enhancement of the quasiparticle mass over the
band mass can be written as m"/m,=1-3d%'/dw. One
often defines m"/m;,=1+\ with the dimensionless cou-
pling constant A=0 [see, e.g., Ashcroft and Mermin
(1976)]. Zy=(1-0%"/dw)~" is always smaller than 1, re-
flecting the fact that even for w=0 and 7=0 only a frac-
tion Z, of the spectral weight (coherent part) is in the
pole of A(k,w) while 1-Z, (incoherent part) is distrib-
uted over larger energy scales. Equivalently, Z, <1 is
the discontinuity at ky of the zero-temperature momen-
tum distribution function n(k). If Z, approaches zero
(c1/In w), the system is referred to as a marginal Fermi
liquid (Varma et al., 1989), and sum rule (i) is exhausted
only at energies much larger than &,. Thus knowledge of
the self-energy is an important requisite to understand-
ing many-body interactions.

For this reason, single-particle methods such as
ARPES, electron tunneling, and specific-heat measure-
ments have been applied extensively to study correlated
electron systems. Very much stimulated by the discovery
of superconductivity in cuprates (Bednorz and Miiller,
1986) ARPES and tunneling spectroscopy have devel-
oped more rapidly than any other method in the last
decade. ARPES data have given unprecedented insight
into momentum-resolved single-electron properties and
their many-body effects (Campuzano et al., 2002; Dama-
scelli et al., 2003), while tunneling measurements have
provided information on pairing (Mandrus et al., 1991;
Renner and Fischer, 1995; Zasadzinski, 2002) and have
recently elucidated many issues of nanoscale inhomoge-
neities in cuprates and their connection to superconduc-
tivity (Hoffman et al., 2002; Howald et al., 2003; Kivelson
et al., 2003; McElroy et al., 2003, 2005; Hanaguri et al.,
2004; Vershinin et al., 2004; Fang et al., 2006). Detailed
knowledge of phase transitions in cuprates has been ob-
tained from specific-heat studies (Moler et al., 1994; Tal-
lon and Loram, 2001; Roulin et al., 2002). Due to space
limitations we only list some of the later important ex-
perimental papers which we hope serve as an entry point
for the reader to search backwards in time to follow the
developments.

Yet knowledge of the spectral function and single-
particle excitation spectra do not yield information
about how electrons may transport heat, current, en-
tropy, or energy. For this one needs two-particle corre-
lation functions for charge or spin which can be mea-
sured by, e.g., ordinary and heat transport, optical
spectroscopy, and neutron and light scattering. As an
example for such a correlation function we consider a
standard expression for the generalized Kubo suscepti-
bility x, ,(€2) of weakly interacting, essentially isotropic
normal electrons [see, e.g., Mahan (2000)],
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2 “d
XZ b(Q) = _E akbkf —wG”(k,w)G"(k,w +Q)
? V k _o T

X [flw) - flo+ Q)] 3)

Here V is the volume, ay,by are the bare vertices repre-
senting quasiparticle charge (ay=1) or current (ay=jy
=¢k) correlation functions, and the factor 2 accounts for
spin degeneracy The absorptive part of the conductivity

x':(Q2)/Q measures essentially a convolution of oc-
cupled] and unoccupied states. For electrons weakly in-
teracting with impurities the conductivity can readily be
calculated to exhibit a Lorentzian dependence on () rep-
resented by

o' (Q) = oy 4)

_
1+ Q0%

where o is the dc (2=0) conductivity, and the relax-
ation time 7=-#%(23")"! controls both the width of the
spectral funct1on and conductivity as a function of
frequency A very similar expression is found for light
scattering (Zawadowski and Cardona, 1990). Thus in the
case of noninteracting electrons, the single- and two-
particle correlation functions can be simply related to
each other.

This is also true by and large if weak but essentially
isotropic interactions lead to an energy-dependent X" (w)
and, for causality, to a finite X'(w). Gotze and Wolfle
(1972) and, more phenomenologically, Allen and
Mikkelsen (1977) [for a more recent reference see Basov
and Timusk (2005)] discussed how this generalization
modifies the response given by Eq. (4), which 1s then
often referred to as the extended Drude model.> How-
ever, interacting systems require some care. For ex-
ample, in superconductors both the single- and two-
particle responses yield the energy gap. Yet two-particle
correlation functions also have coherence factors which
can be crucially important to determine the gap symme-
try in unconventional systems. Generally, collective
modes (such as the plasmon or excitons) appear directly
in two-particle correlation functions but only indirectly
in the spectral function.

Sometimes results from single- and two-particle mea-
surements can be qualitatively different, even for nonin-
teracting electrons. As an illustration, we consider first
the metal-insulator transition occurring in a system of
otherwise noninteracting electrons in a disordered envi-
ronment (Anderson transition). Here, backscattering of
electrons from impurities leads to destructive phase in-
terference, and electrons become localized once a criti-

“Note that Eq. (3) does not return the proper transport life-
time 7; which differs by a factor of typically 1—cos 6 with the
scattering angle 6 since events with =0 do not contribute to
the resistivity. This deficit must be taken care of by vertex
corrections (Mahan, 2000).

3The case of Raman scattering has been described in detail by
Opel et al. (2000) and will be touched upon briefly in Sec.
IV.D.1.
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cal concentration of impurities is in place in three di-
mensions. Thus while the conductivity is critical and
vanishes at the metal-insulator transition, the spectral
function, or equivalently the density of states, is uncriti-
cal. This distinction becomes even more pronounced if
the electron interactions are strong and anisotropic, and
the bare vertices along with the Green’s functions enter-
ing into Eq. (3) must be renormalized by the strong in-
teractions.

As a second example, in the spinless Falicov-Kimball
model light d electrons strongly interact with localized f
electrons and are characterized by the Hamiltonian (Fa-
likov and Kimball, 1969)

E3

H=- J—E (clej+cfc) + E> wi— pn (cle;+w)
2VD i i i

+ UE cjciwi, (5)

where clT (c;) create (destroy) a conduction electron at
site i, w; is a classical variable (representing the localized
electron number at site i) that equals 0 or 1, " is a renor-
malized hopping matrix element that is nonzero be-
tween nearest neighbors on a hypercubic lattice in D
dimensions, and U is the local screened Coulomb inter-
action between conduction and localized electrons. {i,j)
denotes a sum over sites i and nearest neighbors j. Ef
and u are adjusted to set the average filling of conduc-
tion and localized electrons. This model has been solved
exactly for electrons on a hypercubic lattice in the limit
of large coordination number (Freericks and Zlatic,
2003). The system undergoes a metal-insulator transition
(MIT) at half-filling (one electron per site) if the interac-
tion U is beyond a critical value U.. On either side of the
metal-insulator transition, the density of states is tem-
perature independent (van Dongen, 1992), while the
conductivity has a strong temperature dependence
(Pruschke et al., 1995) showing the development of the
MIT.

In systems with strong and anisotropic interactions,
the differences between single- and two-particle proper-
ties are inescapable. This has been borne out in cuprates
by the large amount of work using optical (Homes et al.,
2004) and thermal conductivities (Sutherland et al.,
2005), resistivities (Ando et al., 2004), nuclear magnetic
resonance (NMR) (Alloul et al., 1989), and electron spin
resonance (ESR) (Janossy et al., 2003). These experi-
ments have revealed basic properties of strongly corre-
lated systems and have emerged as key elements to char-
acterize the complex behavior of high-7, cuprates.

Yet these two-particle measurements are largely in-
sensitive of anisotropies, as they measure Brillouin-zone
averaged quantities. As a result they reveal the behavior
of quasiparticles having the highest velocities which, in
cuprates, are quasiparticles near the nodal regions of the
Brillouin zone. As far as carriers are concerned, the mo-
mentum dependence of neutron scattering serves mainly
to measure spin dynamics in different regions of the
Brillouin zone.
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In this review, we illustrate that Raman spectroscopy
gives complementary information to all of these mea-
surement techniques, and also may provide detailed in-
formation of charge and spin dynamics of electrons in
different regions of the Brillouin zone. This is due to the
polarization selection rules. As with phonon scattering
(Hayes and Loudon, 2005), simple group-theoretic sym-
metry arguments can be used to focus on electron dy-
namics in different regions of the Brillouin zone. For
Raman scattering (ayby) is replaced with 7 which,
in certain limits, may be represented by ¥
=3, .6 e,P &0k ,dk,, with e™ the incident, scattered
light polarization vectors.* Apart from energy-
independent scaling factors and vertices with different k
dependences there is an extra factor 1/() between Ra-
man and infrared response. It has been shown first by
Shastry and Shraiman (1990) and explicitly demon-
strated within dynamical mean-field theory (DMFT) by
Freericks and Devereaux (2001) that, under certain re-
strictions, there is a simple correspondence between
conductivity and Raman response,

Qo' (Q) = X, (Q), (6)

highlighting that electronic Raman scattering measures
transport properties. However, even the simple form of
the vertices given above shows that a coincidence can be
expected only for an isotropic material. In anisotropic
systems, light scattering can sample parts of the Fermi
surface which are unaccessible for infrared spectroscopy.

D. State-of-the-art experimental technique

Over decades Raman scattering was predominantly
used for the study of molecular and lattice vibrations
which produce isolated and typically narrow lines in the
spectra (see Fig. 1). The lines are used as probes which
sensitively react to changes in the environment of vibrat-
ing atoms. Similar considerations are at the heart of
magnetic resonance techniques such as NMR and ESR.

If light is scattered from electrons in solids, the spec-
tra are usually continuous (Fig. 1). To study their evolu-
tion as a function of a control parameter, such as tem-
perature, doping, magnetic field, or pressure, is rather
involved since the overall shape and not the position of
well-defined lines matters. In addition, typical cross sec-
tions per unit solid angle and energy interval are smaller
by several orders of magnitude than those of vibrations.
Electronic Raman scattering in a metal typically pro-
duces one energy-shifted photon per s, meV, and sr (unit
solid angle steradian) out of 10'® incoming ones. The low
efficiency is particularly demanding in studies at high
pressure since additional losses and complications such
as fluorescence and birefringence arise from the win-
dows, which are typically diamond anvils. Although
there were successful early experiments (Zhou et al.,
1996) the availability of synthetic diamonds brought sub-
stantial advances (Goncharov and Struzhkin, 2003).

4 . . . .
For a microscopic derivation, see Sec. I1.B.
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There are three inventions which finally produced the
required sensitivity: (i) the laser as an intense light
source providing lines of high spectral purity in a wide
energy range; (ii) as an early application of the laser,
holographically fabricated gratings without secondary
images (ghosts) and an extremely low level of diffusely
scattered light; and, finally, (iii) the invention of charge-
coupled devices (CCDs) as a location-sensitive detector
with an efficiency at the quantum limit and negligible
dark count rate.

Gratings have an extremely well-defined number of
lines per unit length (cm in the cgs system). This is the
origin of the energy unit cm~!. The following conver-
sions are frequently used:

1 meV =11.604 K,
1 meV = 8.0655 cm™,

kp=0.69504 cm /K.

Since the CCD has a high spatial resolution down to a
few um it is a superior replacement of the photographic
plate. It facilitates recording complete spectra in a single
exposure with energy ranges from meV up to approxi-
mately 1 eV, depending on the desired resolution.

The essentials of a setup for inelastic light scattering
with polarized photons are shown schematically in Fig.
2. The coherent light at energy Aw; from the laser (Ar*
and Kr* gas lasers are still very popular) is spatially fil-
tered. A prism monochromator (PMC) selects the de-
sired frequency and suppresses incoherent photons from
the laser medium. A combination of a \/2 retarder and
a polarizer (P1) facilitates the preparation of a photon
flux of a well-defined polarization state and intensity.
For excitation, the polarization inside the sample counts.
The same holds for the selection of the proper polariza-
tion for scattered photons at w,. The best results are
obtained by using a crystal polarizer (P1, e.g., of Glan-
Thompson type) and a Soleil-Babinet compensator for
the incoming light and an achromatic \/4 retarder and
another crystal polarizer (P2) for the scattered light. In
this way all states, including circularly polarized ones,
can be prepared. The \/2 retarder in front of the en-
trance slit of the spectrometer rotates the polarization
into the direction of highest sensitivity.

Since we wish to discriminate between 10'%15 elasti-
cally scattered photons at fiw; and the few Raman pho-
tons at fw, at very small shifts AQ=|hw;—hw] <1 meV,
a single monochromator is insufficient. A modern instru-
ment for Raman scattering in metallic samples has three
stages consisting of essentially independent grating
monochromators. The first two are usually subtractively
coupled and select a band from the spectrum of inelas-
tically scattered photons. The third stage disperses the
band transmitted through the two stages of the pre-
monochromator into a spectrum which is recorded by
the CCD. In this configuration, the dispersion is given
only by the third stage while the first two discriminate
the elastically scattered laser light. If all stages are
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FIG. 2. (Color) Schematic drawing of the light path. The laser
light with energy fw; is first spatially filtered. A prism mono-
chromator (PMC) is used to suppress the plasma lines of the
laser medium, only the coherent one at #iw; passes the slit. The
polarization is prepared with polarizer P1 and the Soleil-
Babinet compensator (SB). The \/2 retarder in front of P1
allows one to adjust the power. Before hitting the sample the
light is once again spatially filtered to maintain an approxi-
mately Gaussian intensity profile in the spot. If the angle of
incidence is not close to zero, phase shift effects at the sample
surface must be taken into account since the polarization in-
side the sample is important. High speed optics collects the
scattered light. The polarization state is selected by a \/4 re-
tarder and polarizer P2. The \/2 retarder in front of the en-
trance slit rotates the light polarization for maximal transmis-
sion of the spectrometer (here single stage). Except for the
compensator most retarders and polarizers work also for light
propagating at small angles (up to approximately +5°) with
respect to the optical axis. The configuration shown here is
usually referred to as backscattering geometry since incoming
and outgoing photons have essentially opposite momenta in
the sample.

coo [

coupled additively, the resolution is improved by a factor
of 3. Because of losses at the mirrors and gratings, only
15-20 % of the photons entering the spectrometer arrive
at the detector.

Since very interesting physics is present at energies
even below 1 meV (see, e.g., Sec. IV.D.3) the discrimi-
nation is a cardinal point. Out of the two options only
the premonochromator gives satisfactory results below
10 meV. The price one has to pay is a loss of intensity of
approximately 60%. Alternatively, for energy shifts
above 10 meV an interferometric notch filter can be
used. The latter device is widely used for commercial
applications which develop rapidly since the introduc-
tion of the CCD. The main fields are quality control and
analytics.

At finite temperatures 7>0 inelastically scattered
light is found on either side of Zw,. As a consequence of
time-reversal symmetry and for phase-space arguments
the energy gain (anti-Stokes) and loss (Stokes) spectra
are related by the principle of detailed balance (equiva-
lent to the fluctuation-dissipation theorem) (Placzek,
1934; Landau and Lifshitz, 1960)
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NAS (.Ul"'rQ 2 ﬁQ
s (2 exp - ). ™)
NST (l)l'—Q kBT

with NST( as) and %) the rate of photons per unit time
collected on the Stokes (anti-Stokes) side and the energy
transferred to the system, respectively. Equation (7) can
be used to determine the temperature of the laser spot.

If spectra are measured in large energy ranges, the
sensitivity of the instrument has to be taken into ac-
count. To this end, the spectral response of the whole
system, including all optical elements between the
sample and entrance slit of the spectrometer, the spec-
trometer itself, and the detector, must be calibrated.
This is best done by replacing the sample with a continu-
ous light source of the same size as the laser spot with a
known spectral emissivity. A continuous source is of cru-
cial importance for including the energy dependence of
the dispersion in addition to the bare transmission. In
addition, the frequency dependence of the sample’s in-
dex of refraction \Ve=n+ik requires attention in order to
get the internal cross section.

The main limitations of present commercial systems
come from geometrical aberrations of the spectrometer
optics and from the relatively low total reflectivity of the
large number of mirrors. It is a matter of resources to
improve these caveats. Recently, an improved type of
triple spectrometer with aspherical optics has been de-
scribed by Schulz e al. (2005). CCDs and gratings are
close to the theoretical limits.

For many studies, light sources with continuously ad-
justable lines in an extended energy range would be de-
sirable. This holds particularly true for organic materials
(e.g., carbon nanotubes or proteins) which have rela-
tively sharp resonances in the visible and ultraviolet.
The synchrotron, free-electron lasers, as well as dye and
solid-state lasers, are developing rapidly and will gain
influence on the field of Raman spectroscopy in the near
future. The same holds for near-field techniques (Hart-
schuh et al., 2003) which are capable of improving spatial
resolution by at least an order of magnitude below the
diffraction limit.

II. THEORY OF ELECTRONIC RAMAN SCATTERING
A. Electronic coupling to light

The aim of this section is to formulate the theoretical
treatments for inelastic light scattering in general. Much
has been done in the development of theories for Ra-
man scattering, particularly in semiconductors and su-
perconductors. Early reviews of electronic Raman scat-
tering have been given by Klein (1983) and Abstreiter et
al. (1984) focusing on semiconductors. More recent re-
views by Devereaux and Kampf (1997) and Sherman et
al. (2003) have focused on theory in superconductors
with applications towards cuprates. We outline the gen-
eral formalism for treating systems with weak and strong
correlations and return to a discussion of various theo-
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retical models in connection with materials in the fol-
lowing section.

1. General approach

We first consider a Hamiltonian for N electrons
coupled to the electromagnetic fields (Pines and
Noziéres, 1966; Blum, 1970):

+ (e/c)A(r )

E [p:

+ Hcoutomb + Hiields (8)

where p=-iV is the momentum operator, e is the mag-
nitude of the elementary charge (the electronic charge is

g.,=—e), and c is the speed of light. A(r,) is the vector
potential of the field at space-time point r; and m is the
electron mass. Hcguomp Tepresents the Coulomb interac-
tion and Hyy 1s the free electromagnetic part. We use

the symbol A to denote operators. We expand the ki-
netic energy to obtain

e .o A .
H=H'+ —2 2 [p;- A(r) +A(r) - p;]
mc™;

+ 2 S AR) A, ©)
with  H'=Hy+ Hpegs and H0=(1/2m)2111, +H coulomb-
Generally we choose |a) to denote eigenstates of H,
with eigenvalues E,: Hy|a)=E,|a). The eigenstate is la-
beled by all the relevant quantum numbers for the state,
such as combinations of band index, wave vector, or-
bital, and/or spin quantum numbers, for example. The
eigenstates may be considered to be Bloch electrons
when the electron-ion interaction is included in H,, as
plane-wave states if it is neglected, or may represent
Hubbard states if Hcgyomp 1S taken to include short-
range Hubbard-like interactions between electrons.

The electromagnetic vector potential can be expanded
into Fourier modes A(r,»):quiq"iAq. In second quan-
tized notation, the electromagnetic field operator takes
the form (Mahan 2000)

\/ [eq q+e a (10)

with V the Volume af], agq are the creation and annihila-

tion operators of transversal photons with energy 7w,
=#ic|q| having a polarization direction denoted by the
complex unit vector €g.

Electronic Raman scattering measures the total cross
section for scattering from all electrons illuminated by
the incident light. The differential cross section is deter-
mined by the probability that an incident photon of fre-
quency w; is scattered into a solid-angle interval between
Q and Q+dQ and a frequency window between w, and
w,+dw,. A general expression for the differential light
scattering cross section is given via the transition rate R
of scattering an incident (ql,w,,e ) photon into a outgo-

ing state (q,, w;,& ‘))
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(920' w
=hr2—R. 11
QN dwy L w; (1

Here ry=e?/mc? is the Thompson radius, and R is deter-
mined via Fermi’s golden rule,

1
= EE e PEIMp |*S(Ep— E;— hQ), (12)
IF

with B=1/kgT, Z is the partition function, and My,
=(F|M|I) where M is the effective light-scattering opera-
tor. The sum represents a thermodynamic average over
possible initial and over final states with k vectors in the
solid angle element d() of the many-electron system
having energies E;, Ef, respectively. Here Q=w;,—w, is
the transferred frequency and we denote q=q;—q, the
net momentum transfered by the photon. Multiplying
Eq. (11) by the incident photon flux gives the number of
scattered photons per second into the solid angle incre-
ment d() within the frequency range dw,, while multiply-
ing Eq. (11) by w,/w; gives the power scattering cross
section (Klein, 1983).51

From here on we consider the case relevant to Raman
scattering in the visible range with photon energies of
typically 2 eV. Since the momentum transferred to elec-
trons g ~1/6, with & the skin depth at the light energies
(Abrikosov and Fal’kovskii, 1961), is much less than the
relevant momentum scale of order kp, the Fermi mo-
mentum in metallic systems, the limit ¢—0 is a good
approximation in practically all cases.® However, finite g
should be considered if incident light from frequency-
doubled or synchrotron radiation is used where transi-
tions between initial and final states at finite g can be
probed. Then the structure of the Landau particle-hole
continuum in weakly correlated systems or transitions
across a finite-g Mott gap in strongly correlated insula-
tors can be studied.

M has contributions from either of the last three
terms in Eq. (9): the first two terms couple the electron’s
current to a single photon and the third term couples the
electron’s charge to two photons. This is shown in the
schematic cartoon in Figs. 3 and 4. Here we consider two
bands—one partially filled and the other completely
filled—in which the incident photon excites an electron
from either the partially or completely filled band,

>We note that Egs. (11) and (12) describe scattering inside the
material. Trivial (Fresnel-formulas) and nontrivial (g, integra-
tion) (Abrikosov and Fal’kovskii, 1961; Fal’kovskii, 1990, 1991)
transformations, which we do not discuss here, are required to
fully describe the cross section outside. The g, integration
originates from the lack of momentum conservation perpen-
dicular to the surface of an absorbing medium and can change
the spectra qualitatively. From here on, #() is always the en-
ergy transferred to the system.

*The applicability of the g=0 limit is discussed in more detail
in Sec. II1.D.6 and at the beginning of Sec. III.

"For a review of relevant work in this regard, the reader is
referred to Platzman and Isaacs (1998); Kotani and Shin
(2001); Devereaux et al. (2003a, 2003b).

Rev. Mod. Phys., Vol. 79, No. 1, January—March 2007

INITIAL STATE FINAL STATE

FIG. 3. (Color online) Cartoon showing light scattering via
nonresonant intraband scattering.

shown in Figs. 3 and 4, respectively. In the nonresonant
intraband case, the photon gives up part of its energy to
leave behind a particle-hole pair, while in the interband
case, an intermediate state is involved, which decays via
a particle from the partially filled band into the hole left
behind in the filled band. The latter scattering may be
resonant if the incident or emitted photon energy corre-
sponds to that of the energy gap separation, otherwise it
is nonresonant. In this simple cartoon, one can see that
excitations lying near the Fermi surface are predomi-
nantly probed by nonresonant intraband scattering
while excitations involving transition between different
bands—such as the lower and upper Hubbard bands, for
example—are probed by intermediate state scattering.
The Feynman diagrams representing these contributions
to My are shown in Fig. 5.

Referring to Eq. (9), the current coupling has odd spa-
tial symmetry and involves single-photon emission or
absorption, while the second term is even in parity and
involves two-photon scattering of emission followed by
absorption and vice versa. The cross section or transition
rate is thus determined via Fermi’s golden rule by the
square of the matrix elements shown in Fig. 5.

The resulting Feynman diagrams of the contributions
to the cross section are shown in Fig. 6. However, not all
of them give rise to inelastic light scattering. Some of
these terms vanish either because they represent contri-
butions to the renormalized photon propagator [Fig.

INITIAL STATE INT

et

b=

FIG. 4. (Color online) Cartoon showing light scattering via
interband transitions.
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FIG. 5. Feynman diagrams contributing to the effective light-
scattering operator M. (a) represents single-photon absorption,
(b) two-photon scattering, while photon emission (absorption)
followed by absorption (emission) is shown in (c) and (d). The
panels on the right are the time-reversed partners of the left
diagrams.
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FIG. 6. Feynman diagrams contained in the cross section. (a)
A renormalized photon propagator in the solid, while (b)-(d)
vanish due to parity and thus (a)-(d) do not contribute to in-
elastic light scattering. Of the remaining contributions, (e) re-
fers to intraband (sometimes nonresonant) scattering within a
single band, (f) and (g) are referred to as mixed contributions
while (h)—(j) describe transitions within a single or between
different bands via intermediate band states. If the light energy
is equal or close to the energy difference of the states involved,
resonance effects with a strong enhancement of the cross sec-
tion occur. Therefore the contributions themselves are some-
times referred to as resonant.
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6(a)] or due to parity arguments [Figs. 6(b)-6(d)] in the
limit of small-g scattering. The remaining terms can be
classified as nonresonant [Fig. 6(e)], resonant [Figs.
6(h)-6(j)], and mixed terms [Figs. 6(f) and 6(g)], since in
the former case the initial and final states must share a
large subset of quantum numbers, while the other terms
can involve transitions through intermediate states well
separated in energy and distinct from the initial and final
states. However, we remark that the response is only
truly resonant if the photon energies are tuned to the
energy gap between intermediate and initial or final
states.

To obtain a general expression for the matrix element
M ; for Raman scattering, we use second quantized no-
tation for the fermions in which the single-particle wave
function and its conjugate are given by ¥(r)== c,@,(r)
and ¢'(r)==,cl ¢ (r), with ¢, ¢" the eigenstates of the
Hamiltonian H,,. Electron states «, 8 are created or an-
nihilated by cz, cp, respectively, and the indices refer to
the quantum number associated with the state, such as
the momenta and/or spin states. The matrix element
M can thus be written as

Mp;=e;- esz pa,,g((I)<F|CZCB|I>
a,p

1
+ _E E pa,a’(qx)p,ﬁ’,ﬁ’(qi)

Vo BB
" ((F|clcar V)(V|c£,cﬁr|l>
E[— EV+ h(l)i
<F|c;cﬁy

v><v|czca/|l>)

13
E; - E, - fo, (13)

Here |I), |F), |v) represent the initial, final, and interme-
diate many-electron states having energies £ ., respec-
tively. The many-electron states could be labeled by
band index and momentum as, for example, for Bloch
electrons. They may also consist of core and valence
electrons on selected atoms for x-ray scattering, or may
represent states of the many-band Hubbard model
for correlated electrons. p,g(q)=/ d3r¢2(r)eiq"¢ﬁ(r)
=(ale'"|B) is the matrix element for single-particle den-
sity fluctuations involving states «,. The momentum
density matrix element is given by p,s(q;,)
=(alp-e;e*%s"|B). The first term in the expression
arises from the two-photon scattering term in Eq. (9) in
first-order perturbation theory. The remaining terms
arise from the single-photon scattering term in Eq. (9) in
second order via intermediate states v and involve dif-
ferent time orderings of photon absorption and emis-
sion. The p-A coupling does not enter to first order
since the average of the momentum operator is zero.

2. Importance of light polarization

At this point, little progress can be made in evaluating
the matrix elements for Raman scattering without speci-
fying the quantum numbers of the electronic many-body
states. Yet, from Eq. (13), one can apply symmetry argu-
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ments to view what types of excitations can be created
by incident photons. In this subsection, we employ a
general set of symmetry classifications and put specific
emphasis on models in later subsections.

The first term in Eq. (13) only arises if the incident
and scattering polarization light vectors are not orthogo-
nal, as electronic charge density fluctuations are created
and destroyed along the polarization directions of the
incident and scattered photons. Thus, for instance, this
term does not probe electron dynamics in which the
charge density relaxes in a direction orthogonal to the
incident polarization direction.

In the limit of small momentum transfer q— 0, the
matrix element simplifies to p, 5(q—0)=4,, and thus
this term gives rise to scattering from fluctuations of the
isotropic electronic number density.

The remaining terms in Eq. (13) have contributions
regardless of photon polarization directions. However,
one can further classify scattering contributions by sepa-
rating the sum over intermediate states |v) into states
which share some quantum numbers with the initial
many-body state, such as band index, and states which
do not. Since the photon momenta are much smaller
than the relevant electron momenta, contributions of
the terms where the intermediate states include the
same band index as the initial states are roughly a factor
of vp/c smaller than the first term in Eq. (13) and can be
neglected (Pines and Nozieres, 1966; Wolff, 1966). How-
ever, contributions where |v) includes higher bands can-
not in general be neglected, particularly if the energy of
the incident or scattering light lies near the energy of a
transition from the initial state E; to an intermediate
state E,. These terms thus give rise to mixed and reso-
nant Raman scattering.

The polarization dependence of Raman scattering can
be generally classified using arguments of group theory.
In essence, the charge-density fluctuations brought
about by light scattering are modulated in directions de-
termined by the polarizations of the incident and scat-
tered photons. These density fluctuations thus have the
symmetry imposed on them by the way in which the
light is oriented, and the charge-density fluctuations
obey the symmetry rules governing the scattering geom-
etry. This is manifest in the dependence of the Raman
matrix elements on the initial and final fermion states. In
general, the Raman matrix element M FJ:M}f’ﬁef‘ef can
be decomposed into basis functions of the irreducible
point group of the crystal ®,, (Klein and Dierker, 1984;
Monien and Zawadowski, 1990; Shastry and Shraiman,
1991a, 1991b; Devereaux, 1992; Hayes and Loudon,
2005)

Mp/q—0)=2 M, (14)
y23

with u representing an irreducible representation of the
point group of the crystal. Which set of u contributes to
the sum is determined by the orientation of incident and
scattered polarization directions. As an example, if we
consider the D, group of the tetragonal lattice, as in the
cuprates, the decomposition can be written as
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Mp[: %OA(ID(e + eyey) + 5 OA(Z)(E
’ g

1 Yo Yo Y+ eYe"
+ 2031};(6,- —ele)) + 3 032 (eje) + ele;

1 X,V _ LY 1 X7 2K
+ 2OAzg(el- e] —ele;) + 205<gl>(eies +eje;

+ %OE?(e{eﬁ +efe)), (15)

with O, the corresponding projected operators and e;
the light polarizations. This classification demonstrates
that there is no mixing of representations for ¢=0, i.e.,
the correlation functions read R ~ (0T 0,)=R,6,, and
there are six independent correlation'| functlons each se-
lected by combinations of polarization orientations.

Following Shastry and Shraiman (1990), we list in
Table I some common experimentally used polarization
geometries in relation to the elements of the transition
rate R selected. One observes that a complete character-
ization of M can be made from a subset of the polariza-
tion orientations listed in the table. However, additional
polarization orientations can be useful to calibrate data
and compare symmetry decompositions from different
combinations of orientations. For geometries with polar-
izations in the a-b plane in Dy, crystals, the irreducible
representations cannot be accessed individually and
must be separated by proper subtraction procedures. As
a minimum set, four independent configurations are re-
quired, while additional polarizations may be used for
consistency checks.

In addition, we have listed in Table I the representa-
tive basis functions @, (k) taken from the complete set of
Brillouin-zone (BZ) harmonics for Dy, space group
(Allen, 1976). This directly points out the connection be-
tween polarizations and the coupling of light to elec-
trons. By virtue of the k dependence of the light scatter-
ing transition rate, excitations on certain regions of the
BZ can be correspondingly projected out by orienting
the incident and scattered light polarization vectors.
Thus Raman is one of the few spectroscopic multipar-
ticle probes (the other being inelastic x-ray scattering)
able to examine charge excitations in different regions
of the BZ.

For example, as demonstrated in Fig. 7, for crossed
polarizations transforming as B, light couples to charge
excitations along the BZ axes (k, or k,=0), while for By,
excitations along the BZ diagonals (k,=<+k,) are pro-
jected accordingly. Operators like O A,, cannot be ac-
cessed independently by linear polarlzatlons alone. Only
sums including circular polarizations allow the isolation
of A,, components. Light scattering in this orientation
can be coupled to chiral excitations. These important
symmetry classifications have been extremely useful to
point out anisotropic electron dynamics in correlated in-
sulators (Shastry and Shraiman, 1990; Devereaux et al.,
2003a, 2003b), superconductors (Devereaux, Einzel,
Stadlober, Hackl, et al., 1994), and disordered (Zawa-
dowski and Cardona, 1990; Devereaux, 1992) and corre-
lated metals (Freericks and Devereaux, 2001; Freericks
et al., 2001; Einzel and Manske, 2004). More recently
they have been related to sum rules referring to BZ-
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TABLE I. Elements of the transition rate R for experimentally useful configurations of polarization
orientations (given in Porto notation) along with the symmetry projections for the Dy, point group
relevant for the cuprates. Here we use notations in which x and y point in directions along the Cu-O
bonds in tetragonal cuprates, while x" and y’ are directions rotated by 45°. L and R denote left and
right circularly polarized light, respectively. In our convention left circular light has positive helicity.
(In a right-handed system the polarization rotates from x to y while the wave front travels into
positive z direction by N/4.) Note that in backscattering configuration (see Fig. 2) with ¢;; pinned to
the coordinate system of the crystal axes the representation for incoming and outgoing photons with
circular polarizations change sign in order to maintain the proper helicity.

Geometry é; é, R Basis functions ®,(k)
A A 1 1
XX, yy X,y X,y RA1g+RB1g E[cos(kxa) +cos(kya)]+ E[cos(kxa) —cos(kya)]

L 1 1 1 . .

x'x —=(X+y) —=(X+Y) Ra, +Rp, [cos(k.a) +cos(kya)]+sin(k,a)sin(k,a)
V2 V2 g 8 2

L 1 .. 1 . . 1 . .

x'y \"_E(X +y) \:(x—y) RBlg+ RAzg E[cos(kxa)—cos(kya)][l +sin(k,a)sin(kya)]
1
xy X y R32g+ RAzg sin(k,a)sin(kya)i1+ E[cos(kxa) —cos(kya)]
[P, [P, 1 . .
LR "_§(x+ iy) 75(x +1y) Rp, +Rp, E[cos(kxa) +cos(kya)]+sin(k a)sin(k,a)
N v
| 1 . . 1
LL V,—E(x+ iy) E(x —iy) RA1g+ RAzg E{cos(kxa) +cos(kya)+[cos(k,a)
—cos(kya)]sin(k,a)sin(k,a)}

Xz X Z R Eyy sin(k,a)sin(kc)

yz y Z RElg sin(k,a)sin(k ,c)

zz 4 Z R A® cos(k.c)

g

projected potential energies in correlated systems (Fre-
ericks et al., 2005). In the remaining part of this review,
such symmetry classifications will be featured promi-
nently.

B. Formalism: Single-particle excitations and weak
correlations

We now consider specific cases where simplifications
can be made to Eq. (13). First we assume that the inter-
mediate many-particle states only differ from the initial
and final states by single-electron excitations. This is ex-
act in the limit of noninteracting electrons, yet ignores
the effects of many-body correlations, and specifically

2 @ 0 90 ]
xX
iy ote (M
Big BZg —. F
X M X M

FIG. 7. (Color) Schematic weighting of the light-scattering
transition for polarization orientations transforming as B, and
By, for a Dy, crystal. High-symmetry points are indicated.
Here a typical Fermi surface for optimally doped cuprates is
represented by the solid line, and the orientations of the inci-
dent and scattered polarization light vectors are shown with
respect to copper-oxygen bond directions.
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the role of Coulomb interactions on the reorganization
of the initial state into intermediate states by creating
many-particle excitations. We now focus on weakly in-
teracting systems, where single-particle excitations are
relatively well defined, and discuss strongly correlated
systems in later sections.

1. Particle-hole excitations

Equation (13) can be simplified by replacing E, in the
denominators by E;—~Eg+Eg and E;—E,+E, in the
first and second terms, respectively, and using the clo-
sure relation X, |v)(v|=1. Commutator algebra eliminates
the four-fermion matrix element and

Mpi= 2 YagFlckegD), (16)
B
where s
I | PapPp p

Yap=Pap @€ & +—2 (—

B A ! s mlB, EB—EB/'Fhwl‘

phgp
E,B — Eﬂ' — ﬁws

Specifying to states «,f indexed by momentum quan-
tum numbers (such as Bloch electrons), from Eq. (11)
the Raman response simplifies to a correlation function

S of an effective charge density p,



Thomas P. Devereaux and Rudi Hackl: Inelastic light scattering from correlated ... 187

Fo
QN dw,

= 112 28(q,iQ — Q +0). (18)
w;

Here the Raman effective density-density correlation
function is

~ e PEI i ~ ~
S(q.i0) =2 = f d7e "} | T p(q, (- q,0)|D),
I
(19)
T, is the complex time 7 ordering operator, and

plq) = 2 YK, q)c), g oCk.o- (20)
k,o

The scattering amplitude vy is determined from the Ra-
man matrix elements and incident or scattered light po-
larization vectors as

yk,q) = X Vo pk.q)ele?, (1)
a,B

with

s {(k + q|pfk Xk, |pg|k)

k,q) =6,5+—
)/a,,B( q) s m kV Ek — Eku + ﬁwi

(ke q|p?|ky><kv|pf|k>‘|‘ (22)

Ek+q - EkV - ﬁws

Here pffszp“eﬂ‘lif'. The dynamical effective density-

density correlation function or Raman response S can be
written in terms of a dynamical effective density suscep-
tibility y via the fluctuation-dissipation theorem,

~ 1
S(q,Q0) = - —{1 +n(Q.T)}x"(q, ),

with n(Q),T) the Bose-Einstein distribution and

X(q.Q) ={[p(q),p(— @) )a, (23)

where (()) denotes a thermodynamic average as in Eq.
(19). Thus for noninteracting electrons the Raman re-
sponse is given as a two-particle effective density corre-
lation function and can be calculated easily using, e.g.,
diagrammatic techniques or via the kinetic equation
(Devereaux and Einzel, 1995), from which Eq. (7)
emerges. This reduces to evaluating the bubble diagram
depicted in Fig. 6 with vertices y depending upon the
incident and scattered photon frequencies.

8We remark that technically these expressions must be modi-
fied if a resonant condition is satisfied. In that case one needs
to expand to higher terms in the vector potential to capture
resonance effects as perturbation theory breaks down. Yet for
low-energy Raman scattering, in most cases this is not crucially
important since in real materials the intermediate states
reached via a direct resonance are quite broadened by interac-
tions and the resonant terms are not orders of magnitude
larger than nonresonant terms. Thus this treatment may be of
more general utility.
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The vertex y depends on polarization, but does not
depend sensitively on q for g<kp. This can be made
more obvious if we consider the sum over intermediate
states k, in Eq. (22). The sum over intermediate states
includes both the band index of the states created from
the initial state (i.e., the conduction band) as well as in-
termediate states separated from the conduction band.
The matrix elements of the former are proportional to
the momentum transferred by the photon, which in the
limit g <kp are smaller by a factor of (vy/c)? than the
other terms, with vx(c) the Fermi (light) velocity, and can
be neglected (Pines and Nozieres, 1966). For the remain-
ing sum over the intermediate states separated from the
conduction band, we assume that fiw; <|E), —E,| and
recover the widely used effective-mass approximation

1 FPE,
WP dkakg
The symmetry classifications listed in Table I thus can
connect excitations created by certain polarization ori-
entations to properties of the band structure. Yet it must
be kept in mind that this connection can only be made in
the limit of small Aw, .

Yo 5(K,q — 0) (24)

2. Im(1/€) and sum rules

We consider first the case when the incident polariza-
tion is parallel to the scattered polarization and the band
Ey is isotropic and parabolic, as for the electron gas or
lightly filled isotropic band metal. The scattering ampli-
tude 7 is then independent of k and the effective density
p(q) is simply proportional to the pure charge density p.
Using the definition of the complex dielectric function
(Pines and Nozieres, 1966; Mahan, 2000)

6(‘]=Q) =1- Vqurr(qaﬂ) (25)

is obtained with v, the bare Coulomb interaction, and
Xsc 18 the screened or irreducible polarizability. It is de-
termined from the full polarizability y via

a0 = X 26

Xirr(4,€2) T+ vox(@.Q) (26)

but is most easily identified diagrammatically as all con-

tributions to the polarizability which are irreducible with

respect to the interaction. The dynamical density-density
correlation function (or structure factor) follows as

1 1
S(q,Q) =- ﬂ_—vq{l +n(Q, T)}Im{m} . 27)

From Egs. (20), (24), and (27), the Raman response S is
proportional to S with a constant of proportionality de-
termined by the ratio of effective to free-electron mass.

Inelastic light scattering occurs via the creation of
charge fluctuations inside the unit cell which are coupled
via the Coulomb interaction to charge fluctuations in

This is derived in Appendix E of Ashcroft and Mermin
(1976).
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other unit cells. These intercell excitations are therefore
well screened by the Coulomb interaction and reduce
the scattering cross section at small g. In particular, for
small ¢, x(q,Q)~N2ig?/Q% and the response is gov-
erned by the plasma frequency. The Raman response
thus obeys the longitudinal sum rule resulting from
particle-number conservation (Pines and Noziéres,
1966),

” 1 21 Ne?
f 400 Im{ ]23921: <, (28)
0 eq.)] 2P m

where (), is the plasma frequency and N is the number
of electrons of mass m and charge —e in the system. Thus
the only contribution for ¢ —0 comes from exciting the
plasmon being the only charge excitation available for
light scattering at small g in a free-electron gas.

3. Intracell vs intercell charge fluctuations

In the more general case of light scattering in solids,
the Raman response may have other contributions com-
ing from intracell charge fluctuations provided the band
structure is nonparabolic, as pointed out by Platzman
(1965) and Wolff (1968). Then light can create aniso-
tropic charge fluctuations which are zero on average in-
side the unit cell and thus are not screened via the long-
range Coulomb interaction, as pointed out by Abrikosov
and Genkin (1973). The general expression for the
screened Raman response function Xsyfy can be written as
(Monien and Zawadowski, 1990; Devereaux and Einzel,
1995)

XyaX1.,y n Xy1X1,y

XSC’
X1,1 Xil

where x,.= X1,1(1—Vq)(1,1)_1- This is an exact expression,
where the subscript y denotes the effective Raman den-
sity and 1 denotes the pure charge density, obtained
when the momentum-dependent vertex vy is replaced by
a constant. The respective x’s describe the density-
density, density-Raman density, and Raman density—
Raman density susceptibilities which are again each ir-
reducible with respect to the interaction.

The first term in Eq. (29) is the bare response for a
neutral system, and the other terms represent the back-
flow needed to enforce particle number conservation of
charge density fluctuations and gauge invariance. These
terms are important for light-scattering configurations
which transform according to the symmetry of the lat-
tice, such as Ay, in Dy, crystals. In particular, if we con-
sider scattering from pure charge-density fluctuations
where v is a constant independent of momentum, which
is an A;, representation, the first two terms in Eq. (29)
cancel and y,. and Eq. (27) are recovered. This is ines-
capable for ¢g=0, since then the scattering operator is
given in terms of the total density of electrons, which
commutes with the bare Hamiltonian and therefore can-
not give inelastic-scattering channels to light. On the
other hand, if we consider the scattering vertex vy to de-

(29)

sC _
Xyy= Xyy
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pend on wave vector, the backflow terms are not capable
of completely canceling the bare Raman response.
Momentum dependence of the vertex vy is quite gen-
eral for electrons in solids. In particular, for crossed light
polarizations projecting out representations of lower
symmetry than that of the lattice x,; is identically zero
by symmetry for g=0 and the backflow terms make no
correction to the Raman cross section. This occurs for
Big, By, and E, scattering geometries in Dy, systems
such as cuprates, for example. While there is no conser-
vation law for light scattering from the excitations cre-
ated by crossed polarizations (Kosztin and Zawadowski,
1991) there are sum rules which relate the Raman inten-
sity to model-dependent potential energies projected in
different regions of the BZ (Freericks et al., 2005).

C. Formalism: Strong correlations

1. General approach to treating correlations

Section II.B outlined a general approach to inelastic
light scattering when the intermediate states differ from
the initial and final states only by individual single-
electron energies. This holds in the limit of weakly inter-
acting electrons. In this section we show that the formal-
ism is also valid in the Heisenberg limit of the Hubbard
model including the manifold of zero and single doubly
occupied sites. These are two limits in which either the
kinetic energy or the potential energy of electrons is
dominant. However, the more general case of interest to
most systems is tackling the problem when both kinetic
and potential energies are roughly equal. The interac-
tions are sufficient to give broad spectral functions as
measured by ARPES, where the incoherent part of the
spectral function is manifest from the strong many-body
interactions mixing individual electron states.

In this situation, one must resort back to Eq. (13) and
correlation functions involving two, three, and four par-
ticles are needed, as depicted in Fig. 6. Yet usually one is
not interested in treating many-body correlations over
various bands and puts focus on a few bands close to the
Fermi level having strong correlations. For example, in
cuprates one usually takes downfolded Hamiltonians in-
volving only Cu 3d,2_> and O 2p, , orbitals, with short-
range Coulomb interactions for two electrons in on-site
or neighboring orbital states. The downfolding proce-
dure, such as that described by Lowdin (1951) and
Andersen et al. (1995), removes all other bands (effec-
tively moving them infinitely far away in energy from
the focus bands), such as the apical oxygen, Cu 4s, and
other Cu d orbitals, and treats electrons in the bands of
interest as having renormalized energy dispersion. In cu-
prates the downfolding results in either a few bands
from local density approximation (LDA) approaches in
one case or cell perturbation theory in the strongly in-
teracting case. Thus we consider a downfolded tight-
binding Hamiltonian
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HO— 2 tl/ ta']U'+Hmt7 (30)
(i)

where 7;; are the effective hopping integrals resulting
from the downfolding procedure, and H;,, describes the
relevant interactions. For example, we consider a square
lattice of electrons with strong on-site repulsion U much
greater than the electron hopping ¢ in the Hubbard
model,

——IE c”,c,,,+ Uzn,Tn,l, (31)
(ij),o

where (i,j) denotes a sum over nearest neighbors.

The electronic eigenstates fall into two bands for large
U at 1/2 filling—e.g., the occupied lower and unoccu-
pied upper Hubbard bands—separated by an energy U
for double occupancies. Away from half-filling, quasipar-
ticles develop. The microscopic Hamiltonians can be
viewed as families of models related to the Hubbard
model, such as the Falicov-Kimball model, Anderson
model, or Anderson-Fano model, without loss of gener-
ality.

In essence, the sums over intermediate states in Eq.
(13) are separated into groups of bands lying far away in
energy from the initial and final states (i.e., the bands
projected out) and bands lying nearby the initial and
final states (considered bands with correlations). The
former grouping of intermediate states are considered as
in Sec. II.B to be approximated by the effective-mass
contribution, Eq. (24). The remaining terms involve ma-
trix elements of the current operator between the re-
maining band of interest."

The interaction of light with these downfolded elec-
trons can be treated via the Peierls construction, in
which the creation and annihilation operators develop a
phase,

Cig— c,»’,,expl - i(e/ﬁc)f A- d€] . (32)

The resulting scattering Hamiltonian obtained by ex-
panding in powers of A reads

€
Hin= 7 A+ s 22 AuTapAp, (33)
where
J.(q T(k +q/2)c, (k- q/2) (34)

is a component of the current operator j and

%We remark that this is not exact as it inaccurately treats
resonant scattering processes occurring within the conduction
band. Since these processes are usually taken to be damped,
even though this approach is, strictly speaking, not exact, it
provides a good starting point for considering Raman scatter-
ing in correlated single-band systems, and as such has been
widely used (Shastry and Shraiman, 1991)
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P
gl = S, 22 s

k+q/2)c, (k- q/2 35
ké’k&kﬁ(+q)c(q) (35)

is the stress tensor operator. Both operators are thus
formed from the energy dispersion of the downfolded
band structure. The matrix element can be written in
compact form:

Mp,(q) = > eiaefeM “#(q),
@B

<F|fﬁ(q\)| V>< V|fa(qi) |I>
Ev - E] - ﬁwi

MF(q) = (F|Fap@|D + > (

) <F|ja(q,->|v><vliﬁ<qs>lf>) | (36)

EV—E1+ﬁwS

with the sum over intermediate states v of the Hamil-
tonian Eq. (30). The Raman cross section can be sepa-
rated into nonresonant, mixed, and resonant contribu-
tions:

R(Q) = Ry(Q) + Ry(Q) + Rg(£2), (37)
where the nonresonant contribution is
exp(- BE))
RMQ) =X =95V 0 Ep— B~ 1), (38)
LF

the mixed contribution is

E ~(S) KU
Ry() = 3 SPCEED ’){m(—’——“’”’

LF Z E,-E;-ho;
BE ), (
E —E1+hws EV—E[—ﬁC!)i
() 3(0)
J12dvF ~s.i
YO Er—-E,—hQ),
E,—E;+h S)"}v’] (Ep=E,~h)

(39)
and the resonant contribution is

s eXp(—BEz)( TSk
Z EV—E[—h(l)l‘

RR(Q)) =
LFw'

i )(
EV E["l'ﬁ(l)s

i) As)
]F vl N

y
EV/ - E]'Fh(l)s

Hs) (D)
]F V’]V’ N

V’_El_hwi

) SEp—E;—hQ). (40)

We have introduced the terms

’V’S = E eia/)\/aﬂ(q)esﬁ’ ]'-“(is 2 ea]a(qi,s)v (41)
aB

and denote O, as the matrix element («|O|\). Some of
the contributions are depicted diagrammatically in Figs.
8-10 for the nonresonant, mixed, and resonant terms,
respectively. In the limit D — these are the main dia-
grams to consider. Additional diagrams involving multi-
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FIG. 8. Feynman diagrams for nonresonant Raman scattering.
The wavy and solid lines denote photon and electron propaga-
tors, respectively. The cross-hatched rectangle is the reducible
charge vertex. The symbol y denotes the stress-tensor vertex
of the corresponding electron-photon interaction. From
Shvaika et al., 2005.

T
=

particle vertex renormalizations generally contribute for
finite dimensions (not shown).

In general, the matrix elements that enter into Egs.
(38)—(40) are not easy to calculate for an interacting sys-
tem, so the summations are problematic to evaluate. In
particular, one needs to evaluate the irreducible stress
and current vertices, depicted in Figs. 8-10 by the
hatched symbols. Contributions to these vertex dressings
include many-particle renormalizations. A particularly
complicated one is shown in Fig. 11 which represents
four-particle vertex corrections. Moreover, analytic con-
tinuation must be performed to obtain the Raman re-
sponse R({)) on the real axis from the imaginary axis.
While this is relatively straightforward for the nonreso-
nant case, mixed and resonant cases are problematic be-
cause of the complicated dependences on each of the
frequencies w;,{) which have to be analytically contin-
ued. While this continuation has been worked out re-
cently, evaluating these diagrams for general interactions
has proved elusive.

The overall complexity of the problem limits the
evaluation of the light-scattering cross section to generic
interacting systems. Only recently, these diagrams have
been evaluated exactly in a DMFT treatment of the
Falicov-Kimball model (Shvaika et al., 2004, 2005).

2. Correlated insulators—Heisenberg limit

To emphasize the generality of Eq. (13) we now con-
sider the large U limit for the insulating half-filled two-
dimensional Hubbard model. Following Shastry and
Shraiman (1991) we consider a system with N interacting

FIG. 9. Feynman diagrams for the mixed contributions to Ra-
man scattering. The symbols j; and j; remind us to include the
relevant vertex factors from the current operator in the
electron-photon interaction. From Shvaika et al., 2005.
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FIG. 10. Feynman diagrams for the resonant contributions to
Raman scattering. From Shvaika et al., 2005.

electrons in which the manifold of states can be classi-
fied by the number n of doubly occupied sites. The well-
known Heisenberg Hamiltonian emerges from project-
ing the Hubbard model down onto the reduced Hilbert
space containing no double occupancies:

HHeisenberg = JE Si*Sits (42)
i,6

with J=4¢2/ U the Heisenberg exchange constant. Higher
manifolds containing #» empty holes and doubly occu-
pied states can be labeled according to the net spin con-
figuration {o} of the N—2n singly occupied sites, as well
as the locations {R} of the empty ry,,. and doubly occu-
pied ryoupie sites. We denote these states as |n;{o};{R}).
These states are connected to each other via
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FIG. 11. Feynman diagrams for a typical parquetlike renor-
malization. This resonant diagram has simultaneous horizontal
and vertical renormalizations by the two-particle reducible
charge vertex. From Shvaika et al., 2005.

1:{0"1{R}) = ] (aoupie) Co(Tnore)|05{0}), (43)

where |0;{a})=Il,c] (r)lvac) and |vac) denotes the
vacuum. '

Light scattering thus occurs via transitions out of the
manifold of singly occupied states. To leading order for
large U, only the n=0 and n=1 manifold of states con-
tributes to light scattering via Eq. (13), with n=0 denot-
ing the ground state and n=1 the manifold of interme-
diate states having one doubly occupied and one empty
site. The first term containing m,, g cannot contribute for
the half-filled lattice, and thus only interband scattering
between the upper and lower Hubbard bands occurs via
the p- A term. The energy difference between these ex-
citations is U to lowest order in ¢/ U, allowing us to write
the matrix element Eq. (13) in the form

Mpi= 2

0:{a ()&, - d1:{o,}:R,)

vrr' 8,6
X(1:{o};R,|&; - 8'(x)]0:{o})
1 1
X (44)

U-to,  U+ho, |’

with the current operator defined as

f,»’s(r) =itlci(x+ ba- €;,)c,(r) — clr)e,(r+ éa- el
(45)

Here é'is a unit vector connecting a site with its nearest
neighbors. The intermediate states v represent a sum
over spin configurations and locations of both the dou-
bly occupied and hole sites. Substituting Eq. (43) into
Eq. (44) collapses the intermediate state sum, leaving
four terms connecting initial and final states. Using the
identity 1/2-2S;-S;=c'(r+ da)c(r)c(r)c(r+8a) valid in
the manifold of singly occupied states, one obtains the
light-scattering Hamiltonian of Elliot and Loudon (1963)
and Fleury and Loudon (1968),
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Hepp =2 St Sroaal€y - 6)(&;- 0)

r,0
1 1

X + .
U-thw; U+ho

(46)

We note that the polarization dependence is crucial as
well. For xx+yy polarizations projecting the fully sym-
metric components, the light-scattering Hamiltonian Eq.
(46) commutes with the nearest-neighbor Heisenberg
Hamiltonian Eq. (42) and thus does not give inelastic
scattering in the A, channel. Moreover, B,, (xy) is also
identical to zero. As a result, a large signal appears only
in the By, channel (xx—yy). These restrictions are lifted,
however, if longer range spin interactions are considered
(Shastry and Shraiman, 1991).

The collapse of the intermediate states allowed us to
replace the operators with projected spin operators con-
fined to the restricted Hilbert space of the n=0,1 mani-
folds. Thus in this limited Hilbert space the formalism is
similar to noninteracting electrons in that the operators
appearing in the scattering matrix may be simplified. If
the Hilbert space is enlarged to include larger manifolds,
then this would no longer be the case, and thus including
terms to higher order in ¢/U becomes highly nontrivial
and is still one of the challenges to merge a weakly in-
teracting picture into a strongly interacting one.

We note that Eq. (46) was derived effectively as an
expansion in t/(U-fiw;). Therefore the scattering Hamil-
tonian is limited to cases when both the number of holes
and double occupied sites are restricted and off-
resonance conditions apply, with the incident photon en-
ergy fiw; far away from U. Efforts to extend the treat-
ment to more general conditions involve understanding
the motion of holes or doubly occupied sites in an arbi-
trary spin background. This has proved to be a hard
task.

D. Electronic charge relaxation

In Secs. II.B and II.C we reviewed the general formal-
ism of the theory of Raman scattering for weakly and
strongly correlated systems. In this subsection we now
specify the electronic states from which light can be scat-
tered and review the various theoretical treatments for
specific models of interacting electrons. Emphasis is
placed upon how symmetry can be used to highlight
electron dynamics on regions of the BZ, and general
features for each model system will be presented. We
first consider the case where the correlations among
electrons are weak.

1. Weakly interacting electrons

In this subsection, we consider electrons as having
very well defined eigenstates labeled by energy and mo-
mentum and having sharp spectral functions. Apart
from the form of the energy dispersion §, the results are
rather general and governed largely by phase space con-
siderations. We must, however, consider the long-range
Coulomb interaction in order to account for charge
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FIG. 12. Raman response of an electron gas. From Platzman,
1965.

backflow and screening, and we utilize the results de-
rived in Sec. I1.B and the general expression Eq. (29).

The use of y, rather than y takes into account the
most drastic manifestation of the long-range Coulomb
interaction, viz., screening. For weakly interacting elec-
trons, the random-phase approximation (RPA) is accept-
able, which replaces y, by the Lindhard function for
noninteracting electrons. The response functions are de-
termined by the Lindhard kernel,

Jl&) — fldiig)
— g H A0S

2
Xan( @) = = ay gbrg (47)
V k gk

for general vertices a,b appearing in Eq. (29). In a free-
electron gas, the Raman response is given by Eq. (27) or,
equivalently, the last term in Eq. (29). For large ¢, col-
lective excitations are unimportant and light scattering
occurs via creation of particle-hole excitations in the
Landau continuum. However, as the only phase space
for creating particle-hole pairs comes from finite g trans-
ferred from photons, the resulting response is a con-
tinuum varying linearly with () at small frequencies and
extending up to a cutoff ),=vyq from the borders of the
continuum (Mahan, 2000). The low-energy intensity is
proportional to g%, and the only excitation left at g=0 is
the collective plasmon. The Raman response for the
free-electron gas is shown in Fig. 12.

For electrons in a solid, however, the nonparabolicity
of the energy dispersion results in charge fluctuations
which are anisotropic in the small g limit and thus can
survive screening and give more weight at low-energy
transfers. Formally, an additional contribution to the re-
sponse is given by the first two terms in Eq. (29). Yet
phase-space restrictions still produce an inescapable cut-
off at Q.=vyq (Wolf, 1968), and the response resembles
that shown in Fig. 12. This is also the case if scattering
occurs for the two-dimensional electron gas 2DEG) in
the absence of a magnetic field (Jain and Das Sarma,
1987; Mishchenko, 1999) or for complex Fermi surfaces
(Ipatova et al, 1983). An RPA treatment for resonant
scattering has been given by Wang and Das Sarma (1999,
2002).

Recently, substantial progress has been made in un-
derstanding the Raman response in the integer or frac-
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tional quantum Hall regimes of the 2DEG. Space limi-
tations do not allow us to review these systems; so for
brevity, we cite only a recent reference (Richards, 2000).

2. Impurities

Excitations at low energies in noninteracting elec-
tronic systems can arise for small g via electronic scat-
tering from impurities, where momentum contributed by
Impurity scattering can provide phase space for electron-
hole creation which is anisotropic in the Brillouin zone.
For example, if one considers a general electron-
impurity interaction of the form

B
Himp: E Vk,k’ck,g-ck’,(rs (48)
kk',o

with an anisotropic interaction Vy y/, the gauge-invariant
Raman response is given via the diagrams presented in
Fig. 8. If we make a symmetry decomposition of the
scattering amplitude y(k)=2;y; ®; (k) in terms of basis
functions ®; of the Brillouin zone, the resulting re-
sponse in channel L corresponding to a particular light
polarization orientation has a Drude Lorentzian form
(Fal’kovskii, 1989; Zawadowski and Cardona, 1990; De-
vereaux, 1992):

X'(q,Q) = m% (49)

)2’
with N the density of states at the Fermi level. 1/7,
=1/7+Dg’-1/ 1 is the effective scattering rate where

ds as
Vr=1/7_ 0_nNFf kf—“|vkk,| ) (50)

involving an integration over the Fermi surface Sy nor-
malized to the Fermi area S. Here n; is the impurity
concentration and D = %v%r is the diffusion constant. The
anisotropy of impurity scattering is characterized via or-
thonormal basis functions ®;

Vi = 2 @D, (K)V, 0, (51)
L,L’

using an intelligent basis where the interaction is diago-
nal Vi ; =6, V. Then, 1/7,=27n;NpV; and 1/7;_ is
the dominant contribution.

The resulting Raman spectrum (Fig. 13) grows linearly
with frequency (), decays as 1/}, and has a peak when
Q7, equals 1. The width of the Lorentzian reflects the
rate at which charge-density excitations having symme-
try L decay into all other channels. Light polarizations
select the type of excitation L created, and thus allow a
way to probe the anisotropy of the impurity-electron in-
teraction. The decay of the charge-density fluctuations
can occur via finite g through the diffusion term and all
contributions other than V; which relax electrons out of
the state L. Put another way, Dg>+1/7 are “scattering
out” processes, while 1/7; is a “scattering in” process,
giving an effective scattering rate 1/7,. This is a conse-
quence of a gauge-invariant treatment including charge
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FIG. 13. Raman response from impurity scattering in an oth-
erwise noninteracting system. From Zawadowski and Cardona,
1990.

backflow (Coulomb interaction) as well as density pre-
serving scattering (impurity vertex corrections).

In the limit of weak scattering, the response collapses
into a delta function, reflecting momentum conserva-
tion. One can note the obvious connection of the re-
sponse plotted in Fig. 13 to the Drude conductivity, al-
though even for simple impurity scattering the two
response functions are not related by a power of fre-
quency as soon as the impurity potential has any mo-
mentum anisotropy. Otherwise, for purely isotropic im-
purity scattering the conductivity and Raman response
are related by a power of frequency—the so-called
Shraiman-Shastry relation given in Eq. (6) (Shastry and
Shraiman, 1990; Freericks and Devereaux, 2001).

3. Interacting electrons—nonresonant response

However, the most important application of light scat-
tering is for systems where the electronic correlations
are strong and cannot be treated in standard RPA. Thus
while long-range Coulomb screening is still important in
order to maintain gauge invariance, the interactions in-
troduce generally complex dynamics in specific regions
of the BZ. In this case, the electron self-energy 2 as well
as the vertex corrections to the light-scattering ampli-
tude y depend normally on both momentum and energy,
making the light-scattering evaluation more difficult. On
the other hand, anisotropies of the electron dynamics
can be explored.

Here we start by considering nonresonant scattering,
since this is an area in which by far most theoretical
treatments lie, as it is simpler to evaluate than the mixed
or resonant terms. We note that many calculations of
Im(1/€) have been performed from ab initio approaches
in the context of inelastic x-ray scattering [see Gurtubay
et al. (2004), and references therein for recent work].
There, the focus is largely on the q dependence of the
response, and electron-electron interactions have been
treated in various ways (Ku et al, 2002). Yet, to our
knowledge, no calculation exists for Raman scattering in
a simple Fermi liquid in which inelastic-scattering pro-
cesses via the Coulomb interaction are incorporated ex-
actly, although recently dynamical mean-field theory
(DMFT) in correlated metals has been used (Freericks
and Devereaux, 2001). This is because the irreducible
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charge vertex is not generally known in models with
strong correlations, with the exception of the Falicov-
Kimball model. Thus we focus more on the polarization
dependence and investigate contributions to Raman
scattering from nonconserved charge fluctuations.

The general expression for the two-particle correla-
tion function describing the nonresonant Raman re-
sponse reads

Xy,(q =0,iQ) = - 12 > A K)Gk,iw) Gk, i+ iQ)
' VBiw &

XT(k:iw;iQ)). (52)

Similar expressions are obtained for x,; and x;; where
the vertices y and I" are successively replaced by 1 to be
inserted into Eq. (29), or may be generally represented
in terms of the Raman vertex as shown in Fig. 8. In the
ladder approximation, the renormalized vertex is given
by a Bethe-Salpeter equation:

[(k;iw;iQ) = v(K) + VLE S VEk-K,io—io)

io k'
XG(K',io" )G io' +iQ)
XI'(K jiw";iQ)). (53)

Here V(k,w) is the generalized electron-electron inter-
action, and we have suppressed spin notation. If one
neglects vertex corrections such that the theory is not
gauge invariant, the Raman response has a particularly
simple form given by Eq. (3). The effect of the long-
range Coulomb interaction is treated formally in the
same way as in Eq. (29), with the vertices replaced by
the renormalized vertex as a solution to the Bethe-
Salpeter equation (53).

Equations (52) and (53) have been the starting point
for many studies of light scattering treating electron-
electron interactions in effective models. These include
systems which have nearly nested Fermi surface seg-
ments (Virosztek and Ruvalds, 1991, 1992) or antiferro-
magnetic spin fluctuations (Kampf and Brenig, 1992; De-
vereaux and Kampf, 1999). Similarly, a slave boson
approach to the ¢-J model (Bang, 1993), electron-phonon
interactions (Kostur and Eliashberg, 1991; Itai, 1992;
Kostur, 1992; Rashkeev and Wendin, 1993), and
fluctuation-exchange (FLEX) treatments of the Hub-
bard model (Dahm et al., 1999) have been considered.
While these studies involve approximate solutions, more
recently the use of DMFT has provided exact results in
the limit of strictly local correlations in the Hubbard
(Freericks et al., 2001, 2003) and Falicov-Kimball models
(Freericks and Devereaux, 2001).

Two aspects of the Raman response are generally in
the main focus: the frequency dependence of the broad
continuum extending well past gvr, and the polarization
dependence. We discuss first the spectral response.

In the context of cuprates, Varma and co-workers
pointed out that a flat, nearly frequency-independent re-
sponse could be obtained if the imaginary part of the
electron self-energy depended linearly on frequency
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FIG. 14. Raman response as a function of temperature ob-
tained by Virosztek and Ruvalds (1992) for a system with a
nested Fermi surface.

(Varma, 1989; Varma et al., 1989). The response is then
given in terms of the scale-invariant ratio function of
hw/kgT that approaches a constant at large frequency
transfers. This can be understood phenomenologically
by re}l’)lacing 1/7-*L with 1/72(9, T)ocmax(kpT,7Q)) in Eq.
(49)."" A scale-invariant response at low frequencies is a
general consequence of systems in proximity to a quan-
tum critical point, but this scale invariance is broken
outside the quantum critical regime. Marginal Fermi lig-
uid behavior emerges, for instance, when scattering is
considered in a nested Fermi liquid (Virosztek and Ru-
valds, 1991, 1992), low Fermi-energy systems (Dahm et
al., 1999; Devereaux and Kampf, 1999) and slave-boson
systems (Bang, 1993). A broad background very similar
to marginal behavior is also found for strongly coupled
electron-phonon systems (Kostur and Eliashberg, 1991;
Itai, 1992; Kostur, 1992). As a representative example,
we show the response calculated by Virosztek and Ru-
valds (1992) for a nested Fermi liquid in Fig. 14.

Low-energy electron dynamics can be extracted by
studying the Raman response in the limit ) —0. Ne-
glecting vertex corrections, the low-frequency response
reads (Devereaux and Kampf, 1999; Venturini, Opel,
Devereaux, et al., 2002)

7. (k) f dé(- af’198) Zy(£,T)
234(ET)

XA(Q —0) = QN
(54)

Here Ny is the density of electronic levels at the Fermi
energy Er, 3, is the imaginary part of the single-particle
self-energy related to the electron lifetime as
11250 (w0, D=7(w,T), Zi(w,T)=[1-32(0,T)/dw]" is

UThis is only an approximation since 1/ TZ(Q,T) depends
now on energy. Causality requires that the relaxation function
has real and imaginary parts, M(Q,T)=Q\+i/7, (Gotze and
Wolfle, 1972; Opel et al., 2000).
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insulator transition at a value U=12 in the Falicov-Kimball

model for D=« (Freericks and Devereaux, 2001). All energies
and temperatures are measured in terms of the hopping ¢.

the quasiparticle residue, f is the equilibrium Fermi dis-
tribution function, and (- --) denotes an average over the
Fermi surface. Thus the inverse of the Raman slope

~ aXU(Q) -1
I (T)= {—ﬁ] (55)

measures the effective scattering rate of the quasiparti-
cles in a correlated metal, and can be best thought of as
a Raman resistivity.

In systems with isotropic interactions, the polarization
dependence drops out and the slope of the low-
frequency Raman response is given in terms the low-
energy quasiparticle scattering lifetime I' ,(T) =%/ 7(T) as
an extension of Eq. (49). Yet, in strongly correlated sys-
tems, the quasiparticle residue Z and, importantly, ver-
tex corrections, enter as well. In a correlated or a
strongly disordered metal (near an Anderson transition,
e.g.), however, a finite energy might be necessary to
move an electron from one site to another one. Thus in
spite of a nonvanishing density of states at the Fermi
level, as observed in an ARPES experiment, for in-
stance, no current can be transported and I',(7)
>f/7(T). This is an important difference between
single- and two-particle properties.

Figure 15 displays the inverse Raman slope defined in
Eq. (55), as determined via a DMFT treatment of the
Falicov-Kimball model in the vicinity of a metal-
insulator transition, as a function of the Coulomb repul-
sion U (Freericks and Devereaux, 2001). It provides an
illustrative example of how Fermi-liquid-like features
evolve as the lifetime of putative quasiparticles increases
due to decreased role of correlations. For small U, the
correlated metal displays an inverse slope *72 as a ca-
nonical Fermi liquid in the metallic state. A pseudogap
opening in the density of states with increasing U drives
the inverse slope into insulating behavior, increasing as
the temperature decreases.

As a second important application, Eq. (55) can illu-
minate the anisotropy of electron dynamics due to the
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FIG. 16. Polarization-dependent Raman response in a spin-
fermion model for a fixed temperature for three different val-
ues of the coupling constant. From Devereaux and Kampf,
1999.

momentum-dependent weighting factors of the polariza-
tion orientations and self-energies. The geometry of
light-scattering orientations, as given by the form factors
listed in Table I, project out the ratio of quasiparticle
residues and scattering rates in different regions of
the BZ. As a consequence, the Raman spectra show
polarization-dependent behavior determined largely by
the self-energies and vertex corrections near the regions
projected by the scattering vertices 7. Figure 16 plots the
B, and B,, Raman responses calculated in a spin-
fermion model in which electron scattering is most pro-
nounced involving antiferromagnetic reciprocal-lattice
momentum transfers Q=(, ), leading to “hot” quasi-
particles near the BZ axes (projected by By, form fac-
tors) and “cold” quasiparticles along the BZ diagonals
(projected by B,, form factors). Therefore the Raman
response has a sharp quasiparticle peak for B,, scatter-
ing at low energies due to the long quasiparticle life-
times, while the response in By, is dominated by strong
incoherent scattering leading to a suppression of the
quasiparticle peak at low energies and an essentially
structureless continuum.

Last, we note that the nonresonant Raman response
has also been calculated for exchange of fluctuation
modes at wave vectors Q and —Q for systems near a
spin-density-wave instability (Brenig and Monien, 1992;
Kampf and Brenig, 1992; Venturini et al., 2000) and a
charge-density-wave instability (Caprara et al., 2005).
Here the Raman response is sensitive to light polariza-
tions and has a peak centered at twice the energy of the
fluctuating mode.

4. Interacting electrons—resonant response

In addition to the nonresonant response, one has the
mixed and resonant contributions to consider. Typically
these diagrams are neglected in the weak correlation
limit, as they can be summed into two-particle response
functions as discussed in Sec. I1.B. In the insulating case,
only the resonant terms are kept, as the studies focus on
excitations across a charge-transfer or Hubbard gap.
This has been calculated in systems exhibiting one-
dimensional (1D) Luttinger behavior (Sassetti and
Kramer, 1998; Sassetti et al. 1999; Kramer and Sassetti,
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FIG. 17. (Color online) Cartoon of the two-magnon scattering
process in a 2D Heisenberg antiferromagnet. An incident pho-
ton causes an electron with spin o to hop leaving a hole and
creating a double occupancy in the intermediate state with en-
ergy «U. One particle of the double with spin —¢ hops back to
the hole site liberating a photon with energy ~U-zJo, leaving
behind a locally disturbed antiferromagnet with z exchange
bonds broken in the final state as indicated by dotted lines.

2000; Wang et al., 2004) where bosonization techniques
can be applied. Yet generally treating all diagrams on
equal footing is technically demanding. Only recently an
exact evaluation in DMFT has been performed (Shvaika
et al., 2004, 2005).

It is well known that many of the Raman signals in
correlated metals and insulators display complicated de-
pendences on incoming photon frequency w;. For ex-
ample, the B;, two-magnon feature at roughly 350 meV
in the thoroughly studied insulating parent cuprates has
a resonance for incident photon energies near 3 eV. As
a reaction to the experimental results in cuprates, much
theoretical work has been devoted to Raman scattering
in a two-dimensional Heisenberg antiferromagnet using
the Elliot-Fleury-Loudon model, Eq. (46).

In the nearest-neighbor Heisenberg antiferromagnet,
one treats the spin operators using a Dyson-Maleev rep-
resentation of magnons with dispersion 2J. In the ab-
sence of magnon-magnon interactions, at 7=0 a sharp
peak at 4/ appears as the top of the magnon dispersion
is heavily weighted by the B;, form factor. Beyond 4/,
the response abruptly falls to zero (Sandvik et al., 1998).
However, since light scattering is localized to neighbor-
ing spins, magnon-magnon interactions must be in-
cluded, and the peak becomes more symmetric and
shifts to ~3J via breaking six exchange bonds between
local neighbors, as shown in Fig. 17.

There have been many developments on the Elliot-
Fleury-Loudon model, which has been addressed via
critical fluctuation analysis (Halley, 1978), series expan-
sions (Singh et al., 1989), lower- (Parkinson, 1969; Morr
and Chubukov, 1997) and higher- (Canali and Girvin,
1992; Chubukov and Frenkel, 1995b) order spin-wave
theories, -/ studies at finite doping (Prelovsek and Jak-
li¢, 1996), exact diagonalization of small clusters (To-
hyama et al., 2002), excitonic cluster approaches (Hana-
mura et al., 2000), finite-temperature quantum Monte
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FIG. 18. The dependence of (a) the two-magnon B;, Raman
intensity (shown in the inset for w;=8¢) and of (b) the absorp-
tion spectrum on the incoming photon energy w; in a 20-site
cluster of the Hubbard model with U=10¢ (J=0.4¢). The solid
line in (b) is obtained by performing a Lorentzian broadening
with a width of 0.4¢ on the delta functions denoted by vertical
bars. From Tohyama et al., 2002.

Carlo methods (Sandvik et al., 1998), studies of bilayer
effects (Morr et al., 1996), two-leg spin ladders (Jurecka
et al., 2001), and ring exchange (Katanin and Kampf,
2003), giving a thorough treatment of two-magnon scat-
tering from spin degrees of freedom in the nonresonant
regime when the incident light energy does not match an
optically allowed interband transition energy. Scattering
from channels other than By, and describing the aniso-
tropic line shape of the response, have been addressed
via longer range spin-exchange interactions and by exact
diagonalizations of magnons coupled to phonons (Frei-
tas and Singh, 2000), using an earlier approach of Loren-
zana and Sawatzky (1995). Last, recent developments
concern scattering from orbiton degrees of freedom
(Okamoto et al., 2002) and scattering within a resonance
valence bond picture (Ho et al., 2001)."

These approaches fail when the laser frequency is
tuned near an optical transition. In this regime, based on
a spin-density-wave approach, Chubukov and Frenkel
(1995a, 1995b) have formulated a so-called triple-
resonance theory from which important features of the
spectra can be derived. Using a SDW approach to the
Hubbard model, they found that additional resonant
diagrams of the type shown in Figs. 10(h)-10(j) contrib-
ute to the usual Elliot-Loudon-Fleury terms, and de-
rived a resonance profile in good agreement with experi-
ments. In addition, recent results by Tohyama et al
(2002) have been obtained for the Raman response in
the resonant limit from both spin and charge degrees of
freedom. In Fig. 18 we show their results from exact
diagonalization of the Hubbard model with a 20-site
cluster (Tohyama et al., 2002). The two-magnon response
at roughly AQ=2.7J is resonantly enhanced when the
incident photon frequency is tuned to the Mott gap scale

°The reader is also referred to the review article by Lem-
mens et al. (2003) for reviews on the theorerical treatments of
magnetic light scattering in low-dimensional quantum spin
systems.
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U, in qualitative agreement with the results of Chu-
bukov and Frenkel (1995a, 1995b). Both approaches pre-
dict a resonant profile for two-magnon Raman scattering
which differs from the absorption profile, as shown in
Fig. 18. Tohyama et al. (2002) have pointed out that the
resonance energies for the absorption spectrum and the
two-magnon response are not the same, due to differ-
ences in SDW coherence factors.

5. Interacting electrons—full response

An approach treating the full fermionic degrees of
freedom, and simultaneously treating nonresonant,
mixed, and resonant scattering on equal footing, is still
in its infancy. The theoretical challenge in calculating the
full inelastic light-scattering response function is that the
mixed diagrams involve three-particle susceptibilities
and the resonant diagrams involve four-particle suscep-
tibilities. Only in the infinite-dimensional limit, where
most of the many-particle vertex renormalizations van-
ish (all three-particle and four-particle vertices do not
contribute; only the two-particle vertices enter), one can
imagine arriving at exact results. As an exception, the
full Raman response function can be calculated in the
Falicov-Kimball model, because the two-particle irre-
ducible charge vertex is known exactly in the limit of
large dimensions (Freericks and Miller, 2000; Shivaika,
2000).

Recently, Shvaika er al. (2004, 2005) obtained the full
electronic Raman response function, including contribu-
tions from the nonresonant, mixed, and resonant pro-
cesses within a single-band model. In general, the reso-
nance effects can create orders of magnitude
enhancement over the nonresonant response, especially
when the incident photon frequency is slightly greater
than the frequency of the nonresonant energy loss fea-
ture. The resulting Raman response is a complicated
function of correlations, temperature, incident photon
energy, and transferred energy. It was found that reso-
nance effects are different in different scattering geom-
etries, corresponding to different symmetries of charge
excitations scattered by the light.

Resonance effects were found as a function of both
the incoming and outgoing photon frequencies w;;. A
double resonance—occurring when the energy denomi-
nators of two pairs of the Green’s functions, appearing
in the bare response shown in Fig. 10, approach zero—
gives the strongest resonant enhancement of the re-
sponse (Shvaika et al., 2004). In addition, an interesting
resonance effect on both the charge-transfer peak and
low-energy peak was found when the incident photon
frequency is of the order of the interaction strength,
showing that in general the total response cannot be well
described as a uniform resonance enhancement of the
separable nonresonant response. In agreement with the
results of Tohyama et al. (2002), for an antiferromagnetic
system this is a direct consequence of the inseparability
of energy scales in the correlated electron problem, in
contrast to noninteracting electrons.
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Shown in Fig. 19 is the temperature- and symmetry-
dependent Raman response, including nonresonant,
resonant, and mixed terms in the Falikov-Kimball
model. In the insulating phase, spectral weight is de-
pleted for small energy transfers and piles up into the
excitations at energies of order U as the temperature is
lowered. The transfer of spectral weight from lower to
higher energies occurs across a temperature-
independent so-called isosbestic point. An isosbestic
point also appears in studies of the Hubbard model
(Freericks et al., 2001, 2003), implying that it is a generic
feature of the insulating phase, regardless of the micro-
scopic origin of the phase. We note that isosbestic be-
havior already appears in the nonresonant contributions
for By, scattering. In the A, and B,, symmetries, it
emerges only if resonant terms are included.

The local treatment of self-energies in the single-site
DMFT approach imposes limitations on the theory of
light scattering in correlated systems. In particular, the
full polarization dependence of the Raman spectra
would uncover the way in which correlations affect elec-
tron dynamics in regions of the BZ, providing a two-
particle complement to ARPES, for example. Progress
here most likely will come from cluster dynamical mean-
field theory able to treat nonlocal and anisotropic inter-
actions in a coarse-grained manner.

6. Superconductivity

As discussed in Sec. I1.D.1, in the absence of interac-
tions there is no phase space for low-energy Raman scat-
tering for q=0 momentum transfers. In the supercon-
ducting state, phase-space restrictions are lifted since
light can break q=0 Cooper pairs if the energy of light is
greater than 2A. Thus the Raman response becomes
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nontrivial, yet easily formulated in BCS theory. As a
consequence, there has been an enormous amount of
theoretical work devoted to light scattering for tempera-
tures below 7. as an extension of the theory for nonin-
teracting electrons in the normal state. We review that
work here.

In the superconducting state, focus has been tradition-
ally placed on the two-particle nonresonant response in
BCS theory. Formally the Raman response is given by
generalizing Eqs. (52) and (53) in particle-hole space us-
ing Pauli matrices 7,_5 3 in Nambu notation (Nambu,
1960):

2 .
x(q=0,iQ) =— V_ﬂ,zw §k‘, T #K)G(K,iw)

XI(k;iw;iQ)G(k,iw+iQ)], (56)

where Tr denotes the trace, and

. 1
[(K;iw;iQ) = K) + —2>, > Vik -k’ iw—iw)
Vﬁiw' k'

X6k io (K ;iw’;iQ)
XGK' i +i0)7. (57)

Here the bare Raman vertex of coupling to charge is ¥
=73y and the interaction V; determines the channel of
the vertex corrections. For example, V,_; corresponds to
interactions coupling electronic charge, while V,_, corre-
sponds to spin interactions.

For the case of weak correlations, the Green’s func-
tions appearing in Egs. (56) and (57) are given by the
BCS expression

A . iw?0+ E(k)’;@-’rA(k)’;']
Glkiw) == 0 a0y

(58)

with E%(k)=&(k)+A%(k) the quasiparticle energies. In
the weak-coupling limit for the BCS approximation,
V.3=-V for phonon-mediated pairing.

By far, the superconducting state has received the
largest amount of attention from theory, starting from
the seminal contribution of Abrikosov and Fal’kovskif
(1961), which predated the observation of the effect by
19 years. The main focus in the early years was to study
the 2A features in conventional s-wave superconductors
with small and large coherence lengths (Abrikosov and
Fal’kovskii, 1961, 1987; Klein and Dierker, 1984; Abri-
kosov and Falkovsky 1988), including the effects of Cou-
lomb screening (Abrikosov and Genkin, 1973) and ex-
amining the temperature dependence (Tilley, 1972). If
one neglects vertex corrections, the q-dependent Raman
response in a superconductor is given by a projected
Maki-Tsuneto function (Maki and Tsuneto, 1962),
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with the coherence factors A.(k,q)=1=x[&k)ék+q)
—-A(k)A(k+q)]/E(k)E(k+q). A more common expres-
sion is the Raman response for q=0 which simplifies to

2 A |2 (@)
‘N%““b"{ E(kJ anh\ o7

1 1
X(ZE(k)+Q+i5+ 2E(k)-Q—i5>‘ (60)

The full Raman response, including backflow, is once
again given by Eq. (29), in which the vertices a,b are
replaced by the Raman (a,b=7) and pure charge (a,b
=1) vertices (Abrikosov and Genkin, 1973).

For the case of an isotropic gap [A(k)=A] and mo-
mentum transfers q=0, a threshold and a square-root
discontinuity appears at twice the gap edge A, reflecting
the two-particle density of states. For finite q, the singu-
larity is cut off due to breaking Cooper pairs with finite
momentum, and the peak is shifted out to frequencies of
roughly vyg as in the normal state (Fig. 20). Qualita-
tively similar behavior is obtained for disordered s-wave
superconductors (Devereaux, 1992) in which 1/7'2 [see
Eq. (49)] assumes the role of vzq.

Further advances in the theory for conventional
s-wave superconductors were made for energy gaps with
small anisotropy (Klein and Dierker, 1984), coexistence
with charge-density-wave order (Balseiro and Falicov,
1980; Littlewood and Varma, 1981, 1982; Tiittd and
Zawadowski, 1992), layered superconductors (Abriko-
sov, 1991), impurities (Devereaux, 1992, 1993), and final-
state interactions (Klein and Dierker, 1984; Monien and
Zawadowski, 1990; Devereaux, 1993; Devereaux and
Einzel, 1995).

We note in particular that the variation with k of the
Raman vertices y(k) is coupled to the k dependence of
the energy gap A(k) [see, e.g., Eq. (60)], leading to a
strong polarization dependence of the spectra. For iso-
tropic s-wave superconductors, the vertex does not af-
fect the line shape, and thus the spectrum is polarization
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FIG. 20. Raman response for an s-wave superconductor for
qém/2=0.1, 0.5, 1.0, 2.0, 4.0, and 8.0, with &=Avy/mA the
Pippard-BCS coherence length ¢ and ¢g=1/6 the momentum
transfer in a metal with skin depth 6. From Klein and Dierker,
1984.

independent, apart from an overall prefactor. For this
case, a polarization dependence can be generated in
BCS theory by taking into account channel-dependent
final-state interactions (Bardasis and Schrieffer, 1961)
and/or impurity scattering. However, for the most part
this only produces a channel dependence in the vicinity
of the gap edge, and thus the main feature of the re-
sponse is the uniform gap existing for all polarizations.
For anisotropic energy gaps, the symmetry dependence
of the spectra is a direct consequence of the k summa-
tion (angular averaging), which couples gap and Raman
vertex and leads to constructive (destructive) interfer-
ence if the vertex and the gap have the same (different)
symmetry.

Generally, in superconductors with nodes of the en-
ergy gap, power laws in the low frequency and/or tem-
perature variation of transport and thermodynamic
quantities emerge, replacing threshold or Arrhenius be-
havior ubiquitous in isotropic superconductors. How-
ever, due to the averaging over the entire Fermi surface,
the power laws themselves do not uniquely identify the
ground-state symmetry of the order parameter, but only
can give the topology of the gap nodes along the Fermi
surface, e.g., whether the gap vanishes on points and/or
lines. Thus one cannot distinguish between different
representations of the energy gap which have the same
topology. For instance, for the case of d-wave tetragonal
superconductors, there are five pure representations
which have line nodes on the Fermi surface. Two-
particle correlation functions, determining the density,
spin, or current responses, do not have the freedom to
probe various portions of the gap or its phase around
the Fermi surface.
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With the advent of high-T. cuprates, a flurry of activ-
ity ensued on theory of Raman scattering in d-wave su-
perconductors (Monien and Zawadowski, 1989; Falk-
ovsky, 1990), specifically including polarization
dependences (Devereaux, Einzel, Stadlober, Hackl, et
al., 1994; Devereaux and Einzel, 1995), collective modes
(Devereaux and Einzel, 1995; Wu and Grffin, 1995a,
1995b; Dahm et al., 1998) impurities (Devereaux, 1995,
2003; Devereaux and Kampf, 1997; Wu and Carbotte,
1998), temperature dependences (Branch and Carbotte,
1995; Devereaux, 1995, 2003; Devereaux and Kampf,
1997), screening (Devereaux and Einzel, 1995; Branch
and Carbotte, 1996; Manske et al., 1997; Strohm et al.,
1998a), band structure and bilayer effects (Krantz and
Cardona, 1994; Branch and Carbotte, 1996; Devereaux
et al., 1996; Strohm and Cardona, 1997), surface and
c-axis contributions (Wu and Griffin, 1996; Wu and Car-
botte, 1997), resonant effects (Sherman et al., 2002) and
mixed-state pairing (Devereaux and Einzel, 1995; Nem-
etschek et al., 1998; Lee and Choi, 2002). The focus was
largely on how the symmetry selection rules could locate
the positions of the gap maxima and nodal points
around the Fermi surface.

For d,>_,» superconductors, the interplay of polariza-
tions and gap anisotropy can be simply drawn. Referring
to Fig. 7, By, orientations project out excitations around
the principle directions (M points or antinodal regions)
of the BZ where the superconducting gap is maximal
and where the van Hove singularity is located in the
cuprates, while B,, orientations project the nodal re-
gions along the diagonals. As a consequence, the Raman
response has a peak at 2A.,, for B, and at slightly
lower energy for B,,. The polarization dependence also
enters the low-frequency behavior. Since line nodes
yield a linear dependence on energy of the density of
states, the B, response depends linearly on %{) in the
limit () — 0 for a gap vanishing on the diagonals. For B,
orientations, in contrast, the Raman vertex vanishes
along with the energy gap at the same points in the BZ.
This yields an additional ? contribution from the line
nodes of the vertex, and the resulting response varies as
Q3. The unscreened Ay, response measures an overall
average throughout the BZ and thus picks up the gap
maxima as well as the linear density of states. This is
shown quantitatively in Fig. 21. The frequency power
laws also translate into low-temperature power laws of
the response in the dc limit (Devereaux and Einzel,
1995).

Disorder effects generally smear peak features and
change the low-energy B, exponent to 1, similar to the
change in the low-temperature NMR rate for d-wave
superconductors (Devereaux, 1995). Moreover, similari-
ties between the in-plane conductivity and B,, Raman
follows from the BZ weighting around the nodes, while
the By, response is qualitatively similar to the c-axis con-
ductivity due to the weighting around the antinodes
(Devereaux, 2003). For example, the residual in-plane
conductivity at 7—0 is universal and given by o(7=0)
=ne?/mmA,, the slope of the B,, response proportional
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FIG. 21. Raman spectra for unscreened Ay, (top), B,
(middle), and B,, (bottom) response as a function of reduced
temperature t=7/T,.. Here 2A ~37 meV, and the higher peak
in Ay, and By, channels is a van Hove feature. From Branch
and Carbotte, 1995.

to 2Np/ wA is also universal and insensitive to impurity
effects, while the B, channel and c-axis conductivity are
nonuniversal, having additional impurity dependent
prefactors (Devereaux, 1995, 2003; Devereaux and
Kampf, 1997). The slope of the B,, response follows the
temperature dependence of the in-plane conductivity,
and both possess a peak at intermediate temperatures
due to a balance of DOS and lifetime effects as tempera-
tures are lowered from 7. Yet, both the out-of-plane
conductivity and the B, response do not show a peak
due to the more rapid variation of the projected DOS
coming from antinodal portions of the BZ.

We note that for a d,, energy gap, the above discus-
sion applies accordingly, with the role of By, and B,,
symmetry reversed. It was indeed an important develop-
ment to show that Raman scattering is unique in deter-
mining two-particle electron dynamics in the supercon-
ducting state independently in different regions of the
BZ.

While low-frequency power laws are insensitive to
band structure (such as the shape of the Fermi surface),
the polarization selection rules can select features of the
band structure at higher energies. For example, in cu-
prates the van Hove singularities from (7r,0) and related
points yield a peak at twice the quasiparticle energy
E(k) in A, and By, channels, as shown in Fig. 21. For
multiple bands, including the case of several Fermi-
surface sheets, the responses for crossed polarizations
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FIG. 22. Comparison of the screened A;, response ob-
tained for different number of d,_,» gap harmon-
ics A(k):AO{[cos(kxa)—cos(kya)]/2+A1[cos(kxa)—cos(kya)]3/
8+A2[cos(kxa)—cos(kya)]5/32}. Here a-d correspond to the
set A1,=(0,0), (1,0), (0,1), and (1,1), respectively, and A, has
been rescaled to give the same value for the maximum gap.
Generally the large peak at 2A (as shown in Fig. 21) is sup-
pressed by backflow terms. From Devereaux et al., 1996.

are simply additive, yet for A, channels due to backflow
effects an additional interference term can be present if
the charge fluctuations are different for the different
sheets (Krantz and Cardona, 1994; Devereaux et al.,
1996).

Quite generally the backflow yields substantial reor-
ganization of spectral weight around 2A,,, compared to
the bare response (Branch and Carbotte, 1995; Dahm et
al., 1999). This is because the term y,,;, which contrib-
utes in channels having the symmetry of the lattice, is
peaked and large at the same position as the unscreened
term y,,,. Not surprisingly, the reorganization depends
delicately on the relative momentum dependences of the
Raman vertices and energy gap (number of BZ harmon-
ics, for example, as shown in Fig. 22), as well as on de-
tails of the band structure (Devereaux, Einzel, Stad-
lober, Hackl, et al., 1994; Krantz and Cardona, 1994,
Branch and Carbotte, 1996; Strohm and Cardona, 1997).

For cuprates, Raman vertices have been calculated us-
ing LDA (Strohm and Cardona, 1997), but limited
progress has been made in including the contributions of
substantial electronic correlations. In most other cases,
either the effective-mass approximation has been used
in calculations or simply a symmetry classification has
been made. While a detailed line-shape analysis can be
applied based purely on symmetry as explained above, it
must be kept in mind that even a comparison of overall
intensities between different geometries can at best be
qualitative.

Yet, the continuation of these treatments from the su-
perconducting to the normal state is not straightforward.
As can be seen directly from Eq. (60), the intensity van-
ishes proportional to A? as T approaches T,. Hence to
avoid phase-space limitations in the absence of Cooper
pairs, an additional source for electronic scattering, such
as the one mediating the formation of Cooper pairs,
must be included. While strong coupling extensions of
Raman scattering in d-wave superconductors have re-
cently been presented (Jiang and Carbotte, 1996; Dahm
et al., 1999; Devereaux and Kampf, 2000), a merging of
the normal and superconducting states is poorly under-
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stood. This would require a not yet existing microscopic
description of the formation of d-wave superconductiv-
ity from the normal state.

7. Collective modes

Raman scattering has the almost unique ability to sort
out collective modes of the two-particle response in dif-
ferent symmetry channels, owing to the freedom to in-
dependently adjust the two polarization vectors. The
collective mode spectrum one obtains depends upon
which interactions are included in Eq. (57). We first dis-
cuss the general consequences based on gauge invari-
ance and focus on excitonlike modes.

In order to form a fully gauge-invariant theory, the
interactions responsible for superconductivity appear

not only in G, but must also be included as vertex renor-

malizations I'. In this way, the Raman response from
pure charge-density fluctuations in the superconducting
state yields the Goldstone mode from the broken gauge
symmetry—the phase or Anderson-Bogoliubov mode
(Anderson, 1958; Bogoliubov et al., 1959; Nambu, 1960).
In the absence of the long-range Coulomb interaction,
this mode is a soft sound mode, yet the Coulomb
interactions—inescapable for q=0—push the sound
mode up to the plasma frequency via the Higgs mecha-
nism. As a result, particle-number conservation is satis-
fied in the superconducting state and y,.(q=0,)=0, in-
dependent of whether one considers Bloch states
(Abrikosov and Genkin, 1973; Klein and Dierker, 1984;
Monien and Zawadowski, 1990) or Anderson exact
eigenstates of the disordered problem (Devereaux,
1993).

However, additional modes of excitonic origin may
appear if one considers further interactions between
electrons in clean (Bardasis and Schrieffer, 1961) and
disordered (Maki and Tsuneto, 1962; Fulde and
Strassler, 1965) conventional superconductors. These ex-
citons appear split off from the continuum at #Q <2A if
the interaction occurs in higher momentum channels or-
thogonal to the BCS condensate.

Since Raman scattering couples to anisotropic charge-
density fluctuations with symmetry selectivity to differ-
ent channels L, light polarizations can be used to deter-
mine the exact nature of bound states. Balseiro and
Falicov (1980) considered the formation of a phonon-
Cooper-pair bound state due to electron-phonon cou-
pling though neglecting channels higher than L=0.
However, this mode is canceled by the backflow apply-
ing generically to all systems. Finite L exciton formation
in clean and disordered superconductors and the result-
ing appearance in Raman scattering have been consid-
ered explicitly by Monien and Zawadowski (1990) and
Devereaux (1993), respectively, bringing the symmetry
of the exciton and polarization dependence to light.

We show in Sec. II1.B that the effect of final-state in-
teractions can be substantial in strongly coupled conven-
tional superconductors. This demonstrates the strength
of the electron-phonon coupling, not only in general, but
also specifically in channels orthogonal to the ground
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state. Interestingly, the lattice instability found in some
of these materials has the same symmetry as the collec-
tive mode and electronic states which apparently drive
the transition (Weber, 1984).

For d,>_,> superconductors, the collective mode spec-
tra have been investigated thoroughly by Devereaux and
Einzel (1995) and others (Wu and Griffin, 1995a, 1995b;
Manske et al., 1997, 1998; Dahm et al., 1998; Strohm et
al., 1998). It was shown that the Anderson-Bogoliubov
mode appears in A, channels and massive modes can
appear in other channels. Since the pair state has only
one representation in the D, group, massive collective
modes arise when one considers interactions in orthogo-
nal channels. Recently, it has been suggested that the
presence of collective modes may allow one to distin-
guish charge- or spin-mediated d-wave pairing (Chu-
bukov et al., 1999, 2006), highlighting the possible impor-
tance in the context of cuprates.

Generally, the collective mode spectrum can be quite
diverse in unconventional superconductors. In principle,
additional broken continuous symmetries can exist, such
as SO spin rotational symmetry in spin-triplet systems
and SO§ orbital rotational symmetry in spin-singlet sys-
tems, if the gap does not possess the full symmetry of
the lattice. Furthermore, massive collective modes can
arise if the energy gap is degenerate or has an admixture
of different representations of the point group. The mas-
sive modes can in principle lie below the gap edge, and
can thus be relevant for the low-frequency dynamics of
correlation functions. In fact, Raman-active modes in
spin-triplet superconductors such as Sr,RuO, have
drawn recent theoretical interest (Kee et al., 2003), al-
though the experimental challenges are not negligible
because of the low T, and the related small energy gap
in these materials.

Though very interesting, spin-triplet pairing or spin-
orbit effects are rare and more on the exotic side in
superconductivity. Competing ground states, however,
are quite common whenever correlation effects come
into play. This is not at all confined to the cuprates, but
occurs also in, e.g., spin- and charge-density-wave sys-
tems. Usually, density-wave formation with long-range
order at least partially suppresses superconductivity
such as in 2H-NbSe, (see below). Then, additional
modes appear as a result of the competition between
CDW ordering and superconductivity, and collective
modes appear as one modulates either one or both order
parameters.

Littlewood and Varma (1981, 1982) and Browne and
Levin (1983) considered a direct coupling between
charge-density and superconducting gap amplitudes,
modulated, for example, by a CDW phonon, although
this was not specified. They obtained an additional gap
mode below 2A. Yet this mode was only considered in
the L=0 channel, and Coulomb interactions once again
remove this mode. Lei ef al. (1985) considered an effec-
tive CDW-SC coupling via a phonon and realized that in
anisotropic systems such collective modes in L #0 chan-
nels may appear. Finally, Tiitt6 and Zawadowski (1992)
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FIG. 23. Electronic Raman spectra of B symmetries for three
different doping levels including coupling of d-CDW and
d-superconducting amplitudes. The superscript 0 denotes the
spectra in the absence of collective modes. From Zeyher and
Greco, 2002.

treated electron-phonon and CDW amplitude-phonon
coupling on equal footing in finite angular momentum
channels, showing generally that the collective modes in
these channels are unaffected by Coulomb screening.
The modes obtained split off from the gap edge and
appear as excitations below the quasiparticle spectrum,
much like excitons in semiconductors. Evidence of
mixed CDW-SC pairing may be seen in Raman experi-
ments via the presence or absence of these modes. This
has recently been extended by Zeyher (2003) to MgB,,
having multiple energy gaps on different electron bands.

The collective mode spectrum of coupled d-wave
charge density and superconductivity was investigated
by Zeyher and Greco (2002) along the lines developed
by Tiitté and Zawadowski (1992) for conventional CDW
and superconducting systems. As for s-wave CDW su-
perconductors, collective modes split off from the maxi-
mum of the gap edge. As an important difference in
d-wave systems, the modes distinctly affect the various
symmetry channels. Besides the reorganization of the
Ay spectral weight, additional modes alter the By, spec-
trum, as shown in Fig. 23.

Density-wave instabilities need not necessarily com-
pete with superconductivity but rather can provide an
effective coupling mechanism (Castellani et al., 1995;
Perali et al., 1996) as long as quantum and thermal fluc-
tuations suppress long-range order. Then, collective
modes may appear as fluctuation-induced modes. Ra-
man scattering from these modes is usually determined
from Aslamazov-Larkin fluctuation diagrams considered
for the conductivity (Aslamazov and Larkin, 1968). To
overcome =0 phase-space limitations, the Raman re-
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sponse is given by the exchange of two fluctuations
modes at wave vectors Q. and —Q,, yielding generally a
mode at energies of twice the mass of the fluctuation
propagator. Once again the polarization dependence can
select different fluctuation modes corresponding to dif-
ferent ordering wave vectors coupling to either charge-
or spin-density modes. This was investigated for spin
(Brenig and Monien, 1992) and charge (Caprara et al.,
2005) fluctuations in the normal state, and for novel spin
resonances in the superconducting state of cuprates
(Chubukov et al., 1999, 2006; Venturini et al., 2000).

Last, we remark that many other types of collective
modes are possible if one considers more exotic ground
states with different symmetry classifications. For ex-
ample, a chiral spin liquid has been investigated by
Khveshchenko and Wiegmann (1994) in which helical
excitations were conjectured to exist and are in principle
measurable in A,, orientations which can be projected
out via proper sums of spectra taken with both linearly
and circularly polarized light. Other examples are modes
induced by magnetic fields or optical modes resulting
from Dzyaloshinskii-Moriya interactions in Heisenberg
antiferromagnets as observed recently in lightly doped
La, ,Sr,CuO,, 0<x=<0.03 (Gozar et al., 2005) and dis-
cussed by Silva Neto and Benfatto (2005), directly dem-
onstrating the importance of spin coupling to the local
environment.

III. FROM WEAKLY TO STRONGLY INTERACTING
ELECTRONS

In this section we review experimental results in sys-
tems other than doped semiconductors [see reviews by,
e.g., Abstreiter et al. (1984) and Pinczuk and Abstreiter
(1989)] and cuprates (see Sec. IV) with a view towards
signatures in the Raman spectra arising from the devel-
opment of strong electronic correlations. We discuss
various types of superconductors and summarize results
on correlated metals and other strongly interacting sys-
tems.

The light-scattering cross section in absorbing media,
such as systems with free carriers, is generally weak
since the interaction volume is small for the short pen-
etration depth of visible light, §<\;=27c/w;. As a con-
sequence, the momentum perpendicular to the surface is
not conserved, and the transfer q is no longer given by
the difference of the vacuum momenta of the involved
photons q,—q, but essentially by §=\/4wk with k the
imaginary part of the index of refraction (Abrikosov and
Fal’kovskii, 1961; Mills et al., 1970). Even in strongly
absorbing materials with k>1, 1/d<m/a holds where a
is the lattice constant, and the limit of small momentum
transfer is still effective. This introduces a new energy
scale ivpg=hvp/ 5, with vy and g being the magnitudes
of the Fermi velocity and the momentum transfer, re-
spectively. In all considerations, this scale must be put
into relation to other relevant energies, such as the elec-
tron scattering rate I'=7%/7 in the normal and the gap A
in the superconducting state. These at first glance aca-
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demic considerations have major impact on both the ob-
servability and interpretation of electronic spectra.

A. Elemental metals and semiconductors

In addition to the small scattering volume due to the
absorption of light by free carriers, a parabolic disper-
sion and a spherical Fermi surface reduce the cross sec-
tion of single-electron excitations in metals and degen-
erate semiconductors strongly, since in such systems the
associated density fluctuations are screened by the long-
range Coulomb interaction. The few spectra we are
aware of have been on elements with a more complex
band structure such as Nb (Klein, 1982a; Klein and
Dierker, 1984) or Dy (Klein et al., 1991). In Dy a broad
continuum similar to that in high-7. cuprates (Bozovic et
al., 1987) is found. In Nb the superconducting state was
studied. Due to the low transition temperature 7, the
correspondingly small energy gap A(7) and the small
ratio &6/ ¢ with 6 the penetration depth of the light and &
the superconducting coherence length the characteristic
redistribution of scattering intensity is very hard to ob-
serve. The peaks found at 1.8 K in the expected energy
range close to 2A(7) are very weak, and no normal-state
spectra have been measured for comparison (Klein,
1982a; Klein and Dierker, 1984).

In fact, superconductors rather than normal metals
were the main focus in the early days of electronic Ra-
man scattering. Only after the discovery of cuprates
(Bednorz and Miiller, 1986), with generally complicated
and sometimes very surprising electronic properties, did
studies of the normal state become increasingly attrac-
tive (see Sec. IV).

B. Conventional superconducting compounds

Among superconductors, intermetallic compounds
like NbsSn or V;Si with A15 structure can be considered
conventional both above and below 7. They are strictly
3D, superconductivity is mediated by phonons leading
to an essentially isotropic s-wave gap, and correlations
are believed to be of minor importance. This does not
mean they are simple. For instance, the Fermi velocity is
very small and close to the velocity of sound, and the
Fermi surface is multisheeted. Sufficiently perfect single
crystals of Nb;Sn and V;Si undergo a structural transfor-
mation from a cubic to a tetragonal lattice at low tem-
perature. Nevertheless, A15 compounds are paradigms
of strong-coupling s-wave superconductors with a high
density of electronic states at Ey. Materials like the bo-
rocarbides, MgB, or 2H-NbSe,, are certainly more com-
plex and correlations or multiband aspects come into

play.

1. A15 compounds

Superconductivity-induced structures close to twice
the gap edge were found in monocrystalline Nb;Sn (Fig.
24) and V;Si (Hackl et al, 1982, 1983; Klein, 1982a;
Dierker et al., 1983) two years after the discovery of gap
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FIG. 24. Raman spectra of Nb3Sn. Lower curves in (a) and (b)
are at 40 K and upper curves are at 1.8 K. Data in (c) and (d)
are at 1.8 K. Below 7,.=18 K the intensity at low energies is
strongly suppressed with respect to the normal state. Beyond a
threshold of approximately 50 cm™' a new peak appears. The
symmetries are E, [(a), (d)], T, (b), Eg+Aq, (c top), E, (c
middle), and A, (c bottom). The A, data in (c) are obtained
by subtracting the middle from the upper curve. Smooth solid
lines at low energy are theoretical fits to a broadened Maki-
Tsuneto function (see Sec. I1.D.6). From Dierker et al., 1983.

modes in 2H-NbSe, by Sooryakumar and Klein (1980)
(Sec. II1.C) and after an early but unsuccessful attempt
in polycrystalline NbsSn by Fraas et al. (1970). For T
< T, the scattering intensity is redistributed with a sup-
pression below and a pileup at approximately 2A
=50 cm™'. The well-defined peak in E, symmetry fol-
lows the BCS prediction for the temperature depen-
dence of the gap up to approximately 0.857 . (Hackl et
al., 1983, 1989). Somewhat unexpectedly, the peak fre-
quencies of the superconductivity-induced features de-
pend on the selected symmetry (Table II). Independent
of minor differences in the absolute numbers stemming
from the data analysis the E, peaks are significantly be-
low those having A, and T, symmetries. At first glance
one could think of a gap anisotropy to manifest itself.
However, there is no support from the tunneling results
which indicate the possible gap anisotropy to be oppo-
site in V3Si and Nb;Sn and very large or from calorimet-
ric studies which should track the smallest gap (Table II).
In addition, the shapes of the Raman spectra are
strongly symmetry dependent in that the E, peak is
much narrower than the others. The meaning of this an-
isotropy was a matter of intense discussion.

The results in A;, scattering symmetry in NbsSn
(Klein, 1982a; Dierker et al., 1983) and later in V;Si
(Hackl and Kaiser, 1988) demonstrate clearly that the
structures below 7. originate in light scattering from
Cooper pairs (Fig. 24), since there exist no Raman-active
single excitations at this symmetry, such as phonons or

TABLE II. Gap energies in A15 compounds as measured by Raman scattering and other methods. a
and c refer to results from fits (see Fig. 24 and Sec. I1.D.6), b and d are peak frequencies. In two cases
an anisotropy was found by tunneling being indicated by a range (f and k). The first and second
numbers are for [100] and [111] directions, respectively. Results of the following publications are
used: a (Dierker et al., 1983), b (Hackl et al., 1989), ¢ (Klein and Dierker, 1984), d (Hackl and Kaiser,
1988), e (Rudman and Beasley, 1984), f (Hoffstein and Cohen, 1969), g (Geerk et al., 1984), h (Junod
et al., 1983), i (Axe and Shirane, 1973), j (Moore et al., 1979), k (Morita et al., 1984), 1 (Tanner and

Sievers, 1973), and m (Perkovitz et al., 1976).

Raman energy (cm™!)

Sample Agg E, Ty Reference data (cm™')
50 tunneling
35-13 tunneling
52 41 50 a
Nb;Sn 53 tunneling
67 48 70 b
62 calorimetric
56 neutrons
37 tunneling
40-50 tunneling
40 c
V;Si 46 IR
55 42 52 d
41 IR
49 calorimetric
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other bosonic modes in the A15 structure from which
electrons can borrow intensity. There is not even an ob-
servable electronic continuum above 7. [see Fig. 24(c)
and Hackl and Kaiser (1988)]. In spite of similar band
structures and densities of states at the Fermi level
N(Ep) (Klein et al., 1978), the intensities of the modes
are quite different in the two compounds as is the over-
all scattering cross section. For this reason, the weak A,
mode in V;Si escaped detection for a while (Hackl and
Kaiser, 1988). Since there is nothing to interact with, the
peak frequencies of the Ay, structures should be close to
the energy gap in the respective material. One actually
observes coincidence of both the A, and T,, Raman
energies with those of bulk methods such as calorimetry
and neutrons, while the E, energies are substantially
lower (Table II).

We first note that surface sensitive methods such as
tunneling return somewhat smaller gap energies than
bulk methods. Optical spectroscopy results are also
smaller most likely due to surface treatment. Strain or
disorder can indeed reduce 7, in A15 materials since
N(Ep) decreases rapidly (Mattheiss and Weber, 1982).
Similar reasons might apply for the Raman data in
NbsSn of Dierker et al. (1983) although the fits (see Fig.
24) reveal gap values slightly below (5-10 %) the peak
positions. Spectra of cleaved surfaces, such as those of
V;Si and Nb;Sn taken by Hackl and Kaiser (1988) and
Hackl et al. (1989), respectively, apparently give gaps
closer to the bulk values.

For these reasons, it seems worthwhile to look for
other sources of the anisotropy, and we consider an in-
terpretation in terms of final-state interactions (Bardasis
and Schrieffer, 1961; Zawadowski et al., 1972; Klein and
Dierker, 1984). This means that the two single electrons
of a broken Cooper pair can still interact in channels
orthogonal to the pairing channel. The strongly coupled
E, phonon (Wipf et al., 1978; Schicktanz et al., 1980,
1982; Weber, 1984) is in fact orthogonal to the fully sym-
metric (s-wave) pairing channel. Hence it is capable of
forming a bound state below the pair-breaking thresh-
old, explaining both the reduced energy and linewidth of
the E, gap mode (Monien and Zawadowski, 1990). Fits
to the results in V3Si are substantially improved by in-
cluding the bound state (Fig. 25) in comparison to those
neglecting it (Klein and Dierker, 1984). Additional ex-
perimental support comes from the evolution with tem-
perature of the spectra in V;Si and NbsSn (Hackl et al.,
1983, 1989). In either compound, the integrated spectral
weight in A, symmetry increases significantly because a
new scattering channel opens up below 7, due to the
formation of Cooper pairs while staying essentially con-
stant in E, symmetry because the weight is being trans-
ferred from the phonon to the bound state (Fig. 26).

In contrast to E, symmetry, the pair-breaking features
in T,, symmetry are weak and essentially at the A;, po-
sition. The question arises as to why there is no bound
state although there exists a phonon. Clearly, the T,
phonon intensity is weak and the linewidth is small, re-
flecting the moderate coupling as opposed to E, symme-

Rev. Mod. Phys., Vol. 79, No. 1, January—March 2007

B e i AT It o

Fit to experimental data on V; 51
8 (M.V. Kiein and S.M. Dierker )

~

o

e P

Photon Counts ()

1 1 1 & - 5
30 40 50 60 70 80 90 100
Raman Shift {em™!)

FIG. 25. Raman spectra in E, symmetry of V3Si. From Mon-
ien and Zawadowski, 1990.

try where the complete linewidth and the asymmetric
Fano shape stem from the coupling to conduction elec-
trons (Wipf et al., 1978; Weber, 1984). The bound state’s
energy splitoff by approximately 30% indicates that the
very strong interaction drives the system close to an in-
stability of the s-wave ground state. On the other hand,
the T,, mode is only weakly coupled and the interaction
with conduction electrons is not strong enough to sub-
stantially renormalize the spectrum.

Symmetry arguments, the unique line shape, the in-
tensity transfer in £, symmetry, as well as the compari-
son to calorimetric results make us believe that the for-
mation of a bound state is more likely an interpretation
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FIG. 26. Raman spectra of Nb3Sn at (a) £, and (b) A, sym-
metries. The 