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Inelastic ponderomotive scattering of electrons
at a high-intensity optical travelling wave
in vacuum

M. Kozák1,2*, T. Eckstein1, N. Schönenberger1 and P. Hommelhoff1

In the early days of quantum mechanics Kapitza and Dirac
predicted that matter waves would scatter off the optical
intensity grating formed by two counter-propagating light
waves1. This interaction, drivenby theponderomotivepotential
of the optical standing wave, was both studied theoretically
and demonstrated experimentally for atoms2 and electrons3–5.
In the original version of the experiment1,5, only the transverse
momentum of particles was varied, but their energy and longi-
tudinal momentum remained unchanged after the interaction.
Here, we report on the generalization of the Kapitza–Dirac
effect. We demonstrate that the energy of sub-relativistic
electrons is strongly modulated on the few-femtosecond
timescale via the interaction with a travelling wave created in
vacuum by two colliding laser pulses at different frequencies.
This effect extends the possibilities of temporal control of
freely propagating particles with coherent light and can serve
the attosecond ballistic bunching of electrons6, or for the
acceleration of neutral atoms or molecules by light.

Depending on the scattering regime, the interaction between
electrons and the ponderomotive potential of an optical standing
wave can be described both quantum mechanically (Kapitza–Dirac
effect7–9) or classically8,10. In the quantum picture, the matter wave
coherently diffracts on the periodic potential of the two colliding
optical waves with wavevectors k and −k and identical frequency
ω, leading to observation of a series of diffraction peaks separated
by two photon recoils 2h̄k (Raman–Nath regime5,7) or an individual
diffraction peak (Bragg regime8,11). From the point of view of energy
and momentum conservation, a diffracted particle simultaneously
absorbs a photon from the first wave and emits a photon to the
second wave via stimulated Compton scattering. The strength of the
interaction is proportional to the light intensity (density of photons)
of the optical standing wave.

From the classical perspective describing an incoherent scatter-
ing regime4,8,10, the periodic ponderomotive potential of the optical
standing wave Up = e2|E0|2/(m0ω

2) cos2(k · r), where e is electron
charge,m0 is electronmass, r is position vector andE0 is the field am-
plitude of eachwave, leads to scattering of electrons due to the spatial
dependence of the transverse ponderomotive force Fp = −∇Up.
Also more general cases of inelastic scattering of electrons by two-
colour fields have been proposed12–15, and ponderomotive ballistic
bunching of electron beams was theoretically considered6,16,17. How-
ever, experiments along these lines have not been realized hitherto.

In this paper we experimentally demonstrate a strong mod-
ulation of energy and longitudinal momentum of electrons

(momentum component in the direction of electron propagation)
in vacuum by using two pulsed laser beams at different frequencies
ω1 and ω2 intersecting with a pulsed electron beam at non-zero
angles of incidence α and β (Fig. 1a–c). These laser fields create
an optical travelling wave propagating parallel to the electron beam
with a group velocity vg = (ω1 −ω2)c/(ω1 cosα−ω2 cosβ) (where
c is the speed of light), which can be synchronized with the electron
initial velocity vi (see Supplementary Information for details). The
electrons thus inelastically scatter at the travelling wave, leading to
a broadening of their energy spectra. The ponderomotive potential
an electron experiences in this case has the form16:
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where z is the electron propagation direction, y is the coordinate
perpendicular to z in the plane defined by the two laser beams, and t
is time. In the electron’s rest frame, a standing optical wave is formed.
Therefore, the electron experiences a constant phase with respect
to the light intensity modulation and is pushed out of the high-
intensity regions by the ponderomotive force (shown schematically
in Fig. 1e). An arbitrary choice of incidence angles α and β leads
to an angular tilt of the travelling wave with respect to z (term
−(ω1 sinα−ω2 sinβ)y/c in equation (1)), and consequently to the
modulation of the electron’s transverse momentum. Here we show
that for a particular combination of light frequencies and incidence
angles of the two laser beams, only the longitudinal component of
the electronmomentum changes.

The laser pulses are obtained by optical parametric generation,
where two photons with energies h̄ω1 > h̄ω2 and h̄ω2 are produced
from the incident photon with energy h̄ω = h̄ω1 + h̄ω2. Diagrams
describing the individual scattering events of electrons in vacuum
are shown in Fig. 1a–c. While Fig. 1a shows the situation before,
Fig. 1b shows the system after the stimulated Compton scattering
process where a photon with higher energy is absorbed by an
electron while a photon with lower energy is emitted. The incidence
angles α and β of the laser beams are selected in such a way
that the electron momentum change 1h̄k is parallel to its initial
momentum h̄kin, leading to zero transversemomentum change. The
second possible process (Fig. 1c) leads to a decrease of electron
energy/momentum.
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The relativistic energy and momentum conservation laws for
the case of zero transverse momentum transfer 1h̄k⊥ = 0 for the
system of an electron and two photons with different energies can
be written as:

1Ekin = (γf −1)m0c
2 − (γi −1)m0c

2 = h̄ω1 − h̄ω2

1h̄k⊥ =0=
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c
sinα−
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c
sinβ → sinα=

ω2

ω1
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1h̄k‖ =γfm0|vf|−γim0|vi|=
h̄ω1

c
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c
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Here 1h̄k‖ is the longitudinal momentum change of the
electron, 1Ekin is the change of the electron kinetic energy
and γf,i = (1−|vf,i|2/c2)−1/2 are the relativistic Lorentz factors
corresponding to the final and initial electron velocities vf and vi,
respectively. Because the frequencies of the two interacting photons
are not independent in our experiment, due to the parametric
generation process, the set of equations (2) leads to a formula
defining the angles α and β as a function of the initial electron
velocity vi and frequency ω1:
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This equation shows that the experimental parameters for purely
longitudinal momentum transfer, namely the values of α, β , ω1 and
ω2, can be adapted to any initial electron velocity 0≤|vi|< c (see
Supplementary Fig. 1 for details).

The experimental demonstration of the inelastic ponderomotive
scattering of electrons at a high-intensity optical travelling wave is
carried out in the vacuum chamber of a modified scanning electron
microscope (SEM), which serves as a pulsed source of electrons
that are photoemitted from the SEM cathode (Schottky tip) by an
ultraviolet laser pulse. After acceleration by electrostatic fields to
the final kinetic energy of Ekin =29 keV, electrons are focused to the
interaction region. Here they experience the optical fields of the two
femtosecond laser pulses at wavelengths of λ1 =2πc/ω1 =1,356 nm
(h̄ω1 =0.91 eV) and λ2 =1,958 nm (h̄ω2 =0.63 eV). The two beams
intersect with the electron beam under angles α= (41±2)◦ and
β = (107± 2)◦ obtained from equation (3). Electron spectra after
the interaction are measured by an electromagnetic spectrometer
and a micro-channel plate (MCP) detector (Fig. 1d). For a
more detailed description of the experimental set-up and its
characterization, see Methods.

The measured electron spectra in the presence (red curve) and
absence (grey curve) of the optical travelling wave are plotted
in Fig. 2a, in comparison with numerical calculations (dashed
curve). With laser pulses in both beams having equal pulse
energies of Ep = 85 µJ, leading to a peak optical intensity of
Ip =3×1015 Wcm−2, we observe broad shoulders in the spectrum.
The large energy modulation of more than 10 keV is a consequence
of the high-intensity gradient caused by the small period
λg =2πc/(ω1 cosα−ω2 cosβ)=1.41µm of the travelling wave.

Due to the periodicity of the scattering potential in the longi-
tudinal direction of the electron wavepacket propagation, coherent
interference peaks, separated by the difference between the energies
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Figure 1 | Layout of the experiment demonstrating the inelastic

ponderomotive scattering of electrons at a high-intensity optical

travelling wave in vacuum. a, Photons with energies h̄ω1, h̄ω2 (h̄ω1 > h̄ω2)

and momenta h̄k1 and h̄k2 intersect with an electron with an initial

momentum of h̄kin under angles α and β (situation before the stimulated

Compton scattering). b,c, The result of an individual stimulated Compton

scattering process where a photon with energy h̄ω1 is absorbed (emitted)

while a photon with energy h̄ω2 is emitted (absorbed) leads to an increase

(decrease) of the electron energy/longitudinal momentum. d, Layout of the

experimental set-up. Electrons are generated in the electron gun by

photoemission using an ultraviolet femtosecond laser pulse. After

acceleration and focusing, the electrons interact with the ponderomotive

potential of the optical travelling wave created by the two femtosecond

laser pulses at frequencies ω1 and ω2 in vacuum. The polarization of both

pulses is perpendicular to the plane of incidence. Electron spectra are

measured by a magnetic spectrometer and a micro-channel plate detector.

e, Magnitude of the longitudinal ponderomotive force (black line) of a

travelling wave (indicated by red colour scale) acting on the co-propagating

electrons. The group velocity of the wave vg is matched to the initial

electron velocity vi.

of the two photons participating in the scattering 1E= h̄ω1–h̄ω2,
are expected in the electron spectra as a consequence of the quantum
interference between electron matter waves scattered by subsequent
periods of the travelling wave. This is analogous to the classical
Kapitza–Dirac experiment in the diffraction regime5, with the roles
of the transverse and the longitudinal directions exchanged. To
reach the coherent regime of the interaction, the longitudinal coher-
ence length of the electron beam has to be significantly longer than
λg. This is, however, not the case in our experiment, where the co-
herence length can be estimated to be ξ‖ =2.35vih̄/δEkin,in ≈1.8µm
(ref. 18), where δEkin,in =0.5 eV is the expected initial energy spread
(full-width at half-maximum, FWHM) of the electron beam.
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Figure 2 | Measurements of electron spectra after the inelastic ponderomotive scattering at a high-intensity optical travelling wave in vacuum.

a, Electron spectra in the presence (red curve) and absence (grey curve) of the two laser beams that generate the optical travelling wave, compared to the

numerical calculation results (dashed curve). The spectrum with laser on was obtained using pulse energies of 85 µJ in each pulse. b, Series of electron

spectra obtained with pulse energies of 19 µJ, 38 µJ, 59 µJ, 85 µJ, 111 µJ and 128 µJ (solid curves, bottom to top) with the results of numerical simulations

(dashed curves). Spectra are plotted on a logarithmic scale and shifted for clarity. Vertical error bars in a and b (shadowed areas) are calculated as the

standard error of the electron count rate detected by the electron-counting micro-channel plate detector (MCP). The error in the energy determination

results from the fit of the spectrometer calibration data and equals 0.1 keV (see Methods for details). c, Measured (symbols) and calculated (dashed curve)

dependence of the final electron energy spread δEkin as a function of energy of each of the two laser pulses (for a detailed description of the determination

of δEkin see Methods). Error bars correspond to the precision of the determination of the electron energy spread from the spectra shown in b. d, Simulated

dependence of the kinetic energy of the electrons with the maximum energy gain on the longitudinal coordinate z (black curve). The slope of the optical

cycle-averaged curve directly yields the peak accelerating gradient of Gp =2.2±0.1GeVm−1. e, Image of the electron density detected by the MCP

showing the 2D transverse spatial distribution of the electrons (colour scale) dispersed by the electromagnetic spectrometer after the interaction with the

optical travelling wave.

The maximum observed energy modulation of the electrons
corresponds to the simultaneous absorption and emission of more
than 104 photons by a single electron. In this high-intensity regime,
where the scattering rate exceeds the optical frequency of the driving
light4, a depletion of the electron population around the initial
energy and the appearance of two broad incoherent rainbow peaks
are expected in the electron spectra, similar to the high-intensity
Kapitza–Dirac effect4. However, the shape of the measured spectra
is further influenced by the fact that the electron pulse duration
τe,FWHM used in the experiment is longer than the durations of
the laser pulses τ1,FWHM, τ2,FWHM, generating the optical travelling
wave (see Methods for details). The non-ideal temporal overlap
leads to a broad distribution of interaction strengths experienced by
the electrons. The comparison between calculated electron spectra
for the two cases τe,FWHM ≫ τ1,FWHM, τ2,FWHM and τe,FWHM ≪ τ1,FWHM,
τ2,FWHM is shown in Supplementary Fig. 2.

Due to the incoherent scattering nature of the observed effect, the
interaction can be described classically as a scattering of point-like
particles at the travelling optical wave. Each calculated spectrum in
Fig. 2a,b is therefore obtained by a Monte-Carlo simulation of the
interaction between a set of particles and the two laser fields. The

interaction is modelled by a numerical integration of the classical
relativistic equation of motion with the Lorentz force (see Methods
for details).

For further characterization, we measure electron spectra as
a function of the energy of the two driving laser pulses in the
pulse energy range 19–128 µJ (solid curves in Fig. 2b). Again,
numerical simulations fit the data very well. The dependence of
the induced energy spread δE as a function of pulse energy is
shown in Fig. 2c. The spectrum with the maximum observed
energy spread of 19.6 keV is obtained with a peak intensity
of Ip =5×1015 Wcm−2, corresponding to a normalized field
amplitude a0 = eE0/(m0cω)=0.1≪1. The experiment presented
here thus occurs in the sub-relativistic field regime (for details
see Methods).

To characterize the transverse momentum transfer and prove
that it is negligible, we measure the two-dimensional (2D) spatial
distribution of the electrons on the MCP detector after the
spectrometer (Fig. 2e). A modulation of the transverse momentum
of electrons would lead to their deflection in y and would appear
here as a spread along the ydet axis (xdet and ydet being the Cartesian
coordinates in the detector plane, see Fig. 1d). The observed
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Figure 3 | Attosecond ballistic bunching of electrons after the interaction

with the optical travelling wave. a, Calculated time evolution of the electron

density (colour coded) integrated over the transverse plane as a function of

the propagation distance z after the interaction with the travelling wave.

Due to the induced sinusoidal velocity modulation, the electrons form a

series of attosecond bunches after ballistic propagation of 11 µm from the

centre of the interaction region. The calculation was performed with the

parameters used in the experiment, in particular with pulse energies of

Ep = 19µJ. b, Electron density versus time in the temporal focus (dashed

line in a) showing bunches with a duration of τFWHM =210± 10 as.

deflection angles of electrons are below the angular resolution of the
set-up (δθdef ≈20mrad), confirming that the transversemomentum
transfer is negligibly small compared to the longitudinalmomentum
change (see Methods).

For applications in particle acceleration by laser fields19,20, an
important property of the demonstrated inelastic scattering is
the peak value of the energy gain per unit length, the accel-
eration gradient. In this proof-of-concept experiment we reach
Gp =dEkin/dz=2.2±0.2GeVm−1 (Fig. 2d). Albeit obtained in a
second-order ponderomotive process, this gradient is already much
higher than typical values reached in state-of-the-art radiofrequency
accelerators (∼50MeVm−1). In addition it is almost on par with the
Gp =3GeVm−1 obtained using vacuum acceleration of electrons by
the longitudinal field of radially polarized few-cycle pulses in the rel-
ativistic field regime (a0 =5) (ref. 21). The high efficiencymakes the
ponderomotive interaction between electrons and an optical travel-
ling wave interesting for applications in various particle acceleration
schemes, such as in laser-wakefield or dielectric laser acceleration,
where it could serve for initial pre-acceleration. Furthermore, be-
cause of the independence of the ponderomotive force on the sign
of the charge, spacetime compression of plasmas is possible.

As an important consequence of the periodic sinusoidal
modulation of the longitudinal electron momentum on the
femtosecond timescale, an attosecond bunch train is generated
due to a rotation of the electron distribution in longitudinal phase
space during the ballistic propagation (propagation without any
external forces) after the interaction6,16,17. This opens a way to
reach sub-optical cycle—that is, attosecond (1 as = 10−18 s)—
temporal resolution in ultrafast electron diffraction andmicroscopy
experiments, or to control the electron injection in novel photonics-
based accelerators on attosecond timescales22,23. Numerical
simulation results of the ballistic bunching of electrons after their
interaction with the optical travelling wave are shown in Fig. 3 for
the two central periods of the temporal intensity envelope. The
calculation is performed with the experimental parameters used in
this study, namely pulse energies of Ep =19µJ (the lowest spectrum
in Fig. 2b) and an initial electron energy spread of δEkin,in =0.5 eV.

The temporal focus occurs already at a propagation distance
of ∼11 µm after the centre of the interaction defined by the point

of the intersection of the three beams (the electron beam and the
two laser beams) used in the experiment. This corresponds to a
propagation time of only 110 fs. The resulting minimum temporal
duration of an individual electron bunch in the train is simulated to
be τFWHM =210±10 as, and 30% of all electrons spread initially over
one period of the travelling wave (Tg =2π/(ω1 −ω2)=14.7 fs) are
confined within a temporal window of 300 as in the temporal focus.
This number can be further improved by a multistage compression
scheme, where, in the first stage, the electron packet will be pre-
bunched to a duration of a few femtoseconds by the interaction with
a ponderomotive potential of a higher-order Laguerre–Gaussian
spatial mode of a focused laser beam16. After the first compression
stage, the electrons will be injected to a fraction of the period
of an optical travelling wave, where the ponderomotive potential
can be considered as parabolic in the longitudinal direction. Such
a double-stage compression scheme will allow generation of an
isolated electron attosecond pulse.

For bunching over macroscopic distances of 100 µm to 5mm,
which would allow temporal compression of the electrons while
propagating to a sample under study in ultrafast electron diffraction
experiments24,25, laser pulses with a pulse energy of just 100 nJ to 1 µJ
are required. These are readily achievable even for megahertz rep-
etition rate laser systems. Interestingly, the attosecond bunch train
can be synchronized with an optical pulse produced by difference
frequency mixing of the two waves used for the interaction as the
optical period of such a pulse matches the time period of the optical
travelling wave. In addition, and even without carrier-envelope
phase stable laser pulses, a passive phase stability is obtained be-
tween the difference frequency wave and the optical travelling wave.

The demonstration of the inelastic ponderomotive scattering
of electrons at an optical travelling wave presented here further
opens the possibilities to study the quantum nature of nonlinear
two-photon inelastic scattering/diffraction processes in vacuum in
the energy domain. Similar to single-photon transitions induced
by optical near fields26–28, two-photon quantum transitions can
be observed employing a high-resolution electron energy loss
spectrometer (EELS) in a transmission electron microscope-based
set-up. Likewise Ramsey-type interferometry experiments29,30 are
possible via two subsequent interactions. This technique can further
serve for energy modulation and bunching of propagating atoms
or molecules, where the interaction strength can be even further
enhanced using near-resonant interactions2. Last, by controlling the
polarization state of the two pulses, namely using a combination
of linearly and circularly polarized light, energy-resolved studies
of electron spin flipping or spin polarization-dependent splitting
in high-intensity laser fields might be performed using the
presented scheme31–33.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Laser pulses.We use a Ti:sapphire regenerative amplifier (repetition rate
frep =1 kHz, pulse duration τFWHM =90 fs, central wavelength λ=800 nm, pulse
energy Ep =7mJ) to serve as a pump for an optical parametric amplifier (OPA).
Here the three laser beams for the experiment are generated. The optical travelling
wave is formed by the signal and idler pulses from the OPA with linear
polarizations perpendicular to the plane of incidence. The incidence angles of the
two beams with respect to the electron beam are α= (41±2)◦ and β = (107±2)◦.
The spectrum of the two pulses is measured by an infrared spectrometer (see
Supplementary Fig. 3a). Here the central wavelengths of λ1 =1,356 nm
(ν1 =ω1/2π=221.1 THz), λ2 =1,958 nm (ν2 =153.1 THz) and the spectral
bandwidths of δλ1,FWHM =47 nm (δν1 =7.66 THz), δλ2,FWHM =86 nm
(δν2 =6.72 THz) are obtained. The time–bandwidth product is measured for a
particular OPA output wavelength by frequency-resolved optical gating to be
τ1ν =0.38 (see Supplementary Fig. 3b). The pulse durations τ1,FWHM =49±5 fs
and τ2,FWHM =56±6 fs are calculated from the spectral widths using the measured
value of τ1ν. The laser pulses are delivered to the SEM vacuum chamber and
focused by two aspherical lenses with the same focal distance f =25mm. The
transverse intensity profile of both laser beams is measured by an imaging set-up
with a charge-coupled device (CCD) camera utilizing the two-photon absorption
process. Here the 1/e2 radii of w0,1 =10±0.5µm and w0,2 =11.8±0.6µm are
obtained (see Supplementary Fig. 3c,d). The angles of incidence of the two laser
beams with respect to the electron propagation direction are measured in the
vacuum SEM chamber. The spatio-temporal overlap of the two pulsed beams is
reached by monitoring an optical four-wave mixing signal from a thin film of
Al2O3, which is removed during the measurements. The ultraviolet (UV) pulse at a
wavelength of λUV =251 nm, which serves for photoemission of electrons in the
SEM electron gun, is generated via sum-frequency mixing between a part of the
signal beam from the OPA and the basic frequency beam from the amplifier, and
subsequent second harmonic generation. The UV pulse is focused to the Schottky
tip in the SEM electron gun by an UV achromatic lens with a focal length of
f =15 cm with polarization parallel to the tip axis. The relative timing of all three
pulses is controlled using two independent optical delay lines (see the detailed
layout of the experimental set-up in Supplementary Fig. 4).

The normalized field amplitude a0 is typically used to compare the strength of
the interaction between laser fields and charged particles. In the relativistic field
regime (a0 ≫1), the field of the laser is strong enough to accelerate the particle
close to the speed of light c during one optical cycle. In the opposite case (a0 ≪1,
this study), the change in the electron’s velocity during one optical cycle is small in
comparison with c, and electrons do not reach relativistic energies (see the
simulated energy increase of an accelerated electron during the interaction
in Fig. 2d).

Electron beam. The electrons are photoemitted by a single-photon process from a
Schottky-type cathode of the SEM using side-illumination. The initial electron
energy in the experiment is Ekin =29 keV. After the electron beam is focused by an
objective lens, its transverse size at the interaction point is measured by the
knife-edge technique (see Supplementary Fig. 5a) to be w=3.6±0.5µm (1/e2

radius). The objective lens aperture is removed from the SEM column during the
experiments to increase the electron beam current. The electron bunch duration
τe,FWHM =730±30 fs is measured by acquiring the post-interaction electron spectra
as a function of the time delay between the UV pulse and the two infrared pulses
(see Supplementary Fig. 5b,c).

The transverse momentum of the electrons after the interaction in the plane of
incidence of the two laser pulses (y–z plane) is characterized in Fig. 2e by acquiring
the 2D image of the electron distribution on the MCP detector. Here any deflection
of electrons due to the interaction with the optical travelling wave would lead to
spread/tilt of the electron distribution in the y direction, corresponding to ydet
coordinate in the detector plane. The observed maximum deflection angle of
electrons is below the angular resolution of the set-up (∼20 mrad). This is limited
by defocusing of electrons in the ydet direction by the edge fields of the magnetic
spectrometer (while the electrons are dispersed and focused in xdet) and the
electron beam divergence angle. Negligible observed deflection of interacting
electrons agrees with numerical simulations, where we obtain a maximum
deflection angle of θdef ≈5mrad (see Supplementary Fig. 6). This is caused by the
non-zero width of the angular spectrum of the Gaussian beam plane wave
representation in the focus34, the finite bandwidth of the laser pulses and the fact

that the experimental conditions (angles of incidence α and β , laser frequencies ω1

and ω2) based on equation (3) are accurate only for electrons at the initial kinetic
energy, while the energy of electrons in the experiment is significantly modulated
already during the interaction.

Detection set-up. Electrons are dispersed by an Elbek-type electromagnetic
spectrometer35 and detected by a Chevron-type MCP detector. The image of the
MCP phosphor screen is acquired by a CCD camera. Each spectrum is obtained by
integration of the above-threshold signal from 5,000 images with an exposure time
of 0.1 s. The measured spectra are corrected by the detection efficiency curve of the
MCP in the used energy range. The detection set-up is calibrated via the
single-electron counting mode to obtain the number of electrons in each bin for the
calculation of the shot noise of the measured electron current. The signal-to-noise
ratio of the normal statistical distribution SNR=

√
n, where n is the detected

number of electrons per energy bin, is used for determination of the experimental
errors shown in Fig. 2a,b. The dispersion curve of the magnetic spectrometer is
calculated to be close to linear for energies Ekin =20–80 keV. The spectrometer and
detection set-up performance (dispersion curve, resolution) is verified by a
calibration procedure in the range 20–30 kV by adjusting the accelerating voltage of
the SEM. The calibration curve is fitted by a parabola and extrapolated to higher
energies. In the experimental spectra, the peak at the electron initial energy is
caused by the fact that only ∼10% of electrons interact with the laser fields due to
the different temporal durations of electron and laser pulses. The measured spectra
have a characteristic shape with sharp cut-offs, after which the electron count rate
decreases approximately linearly with energy. The energy spread δEkin is
determined by fitting the high- and low-energy tails of each spectrum with a linear
function f (x)=a±bx . The intersection of the fitted line with the energy axis is
considered to be the upper/lower edge (Ekin,upper, Ekin,lower) of the particular spectrum
and δEkin =Ekin,upper −Ekin,lower.

Simulations. Simulations are performed by numerical integration of the relativistic
equation of motion with the Lorentz force d/dt(γm0v)=q(E+v×B) by a
fifth-order Runge–Kutta algorithm. As a result, the time evolution of the electron
position r(t) and the velocity v(t) are obtained for each particle. The electric and
magnetic fields of each pulsed laser beam are considered of Gaussian spatial and
temporal mode, in the paraxial approximation:

Ex(r , z , t)=E0e
−2 ln2

(

t− ω
c z

τFWHM

)2
w0

w(z)
e
−
(

r
w(z)

)2

e
−i

(

kz+ kr2

2R(z) −ϕ(z)

)

By(r , z , t)=
Ex(r , z , t)

c
, Ey =Ez =Bx =Bz =0 (4)

where r=
√
x2 +y2, k=2π/λ is the wavevector, w(z)=w0

√
1+ (z/zR)

2 the local
beam radius, w0 the 1/e

2 radius of the beam waist, R(z)= z[1+ (zR/z)
2] the local

radius of curvature of the phase front, ϕ(z)=arctan(z/zR) the Gouy phase and
zR =πw2

0
/λ the Rayleigh length of the beam. Standard rotation transformations are

applied to describe the pulses incident under the angles α and β in the laboratory
coordinate frame. Each electron energy spectrum is calculated in a Monte-Carlo
simulation using 106 electrons with a Gaussian distribution in the transverse and
longitudinal planes. The final spectra plotted in Fig. 2a,b result from a convolution
of the calculated spectra with the response function of the detection set-up (grey
curve in Fig. 2a). The initial electron energy spread is assumed to be δEkin =0.5 eV
(FWHM). Because the experiment is carried out in the regime of <1
electron/bunch, space charge forces are neglected in the simulations. In all
simulations, the measured values of the transverse spot sizes and temporal
durations of both laser pulses and the electron bunch are used.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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