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We develop a rigorous theoretical approach for analyzing inelastic scattering of photon pairs in arrays of

two-level qubits embedded into a waveguide. Our analysis reveals a strong enhancement of the scattering

when the energy of incoming photons resonates with the double-excited subradiant states. We identify the

role of different double-excited states in the scattering, such as superradiant, subradiant, and twilight states, as

a product of single-excitation bright and subradiant states. Importantly, theN-excitation subradiant states can

be engineered only if the number of qubits exceeds 2N. Both the subradiant and twilight states can generate

long-lived photon-photon correlations, paving the way to storage and processing of quantum information.
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Introduction.—Nonlinear manipulation of light via its

interaction with matter plays an essential role in optics and

its applications [1–3], including optical communications

[4] and sensing [5]. The light-matter interaction can be

strongly modified by collective coherent superradiance or

subradiance, where the spontaneous emission speeds up or

slows down [6–9]. Both superradiance and subradiance

have been realized in various systems [10–24], and they

provide novel opportunities to explore the interplay

between collective excitations in materials and nonlinear

effects in scattering of light [7,8]. Compared to super-

radiance, subradiance enables a longer time for light-matter

interaction and giant nonlinear response [25–27]. To the

best of our knowledge, the enhancement of light-matter

interaction by subradiant modes has been explored mostly

in classical optics.

It is appealing and challenging to exploit the quantum

nonlinearities at a few-photon level [1,2,7,8]. One of the

simplest nonlinear quantum processes is the inelastic scat-

tering of photon pairs. It exists in waveguides coupled to a

single qubit or qubit arrays, see Fig. 1, and is sensitive to the

two-photon bound states [28–31]. The scattering is greatly

enhanced when an incoming or outgoing individual photon

excites a single-particle subradiant state [31–33]; the con-

cept of multiexcitation subradiant states has been put

forward [32,34,35]. It has been predicted that the subradiant

mode has a fermionic character and a decay rate with cubic

suppression in the number of qubits [34–36]. However, the

role of collective many-body mechanisms in the enhance-

ment of quantum nonlinear processes remains unclear.

In this Letter, we reveal that many-body subradiant states

can enhance the incoherent scattering of photon pairs in

arrays of two-level qubits supporting long-lived photon-

photon correlations. Specifically, we demonstrate sharp

scattering resonances when the energy of the two-particle

subradiant state matches the total energy of photon pairs

[28,29,37–41]. Importantly, considered resonances are not

affected by the destructive quantum interference known to

suppress two-photon scattering [28,42]. The N-particle

subradiant states appear only in periodic arrays with at

least 2N qubits; e.g., the two-particle state requires at least

four qubits. It is also possible to realize a resonant condition

for single- and double-excited subradiant states simulta-

neously. We develop a matrix formulation for the rigorous

Green’s function technique valid for an arbitrary arrange-

ment of qubits. This allows us to analytically identify the

role of different double-excited states in the scattering and

classify them by the coupling strength. In addition to the

double-excited superradiant and subradiant states, we

FIG. 1. Schematic illustration of the photon pairs propagating

along a waveguide with a qubit array and exhibiting inelastic

scattering.
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introduce a new concept of twilight state, which is a

product of single-excited bright and subradiant states.

Our results demonstrate that the coupling of light to

quantum matter is far from being fully understood even

for the classical Dicke model, and thus this opens a new

avenue for manipulating quantum interactions, correla-

tions, and entanglement.

Model.—We consider the system shown schematically in

Fig. 1. It consists of N periodically spaced qubits, coupled

to M photons in the one-dimensional waveguide, and it is

characterized by the Hamiltonian

H ¼
X

k

ℏωka
†

kak þ
X

j

ℏω0b
†
jbj þ

ℏ χ

2

X

j

b†jb
†
jbjbj

þ ℏg
ffiffiffiffi

L
p

X

j;k

ðb†jakeikzj þ bja
†

ke
−ikzjÞ: ð1Þ

Here, ak are the annihilation operators for the waveguide

photons with the wave vectors k (the corresponding frequen-
cies are given byωk ¼ cjkjwith the light velocity c), g is the
interaction constant,L is the normalization length, and bj are

the (bosonic) annihilation operators for the qubit excitations

with the frequency ω0, located at the point zj. In Eq. (1), we

consider the general case of anharmonic multilevel qubits;

the two-level case can be obtained in the limit of large

anharmonicity ( χ → ∞) where the multiple occupation is

suppressed [43,44]. The photons can be traced out in Eq. (1),

yielding an effective model for describing the excitations in

the qubits [34,45],

H ¼
X

i;j

H
ð1Þ
i;j ðω0Þb†i bj þ

ℏ χ

2

X

j

b†jb
†
jbjbj; ð2Þ

where

H
ð1Þ
ij ðωÞ≡ ℏω0δij − iℏΓ0e

iω=cjzi−zjj; i; j ¼ 1;…; N: ð3Þ

The Hamiltonian Eq. (3) is non-Hermitian, and it takes into

account the radiative losses characterized by the radiative

decay rate for a single qubit in a waveguide, Γ0 ¼ g2=c. The
interaction between the qubits is long-ranged since it is

mediated by the photons propagating in the waveguide. We

assume that the spacing between the qubits is small enough

so that the non-Markovian Hamiltonian (3) with the phases

ðω=cÞjzi − zjj can be replaced byHð1Þ
ij ðω0Þ [47]. From now

on, we neglect the non-Markovian effects [43].

Double-excited states.—Before proceeding to the study of

the scattering of photon pairs, firstwe analyze double-excited

states of the qubit array, jΨi ¼
P

j1j2
Ψj1j2

b†j1b
†
j2
j0i. We

can obtain the eigenstates and eigenvalues 2ε by diagonal-

izing the Hamiltonian Eq. (2). We are interested only in the

symmetric boson solutions satisfyingΨi1i2
¼ Ψi2i1

. Because

of the qubit-photon interaction, the double-excited state is

unstable, and it will decay into a single-excited state and a

freely propagating photon. The amplitude of the radiative

transition from the double-excited state jΨi to a single-

excited state b†j j0i is determined by

dj ¼
X

j0
eiω0zj0=cΨjj0 : ð4Þ

According to Fermi’s golden rule, the total decay rate is given

by the sum of the individual decay rates to all single-excited

states, and reads

Γ1 ¼ Γ0

X

j

jdjj2: ð5Þ

Such a decay rate determines the imaginary part of the

eigenvalues, Imε ¼ −Γ1. A detailed derivation of Eq. (5) is

presented in Supplemental Material [45].

The eigenstates are usually classified, depending on a

ratio of their decay rate to that of the individual qubit, as

either superradiant (Γ1 ∼ NΓ0), bright (Γ1 ∼ Γ0), or sub-

radiant (Γ1 ≪ Γ0).

However, for double-excited states, this classification is

incomplete since it characterizes emission of the first

photon only, and it does not provide information about

the subsequent emission of the second photon. Here, we

characterize the latter process by the amplitude
P

j dj that
quantifies the effective dipole moment of the superposition

of single-excited states after emission of the first photon.

We identify the states for which the amplitudes of indi-

vidual radiative transitions are finite but out of phase, so

that
P

j dj vanishes, as products of a bright state and a

subradiant state, and we term them twilight states. The

twilight state quickly decays into a single outgoing photon

and a single-excited state. However, the latter excitation

appears subradiant and the second photon is emitted after a

long time ∼1=ðφ2
Γ0Þ with φ≡ ω0jz2 − z1j=c, providing

long-lived photon-photon correlations. Namely, the corre-

lation function gð2ÞðtÞ has contributions with the lifetime

½∼1=ðφ2
Γ0Þ�, much longer than that of the individual qubits

ð∼1=Γ0Þ. The contribution of a twilight state combines the

features of the subradiant and bright states. While it has

weak amplitude ∝ φ2, it can be resonantly excited in a

relatively broad spectral range ∼Γ0 and decays with

a small rate ∼φ2
Γ0. A detailed analysis is given in

Fig. S11 in Ref. [45].

Thus, depending on the magnitude of
P

j jdjj2 and

j
P

j djj2, the double-excited eigenstates can be classified

as superradiant, twilight, and subradiant; see Table I. As

demonstrated by our calculations, the short-period array

of N > 2 two-level qubits has one superradiant state,

NðN − 3Þ=2 subradiant states, and (N − 1) twilight states

with total energies around 2ω0. Figure 2 shows the

dependence of the decay rate for superradiant states (red

diamonds), twilight states (green stars), and subradiant
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states (black dots and diamonds) on the number of qubits.

For the superradiant state, Γ1 is proportional to ðN − 1ÞΓ0.

For most subradiant double-excited states (black diamonds

in Fig. 2), Γ1 becomes smaller by 2 orders of magnitude as

the number of qubits increases from N ¼ 3 to N ¼ 4, and

for N ≥ 4 satisfies the scaling relation Γ1 ∼ Γ0φ
2=N3,

where φ ¼ ðω0=cÞjz2 − z1j.
In order to understand the threshold of N ¼ 4 qubits for

the two-excitation subradiant states, we consider the

radiative decay for the double-excited states in the limiting

case where all the qubits are located in the same point,

zj ≡ 0. The wave function of the subradiant state should

satisfy three conditions: (i) dj1 ¼
P

j2
Ψj1j2

¼ 0 for all j1,

(ii) the symmetricity Ψj1j2
¼ Ψj2j1

, and (iii) zero diagonal

elements, Ψj1j1
¼ 0, since we look for the states where

neither of the qubits is occupied twice. While these

conditions cannot be simultaneously met for the arrays

with N ¼ 2 and N ¼ 3 qubits, there exist two subradiant

states for N ¼ 4 qubits with

½Ψij�1 ¼
ffiffiffi

2
p

4

0

B

B

B

@

0 0 1 −1

0 0 −1 1

1 −1 0 0

−1 1 0 0

1

C

C

C

A

;

½Ψij�2 ¼
ffiffiffi

6
p

12

0

B

B

B

@

0 −2 1 1

−2 0 1 1

1 1 0 −2

1 1 −2 0

1

C

C

C

A

; ð6Þ

where the rows and columns represent the coordinate of the

first and second excitation, respectively. The first state is

just a direct product of the two single-excited subradiant

states, 1
2
ðb†1 − b†2Þðb†3 − b†4Þj0i, while the second state has a

more intricate structure. Because of the short length of the

array, N ¼ 4, neither of the subradiant states Eq. (6) is

described by the fermionic ansatz [34]; see Ref. [45] for

more details. When the spacing between the qubits

becomes nonzero, 0 < φ ≪ 1, these subradiant states

become slightly bright:

ε1 ¼ ω0 − φΓ0 −
iφ2

2
Γ0;

ε2 ¼ ω0 −
7φ

3
Γ0 −

157iφ2

54
Γ0; ð7Þ

where the first-order decay rates are proportional to

φ2 ≪ 1. As such, the subradiant states become optically

active and can be probed in the light scattering spectra.

More details can be found in Ref. [45].

Incoherent scattering of photon pairs.—Next, we discuss

how the photon-photon interactions are affected by the

double-excited states. To this end, we consider the inco-

herent scattering process, where the two incident photons

with the energies ω1 and ω2 are scattered inelastically and

converted into a pair of photons with the energies ω0
1 and

ω0
2, so that ω1 þ ω2 ¼ ω0

1 þ ω0
2 ¼ 2ε. Generally, calcula-

tion of the scattering is significantly more challenging than

that of the double-excited excitations. The reason is that,

instead of the reduced problem Eq. (2) describing only the

qubit excitations, one needs to consider the full two-particle

Hilbert space. Here, we use the rigorous Green function

approach, based on the Hamiltonian Eq. (1) with general

qubit anharmonicity χ. While our methodology is con-

ceptually similar to that of Ref. [43], it has the advantage of

a compact matrix formulation valid for arbitrary spatial

arrangement of the qubits. Thus, contrary to other Green-

function-based techniques [48,49], we are able to obtain a

closed-form analytical answer. Namely, the S matrix

describing the forward incoherent scattering reads

Sðω0
1;ω

0
2;ω1;ω2Þ¼2πiMδðω1þω2−ω0

1−ω0
2Þ;

M¼−2iΓ2
0

�

c

L

�

2X

i;j

s−i ðω0
1Þs−i ðω0

2ÞQijs
þ
j ðω1Þsþj ðω2Þ; ð8Þ

2 3 4 5 6 7 8 9 10

10
-4

10
-2

10
0

FIG. 2. First-order radiative decay rates of double-excited states

depending on the number of qubits in an array N. Red diamonds,

green stars, black dots, and black diamonds correspond to the

superradiant, twilight, subradiant states, and most subradiant

states, respectively. Calculation has been performed for

χ ¼ 104Γ0, φ≡ ω0jz2 − z1j=c ¼ 0.1.

TABLE I. Classification of the double-excited states depending

on the amplitudes of the radiative transition rates dj. Illustrations
in the upper row sketch the (nonsymmetrized) two-photon wave

function.

Superradiant Twilight Subradiant

P

j jdjj2 ∼N ∼1 ≪1

j
P

j djj2 ∼N2 ≪1 ≪1
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where s�i ¼
P

jGije
�iωzj=c is the structure factor for

individual incoming (outgoing) photons, GðωÞ ¼
½ω −Hð1ÞðωÞ�−1 is the single-particle Green function,

and L is the normalization length. Here,Qij is the scattering

kernel given by Q ¼ −i χð1 − i χΣÞ−1, where ΣijðεÞ ¼
R

GijðωÞGijð2ε − ωÞdω=ð2πÞ. Equation (8) remains valid

in the limit of two-level qubits, χ → ∞, when Q → Σ
−1.

The result becomes more transparent when the Green

function is evaluated in the Markovian approximation as

GðωÞ ¼ ½ω −Hðω0Þ�−1. The integration over frequency in

ΣijðεÞ can then be carried out analytically, yielding

Qij ¼ i χ

�

2ε −Hð2Þ

Hð2Þ þ U − 2ε

�

ii;jj

; ð9Þ

see SupplementalMaterial [45] for details.Here, the effective

two-particle Hamiltonian is given by a sum of individual

photon Hamiltonians, H
ð2Þ
i1i2;j1j2

¼ δi2;j2Hi1j1
þ δi1;j1Hi2j2

,

and the interaction term, U i1i2;j1j2
¼ δi1i2δj1j2δi1j1 χ. The

difference 2ε −Hð2Þ in the numerator of Eq. (9) reflects

the destructive quantum interference in the two-photon

scattering [37,42]. The matrix Q has resonances at the

eigenstates 2ε of the Hamiltonian Eq. (2) in the two-

excitation subspace Hð2Þ þ U. In the vicinity of the reso-

nance, ε ≈ Reεν, Eq. (9) can be simplified to

QijðεÞ ≈
2iΓ2

0did
�
j

Reεν − iΓ0

P

j0 jdj0 j2 − ε
; ð10Þ

where we assume χ → ∞. The analytical structure of the

two-photon kernel Q is now quite clear. The amplitudes of

the radiative transitions dj determine both the resonance

linewidth in the denominator [which matches the decay rate

Eq. (5)] and the effective oscillator strength of the two-

photon resonance in the numerator of Eq. (10). This results in

the condition −2Γ0 ReTrQ ¼ jTrQj2 that generalizes the

optical theorem to the interacting two-photon case.

The calculated incoherent scattering spectra are summa-

rized in Fig. 3. We present the total forward scattering rate,

Iðω1;ω2Þ¼
1

2

Z

jMðω0
1;ω1þω2−ω0

1;ω1;ω2Þj2
dω0

1

2π
; ð11Þ

integrated over the frequencies of the scattered photons. As

such, the scattering map of Fig. 3(c) shows both the

resonances when either ω1 or ω2 is tuned to the single-

excited subradiant eigenstates (horizontal and vertical

dashed lines), and the two-photon resonances, when the

total energy ω1 þ ω2 is in resonance with the double-

excited subradiant state (diagonal solid lines). We show the

scattering as a function of ω1 by fixing ω2 − ω1 ¼ 6φΓ0

and ω2 − ω1 ¼ 0; see Figs. 3(a) and 3(b), respectively. Two

resonant peaks marked by blue arrows are the positions of

ε1 and ε2, the energies of double-excited subradiant states.

The outgoing photon pairs can also have strong spatial

correlations depending on the nature of the resonant states

[45]. In the considered case of 4 qubits, there is a point in

Fig. 3(c) where the vertical, horizontal, and diagonal lines

cross over. This triple-resonant condition occurs when one

of the single-excited subradiant states has energy with the

same real part ω0 − φΓ0 as that for the double-excited

subradiant state Eq. (7). Thus, when both incident photons

have the same energies, ω1 ¼ ω2 ¼ ω0 − φΓ0, the triple

resonance further enhances the scattering; see the peak at ε1
in Fig. 3(b).

Figures 3(d)–3(f) show the scattering depending on the

array period φ≡ ω0jz2 − z1j=c. The spectra are calculated
for fixed detuning ω2 − ω1 ¼ 0.3Γ0 and are normalized to

the maximum of total forward scattering for a single qubit,

N ¼ 1. The dark region around ε ¼ ω0, φ ¼ 0 in Fig. 3(f)

reflects that the scattering is suppressed by the destructive

quantum interference [28,42], which also exists inN ¼ 2, 3

qubits [45]. However, due to subradiant resonances emerg-

ing for φ > 0, the scattering for N ¼ 4 can exceed that for

N ¼ 1 by several orders of magnitude. The single- and

double-excited subradiant resonances can be traced by their
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FIG. 3. Incoherent forward scattering intensity for an array of

four qubits. Scattering intensity as a function of ω1 for

(a) ω2 − ω1 ¼ 6φΓ0 and (b) ω2 − ω1 ¼ 0. Thin dashed vertical

lines indicate the positions of single-excited eigenmodes. The

arrows show double-excited subradiant modes with the energies

ε1;2. (c) False-colormap of the scattering vsω1 andω2. Dashed and

solid lines indicate the one- and two-photon resonances, respec-

tively. The other parameters in the left-hand panel are χ ¼ 104Γ0,

φ≡ ω0jz2 − z1j=c ¼ 0.1. (d),(e) Scattering intensity as a function

of average energy ε for givenφ ¼ 0.06 andφ ¼ 0.12, respectively.

(f) Normalized false-color map of the scattering vs array period φ

and mean energy of incoming photons ε. The other parameters are

χ ¼ 104Γ0 and ω2 − ω1 ¼ 0.3Γ0.
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different dependence on φ. The scattering reaches a local

maximum at double-resonant conditions. Namely, either a

single-excited and a double-excited resonance or two

single-excited resonances can occur simultaneously; see

the spectra in Figs. 3(d) and 3(e), respectively.

Multiexcited states.—The considered subradiant states

are not limited to double excitations. We expect even richer

physics for the excitations with a higher number of

photons, M > 2, which can already be accessed exper-

imentally [50]. As M increases, a threshold of the qubit

number for subradiant states will also change. To reveal

how the subradiant state depends on the excitation number

M and qubit number N, we find the eigenstate with the

energy around Mω0 that has the minimal decay rate for

different M and N [45]. The threshold, determined by the

decrease of Γ1 down to ∼φ2
Γ0, occurs for N ¼ 2M. The

notion of metastable twilight states can also be extended in

the general M-body case: M0 particles in bright (or even

superradiant) states multiplied by M −M0 subradiant

states. How these multiexcited states affect the incoherent

M-photon scattering is beyond the scope of this Letter.

Conclusion.—We believe that our results open a new

research direction for harnessing light-matter interactions

in quantum photonics. In particular, the subradiant states

boost the incoherent scattering while the twilight states

perpetuate the photon-photon correlations. Custom-tailored

long-lived entangled photons could be employed for

storage and processing of quantum information.
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