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Inelastic non-Newtonian flow over heterogeneously slippery surfaces
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In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First,
we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic
surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that
for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the
shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n = 0.4, the numerical
results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement
factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length
that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a
no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be
used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear
region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of
the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear
conditions at the wall.
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I. INTRODUCTION

To enhance transport phenomena in microfluidic and
nanofluidic systems, surfaces can be made slippery. The
slipperiness of the surface not only leads to lower friction
at the wall, and therefore higher flow rates for a given driving
force, but also increases convection near the wall, improving
transport of, for example, heat or mass. Navier’s slip condi-
tion [1] is commonly used to quantify the amount of wall slip.
This condition states that the slip velocity ub times a certain
friction factor k equals the shear force μ∂nu at the wall, i.e.,

kub = μ
∂u

∂n
. (1)

The ratio μ/k = b is referred to as the slip length and quantifies
the amount of wall slip. For smooth surfaces displaying intrin-
sic wall slip—the fluid molecules adjacent to the substrate
have a finite velocity relative to the wall—typical slip lengths
are of the order of tens of nanometers [2]. Much larger slip
lengths are observed for superhydrophobic surfaces, of the
order of micrometers [3,4], although this concerns effective
wall slip. For these superhydrophobic surfaces, which contain
(sub)microscale wall structures in which usually a gas is
entrapped, the liquid is flowing over an array of no-slip regions
and (nearly) shear-free gas bubbles. The effective slip length
therefore represents the slip length that would be observed at
scales much larger than those of the surface structures.

The fact that superhydrophobic surfaces can be used to
generate slip lengths on the scale of a typical microfluidic sys-
tem has led to many theoretical, numerical, and experimental
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studies in which the relationship between surface geometry
and wall slip has been investigated [3–6]. These studies,
however, mainly concern slip flow of Newtonian liquids over
superhydrophobic surfaces.

The existence of wall slip in systems without superhy-
drophobic or patterned surfaces has been studied for a much
longer time for a wide range of complex fluids, such as polymer
melts, (bio)polymers solutions, suspensions, and gels [7–11].
The slip mechanisms in such systems can vary. Three possible
apparent slip mechanisms are commonly considered in the
literature, which all differ from true or intrinsic wall slip [5].
The first mechanism is the formation of a low-viscosity
slip or depletion layer near the wall [9]. This layer, formed
due to migration of the polymer chains toward the bulk
of the flow, then acts as a lubrication layer over which
the more viscous polymeric solution flows. The thickness
of this layer is typically of the order of the size of the
polymer coil, i.e., O(nm). Second, slippage can be the result
of breaking the adhesion between the polymer chains and
the substrate, thereby reducing friction at the wall [12–14].
Third, disentanglement of polymer chains in the bulk from
the chains at the wall, i.e., cohesive slip, can also give rise to
slippage [14,15]. Both the second and third mechanism require
the shear stress to be larger than a certain critical value.

True wall slip is less commonly observed, which results
from the fact that essentially all surfaces are rough at an
atomic scale. It is for this reason that in most situations the
no-slip boundary condition holds [16–18]. Sanchez-Reyes and
Archer [19] showed for a shear-thinning polymer solution that
wall roughness can be employed to suppress (the effects of)
wall slip, which in general is an undesirable phenomenon in
the field of rheology [10].

It is believed that slip resulting from the formation of
a lubrication layer is the most important and relevant slip
mechanism for most polymeric systems, in particular for dilute
nonadsorbing polymer solutions [7,9,10,20]. The most simple
representation of this mechanism is that there is a thin layer
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of a low-viscosity solvent near the wall, over which the bulk
fluid with the original polymer concentration is flowing. In
that case, the apparent slip length ba equals to

ba = δ

(
μs

μl

− 1

)
, (2)

where δ is the thickness of the depletion layer, and μ is the
viscosity of the (polymer) solution (s) and of the liquid in the
lubrication layer (l). However, as pointed out by Barnes [9], in
reality the polymer concentration gradually changes between
the wall and the bulk of the fluid. Tuinier and Taniguchi [21]
derived for an ideal polymer solution the following expression
for the slip length in the case a depletion layer is formed near
a polymer-repelling wall:

ba = δ
√

[μ]cb arctan
(√

[μ]cb

)
. (3)

This converges to the limit of b = δ[μ]cb when [μ]cb is very
small. The depletion layer thickness δ approximately corre-
sponds to the radius of gyration Rg of the polymer in the case
of a dilute solution. [μ] is the intrinsic viscosity of the solution,
given in volume per mass (L/g), and cb is the bulk polymer
concentration. Beyond the dilute regime, nonideal polymer
effects can lead to slip lengths that are one order of magnitude
larger than those estimated for ideal polymers solutions [22].

A commonly used polysaccharide to study non-Newtonian
fluid behavior is xanthan gum. Since this is a hydrophilic
and anionic biopolymer [23,24], it can be presumed to be
nonadsorbing to superhydrophobic surfaces [22,24–26]. The
extent of chain migration from the wall toward the bulk,
and therefore the depletion layer thickness δ, depends on
the polymer concentration [27,28] and the shear rate [29–31].
Ausserré et al. [27] showed that for aqueous solutions of xan-
than gum the depletion layer thickness δ near a nonadsorbing
fused silica wall is maximum 2.2 nm. The thickness decreases
rapidly when c > c∗. The critical concentration c∗ ∼ 1/[μ]
indicates the transition of the dilute to the semidilute regime.
The transition of the semidilute to the concentrated regime is
denoted by c∗∗. For xanthan gum, these critical concentrations
are c∗ ∼ 0.2 g/L and c∗∗ ∼ 1 g/L [32–36].

By evaluating Eq. (3), given that the radius of gyration
Rg is of the order of 100 nm for xanthan gum [37,38],
we predict an apparent slip length of ba ∼ 0.4 μm for
an aqueous 0.2 wt% xanthan gum solution. Compared to
the typical slip lengths found in slippery, superhydrophobic
systems with microscale surface structures (as for those
surfaces typically bf /L ∼ O(1), L being the typical length
of the surface structures [39–41]), the estimated apparent
slip length is one order of magnitude smaller than the
measured effective slip lengths, i.e., ba < bf . It is possible
that nonideal polymer effects could increase the apparent
slip length by one order of magnitude [22]. However, this
effect quickly vanishes when approaching the dilute regime.
Microrheometry experiments [42] and direct measurements
using NMR velocimetry of the shear velocity of aqueous
xanthan gum solutions up to 1 wt% near a PMMA or glass
wall [43–45] suggest that apparent wall slip due to depletion
effects is absent or otherwise very small.

Xanthan gum solutions are shear-thinning: the viscosity
changes with shear rate [32–36]. The dependency of viscosity

on shear may lead to some interesting behavior near textured
substrates like superhydrophobic surfaces. The heterogeneity
of these surfaces leads to local variations in the shear rate.
For flow over superhydrophobic surfaces in the Cassie-Baxter
state, i.e., when a gas is entrapped in the surface structures, the
conditions at the hybrid bottom wall are a pattern of no-slip
and no-shear. Various studies considering flow over a superhy-
drophobic surface reported large variations in the shear stress
distribution at the wall [46–50]. This implies that for flows of
non-Newtonian liquids (such as xanthan gum solutions) over
superhydrophobic surfaces the local viscosity also varies near
the wall. It immediately follows from Eq. (1) that this will
affect the local and therefore the effective slip length.

The effect of a slippery wall with varying slip length on
pressure-driven non-Newtonian fluid flow has been investi-
gated analytically by Pereira [51] and by using molecular
dynamics simulations by Dhondi et al. [52]. They concluded
that for such surfaces, by looking at the wall-induced trans-
verse flows, mixing is enhanced for shear-thickening fluids and
suppressed for shear-thinning fluids. Applying an oscillating
body force was predicted to increase transverse flow. Vayssade
et al. [53] showed for aqueous suspensions of microgel
particles that heterogeneity in the slip conditions at the wall has
a substantial influence on the velocity profile, in particular for
confined systems. Recently, Broboana et al. [54] investigated
both Newtonian and non-Newtonian shear flow between
patterned and liquid-filled parallel plates of a rheometer. Their
results underline that surface heterogeneity leads to local
variations in shear stress and viscosity, in particular for a
shear-thinning liquid.

Flows of complex fluids over microscale patterned sub-
strates have hardly been studied to date, despite the fact
that non-Newtonian liquids are encountered frequently in
the field of microfluidics. Examples include flows of poly-
mer solutions [55–57], blood [58–60], and other biological
samples [61] in (diagnostic) microfluidic systems. It is
therefore of high relevance to understand how flows of such
shear-thinning and viscoelastic solutions over microstructured
surfaces behave, also in view of the potential application of
superhydrophobicity for enhancing the performance of these
microscale systems.

In this study, we investigate the slip flow of an inelastic
non-Newtonian liquid over a superhydrophobic surface with
transverse grooves and ribs—a surface often referred to
as a bubble mattress. Since slip caused by wall depletion
effects seems to be insignificant for aqueous xanthan gum
solutions, we used these polymer solutions as a model fluid.
The numerical results reveal that shear-thinning behavior can
enhance effective wall slip over superhydrophobic surfaces.
The maximum increase in wall slip compared to Newtonian
liquids could be predicted from a theoretical analysis. We
also discuss the relationship between wall slip and the
hydrodynamic development of the local velocity profile.

II. METHODOLOGY

A. Flow curves of xanthan gum solutions

Aqueous solutions with 0.05, 0.1, and 0.2 wt% xanthan gum
(XG) from Xanthomonas campestris (G1253, Sigma-Aldrich)
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FIG. 1. Viscosity μ for multiple xanthan gum solutions. The lines
are the fitted Carreau expressions to the experimental data (the circles
and squares correspond to different samples).

were prepared in MilliQ water. Since c∗ ∼ 0.2 g/L and
c∗∗ ∼ 1 g/L [32–36], the xanthan gum concentrations c of our
aqueous solutions are in the semidilute regime. Viscoelastic
effects are not considered in this study, which is supported
by the fact that dilute xanthan gum solutions are relatively
inelastic [62,63]. The shear-dependent viscosity of the xanthan
gum solutions was characterized using an Anton Paar MCR
302 rheometer equipped with a DG26.7 double-gap concentric
cylinder geometry at a temperature of 25◦C. For each xanthan
gum concentration, two samples were used for the rheological
experiments. The results are plotted in Fig. 1.

The flow curves are described using the Carreau expression:

μ = μ∞ + (μ0 − μ∞)

[
1 +

(
λ

du

dy

)2
](n−1)/2

. (4)

To determine the coefficients of this constitutive equation, the
measurement data was fit in a least-squares sense using MAT-
LAB. Fitting was performed for log10 μ = f [log10(du/dy)],
with the normality of residuals checked using a normal
probability plot. The fit parameters and confidence intervals
are presented in Table I.

B. Numerical method

The effect of shear-thinning (nonviscoelastic) behavior on
effective wall slip was investigated numerically by using a
geometry with bubbles and grooves positioned perpendicular
to the flow direction. The geometry, which is commonly

TABLE I. Fit parameters (95% confidence interval) for the
Carreau expression for various xanthan gum solutions. μ∞ was set to
the viscosity of water at 25◦C, which is 8.9 × 10−4 Pa s.

c [wt%] μ0 [Pa s] λ [s] n R2

0.05 0.0890 ± 0.0078 5.0 ± 1.8 0.563 ± 0.024 0.9855
0.1 0.259 ± 0.017 5.9 ± 1.4 0.503 ± 0.016 0.9946
0.2 2.05 ± 0.12 21.2 ± 3.1 0.406 ± 0.008 0.9988

(a)
μ [Pa s]

(b)
|u| [μm/s]

(c)
du/dx [1/s]
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FIG. 2. Example of the periodic bubble mattress model, consist-
ing of N = 5 bubble units with height H = 100 μm, unit length
L = 20 μm, and bubble width Lg = 10 μm. The bubble protrusion
angle of, in this case, ϑ = 45◦ defines the gas-liquid interface
curvature. The surface porosity is ε = 1/2. The plot in (a) shows
the local viscosity of a 0.2 wt% xanthan gum solution for an applied
average liquid velocity of uav = 10−5 m/s. In (b) and (c) are the
velocity magnitude |u| and the shear rate du/dx with x = (x,y)
plotted for a single unit.

referred to as a bubble mattress, is illustrated in Fig. 2. The
model is two-dimensional, as it is assumed that the length of
the bubbles and grooves in the third dimension is very long
compared to the channel height H . The model is also periodic,
consisting of N = 5 bubble units with a unit length L. The size
of the bubbles Lg is related to the surface porosity ε = Lg/L.
Throughout this study, the porosity is fixed at ε = 1/2. The
gas-liquid interface curvature, which is known to affect the
amount of wall slip [50,64,65], is varied by changing the
bubble protrusion angle ϑ .

Fluid flow over the heterogeneously slippery surface is
described by the continuity and the Navier-Stokes equation,

∇ · u = 0, (5)

ρ(u · ∇u) = −∇p + ∇ · {μ[∇u + (∇u)T]}, (6)

where u = (u,v). The convection terms are included in the
computations, as the average velocity is sufficiently high to
let Re > 1. The liquid density is assumed to be that of pure
water [66], i.e., ρ = 103 kg/m3.

The numerical model is periodic, implying that left (source)
and right (destination) boundary of the computational domain
are equal in terms of velocity, i.e.,

u(0,y) = u(NL,y),

p(0,y) = p(NL,y). (7)

The flow is pressure-driven, and therefore

p(0,y) − p(NL,y) = −NL∇p. (8)

The pressure is specified at an arbitrary value and location in
the domain. The pressure gradient is determined iteratively in
order to fix the average velocity uav at the specified value.

Except for the slippery bubbles, the no-slip boundary
condition is applied to the upper and lower wall:

u = 0. (9)
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The bubble surfaces are impermeable and perfectly slippery
or shear-free, which is described by

n · u = 0,
(10)

{−pI + μ[∇u + (∇u)T]} · n = 0.

The isotropic viscosity μ of the fluid is described by the
Carreau expression given in Eq. (4). This equation ignores
elastic, that is time-dependent, effects. This means that the
relaxation of the fluid is instantaneous and that the fluid is
perfectly viscous.

The equations were solved numerically using COMSOL
Multiphysics 5.2. The standard relative tolerance was 1 ×
10−3. P2+P1 discretization (second-order elements for ve-
locity and first-order elements for pressure) was used to solve
the Navier-Stokes equations. The mesh was refined near the
walls. The complete mesh consisted of approximately 55 000
domain elements and about 1200 boundary elements in the
vicinity of the bubbles.

C. Determination of the effective slip length

After solving the numerical model, the effective slip length
b was determined by relating the numerically obtained average
liquid velocity uav and pressure gradient dp/dx to the slip
length that would give the same average velocity and pressure
gradient for a (one-sided) homogeneously slippery channel.
To obtain the relationship between uav, dp/dx and b for a
homogeneously slippery channel, the Navier-Stokes equation
for unidirectional fluid flow is solved:

0 = −dp

dx
+ d

dy

(
μ

du

dy

)
. (11)

To make the governing equation dimensionless, the fol-
lowing variables are introduced: ỹ = y/H, x̃ = x/H, ũ =
u/U , with U = −(H 2/μ0)(dp/dx), τ = λU/H , and μ̃ =
μ∞/μ0 (note that for parallel plane Poiseuille flow uav =
−(H 2/12μ)(dp/dx)). The dimensionless Navier-Stokes
equation then becomes

0 = 1 + d

dỹ

⎛
⎝

⎧⎨
⎩μ̃ + (1 − μ̃)

[
1 +

(
τ

dũ

dỹ

)2
](n−1)/2

⎫⎬
⎭dũ

dỹ

⎞
⎠.

(12)
This equation is solved by a second-order-accurate finite
difference scheme combined with the MATLAB fsolve al-
gorithm. As an initial guess for the velocity profile, the
profile for Poiseuille flow with one-sided slip was used. When
solving the non-Newtonian velocity profile for a range of
average velocities and pressure gradients for a homogeneously
slippery channel with a specified height H , an interpolation
map uav = f (dp/dx,b) was obtained. Solving the COMSOL
model for a specified geometry and average velocity gives
the pressure gradient over the bubble mattress. Subsequently
the interpolation map was used to determine the effective slip
length for Carreau flow over the bubble mattress by interpola-
tion using the MATLAB function interp2 (interpolation based
on a cubic spline).

III. LIMITING VALUES FOR EFFECTIVE WALL SLIP

In this section, we derive the theoretical limit for the
effective slip length for non-Newtonian flow over a heteroge-
neously slippery surface consisting of an alternating pattern
of no-slip and no-shear regions positioned perpendicular
to the flow direction. Although the shear-thinning behavior
of fluids like xanthan gum solutions is well described by
constitutive relations that also capture the zero-shear and
infinite-shear Newtonian plateaus, the shear-thinning region
is often described by a power law:

μ = μ0

(
∂u

∂r

)n−1

. (13)

Because of its mathematical simplicity, we will describe the
derivation of the theoretical limit for effective wall slip for
a power-law fluid. For the same reason, we change from a
planar to a cylindrical coordinate system [see Fig. 3(a) for an
illustration of the cylindrical system]. The derived equations
will be analogous for a planar geometry and can therefore also
be used to predict approximately the maximum slip length for
the planar system shown in Fig. 2 (as we will demonstrate later
in Sec. IV B).

A schematic of the system is given in Fig. 3(b). Here, we
can distinguish four different regions with a length l̃i = li/R,
with i = [1 . . . 4]. As indicated in Fig. 3, in the regions 1
and 3 the flow is developing and therefore crosses the no-
slip region L̃1 = L1/R with b̃1 = 0 and the no-shear region
L̃2 with b̃2 = ∞. The total length of a no-slip/no-shear unit

|u|
(a)

x̃

l̃1r̃ l̃4l̃3l̃2

L̃1 L̃2
b̃2

L̃2

L̃

b̃1

(b)

r̃ x̃

FIG. 3. A cylindrical geometry is used to investigate the rela-
tionship between the effective slip length b̃ = b/R and the relative
bubble unit confinement L̃ = L/R. In (a), the velocity magnitude
|u| for L̃ = 5.0, n = 1, and ε = 1/2 is shown. The color scale varies
from red for |u| = 2 to dark blue for |u| = 0. In (b), a schematic
of the system is given. The flow pattern over the no-slip (L̃1 with
b̃1 = 0) and no-shear regions (L̃2 with b̃2 = ∞) can be divided into
four different subregions: l̃i with i = [1 . . . 4]. When L̃ → ∞, the
effective pressure drop in the domain is dominated by the no-slip
region l̃2.
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equals L̃ = L̃1 + L̃2. In the case the flow over these regions
is not fully developed, we find that l̃2,l̃4 = 0. Note that, since
we are considering Stokes flow, l̃1 = l̃3. On the other hand,
when the no-slip and no-shear regions would be infinitely
long compared to the tube radius, i.e., L̃1,L̃2 → ∞, we find
that (l̃1,l̃3)/(l̃2,l̃4) → 0. The flow is hydrodynamically fully
developed and has completely adapted to the local boundary
conditions.

In order to obtain the effective slip length for this system,
one cannot take the spatial average of the local slip length,
as this will yield an infinite slip length: b̃f �= (L̃1b̃1 +
L̃2b̃2)/(L̃1 + L̃2) = ∞. However, one can define an effective
pressure gradient, which subsequently can be used to obtain
the effective slip length:(

∂p̃

∂x̃

)
f

=
4∑

i=1

l̃i

(
∂p̃

∂x̃

)
i

/ n∑
i=1

l̃i . (14)

In the case of a developing flow, i.e., l̃2,l̃4 = 0, this equation
cannot be evaluated a priori, since the pressure drop over the
regions 1 and 3 is not known. However, when L̃1,L̃2 → ∞
and thus

∑
l̃i → l̃2 + l̃4, we find that(

∂p̃

∂x̃

)
f

= 1

l̃2 + l̃4

[
l̃2

(
∂p̃

∂x̃

)
2

+ l̃4

(
∂p̃

∂x̃

)
4

]
. (15)

Considering that the local pressure gradient for a no-shear
region equals zero and that the surface porosity can be
approximated by ε = L̃2/(L̃1 + L̃2) ∼ l̃4/(l̃2 + l̃4), this finally
yields the following expression for the effective pressure
gradient:(

∂p̃

∂x̃

)
f

= l̃2

l̃2 + l̃4

(
∂p̃

∂x̃

)
2

= (1 − ε)

(
∂p̃

∂x̃

)
2

. (16)

The pressure gradient for the flow of a power-law fluid through
a nonslippery tube can be evaluated, and thus an expression
can be found for the maximum slip length that can be achieved.

The velocity profile of a power-law fluid through a tube with
a slippery wall having a uniform slip length b and a pressure
drop ∂p/∂x is given by

u = R

(
− R

2μ0

∂p

∂x

)1/n{ 1

1/n + 1

[
1 −

( r

R

)1/n+1
]

+ b

R

}
.

(17)

The average velocity then equals

uav = R

(
− R

2μ0

∂p

∂x

)1/n[ 1

1/n + 3
+ b

R

]
. (18)

Both equations can be made dimensionless
using b = b̃R, x = x̃R, u = ũuav, and ∂p/∂x =
(R/μ0)(R/uav)n(∂p̃/∂x̃), yielding

ũ =
(

−1

2

∂p̃

∂x̃

)1/n[ 1

1/n + 1
(1 − r̃1/n+1) + b̃

]
(19)

for the velocity profile, and

ũav = 1 =
(

−1

2

∂p̃

∂x̃

)1/n[ 1

1/n + 3
+ b̃

]
(20)

for the average dimensionless velocity, which equals one.
Thus, for a system with an average velocity ũav = 1 having
a known pressure gradient, we can calculate the slip length by

b̃ =
(

−1

2

∂p̃

∂x̃

)−1/n

− 1

1/n + 3
. (21)

We can now evaluate the maximum slip length for a
power-law flow through a tube with a heterogeneously slippery
wall. As expressed by Eq. (16), when L̃ → ∞, the effective
pressure gradient is fully dominated by the gradient over the
no-slip regions. This gives, when substituting Eq. (20) for
b̃ = 0 into Eq. (16), the following relation for the effective
pressure gradient:(

∂p̃

∂x̃

)
f

= −2(1 − ε)

(
1

n
+ 3

)n

. (22)

When using this expression for the effective pressure gradient
and substituting that into Eq. (21), we finally obtain the
following expression for the maximum effective slip length
b̃max when L̃ → ∞:

b̃max = 1

(1/n + 3)(1 − ε)1/n
− 1

1/n + 3

= 1 − (1 − ε)1/n

(1/n + 3)(1 − ε)1/n
. (23)

In the case of a Newtonian fluid with n = 1, this yields

b̃max = 1

4

ε

1 − ε
. (24)

Equation (24) for a Newtonian fluid has also been derived
by Lauga and Stone [40], although they obtained this result
by solving the flow field analytically and looking in the
asymptotic limit for large distances between the slip regions.

These results are confirmed numerically using COMSOL
Multiphysics 5.2 using a periodic cylindrical model consisting
of one repeating unit of a transverse no-slip and no-shear region
(the no-shear region can be considered as a flat gas bubble with
ϑ = 0◦). An example of the model is shown in Fig. 3(a) for
L̃ = 5.0.

IV. RESULTS AND DISCUSSION

A. Numerical results

In this section, we describe and discuss our numerical
results. The viscosity of the aqueous xanthan gum solutions is
described by the Carreau expression. In Fig. 4, the effective
slip length b for a 0.2 wt% xanthan gum solution is plotted
as a function of the bubble protrusion angle ϑ for various
imposed average velocities. The slip length is normalized by
the bubble width Lg . For small flow rates, i.e., uav � 10−7 m/s,
we observe that the slip-length profile coincides with that
of water. When increasing the velocity, for all protrusion
angles the slip length increases and reaches a maximum when
uav = 10−5 m/s. For larger liquid velocities, this decreases
again and converges toward the profile for water. Note that
here for liquid velocities larger than 101 m/s, inertial effects
become significant. For that reason, the slip length profile will
approach but not fully overlap with that of water (which also
starts to change when uav � 1 m/s).
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FIG. 4. Dimensionless effective slip length 2b/Lg for a 0.2 wt%
xanthan gum (XG) solution as a function of the bubble protrusion
angle ϑ for various average liquid velocities uav (H = 100 μm, Lg =
10 μm, ε = 1/2). A liquid velocity of uav = 10−5 m/s and a viscosity
of μ = 0.89 mPa s was used to calculate the slip length profile for
water.

This dependency of the slip length on the velocity can
be related to the shear-thinning properties of the modeled
xanthan gum solution (see Fig. 1). In Fig. 5(a), the slip length
b is plotted as a function of the average velocity uav for
ϑ = 1◦. For very small flow rates, the shear rates in the fluid
flow are very small and the viscosity equals the zero-shear
viscosity: μ = μ0. For intermediate flow rates, the system
is operated in the shear-thinning regime of the xanthan gum
solutions and the viscosity decreases with increasing flow rates
and, consequently, increasing shear rates. As illustrated by
Fig. 2(a), in this regime the viscosity near the heterogeneously
slippery wall strongly varies with position. When the shear
rate approaches the upper Newtonian plateau, du/dy > 102

1/s, the decrease in viscosity with increasing shear rate levels
off and the viscosity approaches the infinite shear viscosity:
μ → μ∞.

Note that the critical protrusion angle, the angle for which
wall slip becomes negative, also increases when operating the
system in the shear-thinning region. It shifts from 63◦ for the
zero-shear Newtonian plateau to a maximum value of 79◦ for
uav = 10−5 m/s. The increase in slip length with flow rate is
considerably smaller for very large positive protrusion angles
than for flat bubbles. In the case of highly negative angles, the
liquid protrudes in the grooves and there is no enhancement.
The liquid near the bubble surface is almost stagnant, for which
reason the viscosity near the shear-free gas-liquid boundary
also is very high: μ ∼ μ0.

We therefore conclude that when the system is operated in
one of the Newtonian plateaus, the slip length profile resembles
the profile for water. Preliminary experimental results, which
are shown in the Appendix, also confirm this: for very high
flow rates (uav = 10−1 m/s) the effective slip lengths for the
various xanthan gum solutions overlap with those for water.
These results also suggest that slip resulting from any depletion
related effects is insignificant when compared with the slip
induced by the superhydrophobic surface.
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g
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0.1 wt%
0.2 wt%
H2O

101 102 103 104 105 106 107
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1

1.5
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2.5

3

3.5

−dp/dx [Pa/m]

b/
b H

2O

(b)

0.05 wt%
0.1 wt%
0.2 wt%

FIG. 5. In (a) the effective slip length 2b/Lg is plotted as a
function of the average liquid velocity uav for a protrusion angle
of ϑ = 1◦ for various xanthan gum solutions. In (b), the slip
enhancement factor b/bH2O for ϑ = 1◦ is plotted as a function of the
effective pressure gradient dp/dx, where bH2O has been determined
for uav = 10−5 m/s. For both (a) and (b), H = 100 μm, Lg = 10 μm,
and ε = 1/2. The horizontal dashed lines in (b) are the analytically
predicted enhancement factors b̃max(n)/b̃max(1) as obtained from
Eq. (23).

In the shear-thinning region, the slip length increases with
increasing flow rate. Despite the fact that, as follows from
Eq. (1), the slip length is a function of both viscosity and shear
rate at the wall, in this region μ ∝ (dyu)n−1 and the viscosity
therefore decreases faster than the shear rate increases when
n < 1. Assuming that the friction factor k is constant, this
implies that wall slip should increase. This is confirmed by the
numerical results.

The enhancement in slip length b/bH2O, i.e., the slip length
for the non-Newtonian xanthan gum solution over that for
water, is plotted in Fig. 5(b). The more shear-thinning the
xanthan gum solutions are (i.e., the smaller n is), the larger the
enhancement. For a 0.2 wt% xanthan gum solution with n =
0.406, a maximum enhancement factor of 3.2 can be achieved.
Note the nonlinear relationship between the average velocity
and the driving force when comparing Figs. 5(a) and 5(b): uav
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is not proportional to dp/dx. Because of the shear-thinning
properties of the fluid, the flow rate increases faster than the
applied pressure gradient.

The results described in this section underline that it is
important that the constitutive equation properly describes the
rheological behavior of the fluid for very small or very large
shear rates. A constitutive equation like the Carreau expression
does this; modeling the liquid as a power-law fluid would have
predicted an enhancement in slip for all flow/shear rates [67].
However, when operating in the shear-thinning regime with
shear rates in the range of roughly 10−1 < du/dy < 103 1/s,
the power-law does predict the correct behavior.

B. Predicting the enhancement

In Sec. III we have derived an expression that gives the
maximum slip length that can be obtained when the bubbles
become infinitely large compared to the typical system size,
i.e., when L̃ = L/R → ∞. The results presented above,
however, are for a bubble mattress with H = 100 μm, Lg =
10 μm, and ε = 1/2. This only gives a confinement factor of
L/H = 0.2.

To investigate how the amount of wall slip changes with
increasing confinement, we have simulated fluid flow through
a tube with a pattern of transverse no-slip and no-shear regions.
This can be interpreted as a cylindrical bubble mattress with flat
bubbles (ϑ = 0◦). The surface area ratio of no-slip to no-shear
region equals ε = 1/2. The results are plotted in Fig. 6(a). For
L̃ < 100, where the slope of the log-log plot equals one, the
effective slip length b̃ grows linearly with the confinement L̃.
As will be discussed in Sec. IV C, for L̃ < 100 the flow profile
cannot fully adapt to either the no-slip or no-shear condition
at the wall and is therefore still hydrodynamically developing.
The slip length reaches its maximum when L̃ > 102, showing
a perfect overlap with the analytically calculated values given
by Eq. (23).

Note that in Fig. 6(a) the slip length is nondimensionalized
using the tube radius R, whereas in Figs. 4 and 5 the slip length
is nondimensionalized based on the bubble width Lg . These
are related to each other, as

2b

Lg

= 2b̃

εL̃
. (25)
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FIG. 6. In (a) the effective slip length b̃ = b/R is plotted as a function of the no-slip/no-shear unit length L̃ = L/R for various power-law
indices n. The same data is replotted in (b), showing now the slip length normalised with the length of the no-shear region Lg . The dashed lines
in (a) and (b) are the theoretical maxima for b̃ as calculated using Eq. (23). When normalizing b̃ using the maximum effective slip length b̃max,
the master curve shown in (c) is obtained. In (d) the slope db̃/dL̃ of the slip length profiles shown in (a) is plotted. For all figures, ε = 1/2.
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FIG. 7. Wall-slip enhancement factor b̃max(n)/b̃max(1), given by
Eq. (23), as a function of the power-law index n for three different
surface porosities ε.

This implies that plotting 2b/Lg(L̃) instead of b̃(L̃) will reduce
the slope of the profiles in Fig. 6(a) by one. Figure 6(b) shows
that this indeed is the case. For L̃ < 100, 2b/Lg is constant,
whereas this decreases linearly for L̃ > 102.

Two limiting regimes can therefore be identified. In the
first regime, the bubble confinement is very small (L̃ 
 1)
and 2b/Lg is constant. The slip length is “suboptimal” in the
sense that it is smaller than the maximum slip possible for the
set of wall conditions. The slip length grows linearly with the
length of the no-shear region εL̃, which can be interpreted as
the bubble width. In the second regime, the bubble confinement
is very large (L̃ � 1) and b̃ is constant. The slip length reaches
its maximum value, i.e., b̃ = b̃max, and the effective pressure
gradient is constant, because it is fully dominated by the
pressure drop over the no-slip region, which grows linearly
with the length (1 − ε)L̃ of this region.

Figure 6(c) illustrates that the expression for maximum wall
slip, Eq. (23), can also be used to predict the enhancement in
the regime L̃ < 100 where 2b/Lg is constant. All profiles for
b̃ collapse onto a master curve when normalizing them by
the corresponding maximum slip length b̃max. This indicates
that the ratio in b̃max for power-law fluids having different
exponents n remains constant for all L̃, except for the transition
regime 100 < L̃ < 102.

The slope of the profiles must be different for varying
power-law indices n, since b̃ → 0 when L̃ → 0. The effective
slip length needs to grow faster for a shear-thinning than for
a shear-thickening liquid, as all power-law fluids reach b̃max

for approximately the same value of L̃. Figure 6(d) supports
this conclusion. Note that the slope of the curves not only
changes with n, but also with the surface porosity ε. We
found that the slope approximately scales as db̃/dL̃ ∝ 1/n

and db̃/dL̃ ∝ ε/(1 − ε).
The maximum slip length b̃max predicted by Eq. (23) is

plotted in Fig. 7 as a function of the power-law index n for three
different surface porosities ε. The curves, which have been
normalized by b̃max for a Newtonian fluid with n = 1, give the
slip enhancement factor for a given n and ε. Shear-thinning
behavior (n < 1) increases relative wall slip, whereas shear

thickening behavior (n > 1) reduces it. Wall slip increases with
ε for shear-thinning liquids with n < 1, whereas it decreases
with ε for shear-thickening fluids with n > 1.

We found that Eq. (23) can also be used to predict
the maximum slip length in the regime L̃ < 100 where
2b/Lg is constant. For that reason, we plotted in Fig. 5(b)
the analytically predicted enhancement factors for the three
different xanthan gum solutions. The horizontal dashed lines
in Fig. 5(b), which represent the analytical values, indeed
show very good agreement with the numerically calculated
maximum enhancement factors.

C. Relationship to hydrodynamic development length

Figure 6(a) shows that for L̃ < 100, the effective slip
length b̃ grows linearly with L̃. This can be related to the
hydrodynamic development of the velocity profile. The length
Ld required for full development, also called the entrance
length, is given by [68]

Ld

D
= 0.6 + 0.056 Re, (26)

which in the case of Stokes flow with Re → 0 and using the
radius R instead of the diameter D reduces to

Ld

R
= 1.2. (27)

Considering the flow over the no-slip and no-shear regions,
illustrated in Fig. 8(a), we observe that in each region the
flow is developing twice: when entering and when exiting the
region. Therefore, we expect the profile to be fully developed
when

εL̃ > 2.4 when ε � 1/2,

(1 − ε)L̃ > 2.4 when ε > 1/2. (28)

This is an estimation, as in the model the flow is already
partly developed when entering the region. Equation (26) is
based on a system where at the start of a no-slip region the
velocity profile is uniform (which, in the case of Stokes flow
as considered here, is equivalent to a system with a parabolic
velocity profile at the start of a no-shear region). Note that
the entrance length only changes slightly for an inelastic non-
Newtonian fluid [69].

The development for a Newtonian liquid, i.e., n = 1, is also
illustrated in Fig. 8(a). When L̃ = 5.6, we see that the profile
in the middle of the domain is uniform. This is also confirmed
in Fig. 8(b), which shows that for this domain length the
velocity at the wall essentially reaches its maximum possible
value: ũ|r̃=1 = 1. The results shown in Fig. 8 are therefore in
agreement with Eq. (28), which predicts that for this system
the flow is hydrodynamically developed when L̃ > 4.8.

The slip length b̃, see Fig. 6(a), does not increase linearly
with L̃ anymore when εL̃ > 2.4. It requires L̃ to be roughly
two orders of magnitude larger, however, to let the slip
length reach the actual maximum value b̃max. In the transition
region 100 < L̃ < 102 the development regions l̃1 and l̃3,
see Figs. 3(b) and 8(a), still contribute to the overall or
effective pressure gradient over the system. This gradient
slowly converges to the pressure drop over the nonslippery
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FIG. 8. As long as the flow is hydrodynamically developing, the
slip length b̃ grows linearly with the unit length L̃. (a) For εL̃ > 2.4,
the flow becomes hydrodynamically developed, here shown for a
Newtonian liquid with n = 1. (b) The liquid velocity at the no-shear
wall then also reaches the maximum possible value of ũ|r̃=1 = 1 at,
in this case, L̃/2. Here, the velocity profiles are plotted for L̃ =
10−2+0.25k with k = [0 . . . 12], n = 1, and ε = 1/2. The increase in
the maximum liquid velocity at the wall with L̃ for different power
law indices n (here represented for n = 1 by the gray dashed curve
for L̃ � 1) is correlated with db̃/dL̃ as plotted in Fig. 6(d), showing
the same behavior.

region, wherefore ultimately the conditions are reached for
which the expression for b̃max, Eq. (23), is valid.

V. CONCLUSION

In this study, we have investigated the flow of inelastic,
non-Newtonian fluids over heterogeneously slippery superhy-
drophobic surfaces. The numerical and analytical results show
that wall slip is increased for shear-thinning liquids, whereas
shear-thickening fluids result in reduced slippage. In the case
of shear-thinning liquids, for which we took aqueous xanthan
gum solutions as a model fluid, the slip enhancement with
respect to water strongly depends on the applied driving force.
Only in the shear-thinning regime, wall slip can be enhanced.
The slip length converges to that of water when the system is
operated in one of the Newtonian regimes.

The maximum slip enhancement could be predicted analyt-
ically for a cylindrical geometry. The predicted enhancement
showed good agreement with the numerical results for a

planar geometry. This indicates that the theoretical result is
also applicable to other geometries. Wall slip is maximized
when the bubbles are much larger than the characteristic
dimension of the system: the flow over the heterogeneous
surface can then fully develop according to the hydrodynamic

(a)

(b)

liquid flow

nitrogen
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G10XG01
G20XG01 (chip 1)
G20XG01 (chip 2)
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FIG. 9. In (a), a SEM image is shown of one of the microfluidic
devices that were used to study non-Newtonian flow over a bubble
mattress. They consist of two main channels, connected to each other
by 15 microchannels. Because the wall was hydrophobized, as shown
in (b), the side channels were filled with a gas (nitrogen) and the
liquid in the upper channel was flowing over an array of no-slip
wall segments and gas bubbles. Here, the image was focused at the
midplane of the channel, where also the μPIV experiments were
performed. In (c), for a chip with H = 50 μm, Lg = 10 μm, and
ε = 2/3, the effective slip lengths b are plotted as a function of the
bubble protrusion angle ϑ for water and for shear-thinning solutions
of 0.1 wt% xanthan gum (XG) dissolved in a mixture of water and
either 10 or 20 wt% glycerol (G).
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boundary conditions. Although in practice it is hard to achieve
such conditions (the slip regions are highly confined), the
enhancement factor as derived analytically from the maximum
slip length remains constant for all confinement factors.

Experiments are required to confirm the predicted increase
in wall slip for flow of inelastic shear-thinning liquids
over heterogeneously slippery surfaces. Aqueous xanthan
gum solutions appear to be suitable for this purpose, since
the preliminary experimental results indicate that for these
solutions slip induced by depletion effects at the wall is
either absent or negligible compared to slip arising from
superhydrophobicity. The experiments are challenging in
terms of stability and controllability, as stable non-Newtonian
fluid flows over microscale, heterogeneously slippery surfaces
need to be established at low flow rates. However, from both
a fundamental and an application point of view, they are of
high value to explore the potential of superhydrophobic slip
enhancement for non-Newtonian fluid flow.
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APPENDIX: PRELIMINARY EXPERIMENTAL RESULTS

Experimentally, wall slip for non-Newtonian fluid flow
was investigated using microparticle image velocimetry
(μPIV) [67]. For this purpose, glass-silicon microfluidic
devices were fabricated using standard photolithography and
deep reactive ion etching. The structured silicon wafers were
anodically bonded to glass wafers. The silicon microchannels,
which were all 100 μm deep, had different main channel
heights H , side channel widths Lg , and surface porosities ε

(see Fig. 9(a) for an example). The channels were hydropho-
bized using gaseous chlorotrimethylsilane (Sigma-Aldrich).

For the μPIV experiments, a Litron LDY301 dual cavity
Nd:YLF laser with a wavelength of 527 nm connected to
an inverted Zeiss Axio Observer.Z1 microscope was used.
The microscope was equipped with a LaVision Imager
intense 670KD double shutter camera. The experiments were

performed under stationary flow with an average liquid
velocity of uav = 10−1 m/s using a Bronkhorst mass flow
controller; see Fig. 9(b). A Bronkhorst pressure controller
was used to regulate the gas pressure. Various xanthan gum
(G1253, Sigma-Aldrich) solutions in a mixture of glycerol
(Sigma-Aldrich) and water were used, in which 0.01 wt% red
fluorescing polystyrene particles (microParticles, Germany)
with a diameter of 0.5 μm were dispersed. To determine
the flow field, required to evaluate the effective slip length,
100 image pairs were captured at a 63× magnification (with
a numerical aperture of 0.75). The time difference between
frame A and B of each image pair was set to 6 μs, which gave
an optimal average particle shift of about 5 pixels. The images
were preprocessed by removal of the background intensity
and the out-of-focus particles. The occurrence of spurious
vectors in the vector fields was suppressed by using a geometric
mask. The vector fields were obtained using the DaVis 8 PIV
software package by a multipass calculation, starting with two
passes using an interrogation window of 64 × 64 pixels and
finishing with an interrogation window of 16 × 16 pixels, all
with a 50% window overlap. A sliding sum of correlation was
employed, which uses five consecutive image pairs for the
cross correlation to artificially increase the particle density.

The local slip lengths were determined by extrapolation of
the local velocity profile using the six data points adjacent to
the wall. Averaging of these local slip lengths gave the effective
slip length.

The experimentally determined effective slip lengths are
plotted in Fig. 9(c) for a chip with H = 50 μm, Lg = 10 μm,
and ε = 2/3 for various liquids. The slip lengths all show the
same behavior: decreasing wall slip with increasing protrusion
angle ϑ . Additionally, the slip lengths are quantitatively similar
for all liquids. This is as expected: because of the high flow rate
(uav = 10−1 m/s), in a channel with a height of H = 50 μm the
shear rates are of the order of du/dy = 103 1/s. According to
the flow curves given in Fig. 1, the system is thus operated in the
upper Newtonian regime and the viscosity of the xanthan gum
solutions approaches the value for infinite shear. These results
indicate that for aqueous xanthan gum solutions depletion-
induced wall slip is either absent or negligible compared to
slip arising from superhydrophobicity.
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[27] D. Ausserré, H. Hervet, and F. Rondelez, Macromolecules 19,

85 (1986).
[28] H. Müller-Mohnssen, J. Rheol. 34, 223 (1990).
[29] A. Omari, J. Rheol. 33, 1 (1989).
[30] E. Duering and Y. Rabin, Macromolecules 23, 2232 (1990).
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