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*Correspondence:

zhuling0571@163.com
1Department of Mathematics,

Zhejiang Gongshang University,

Hangzhou, China

Full list of author information is

available at the end of the article

Abstract

In this paper, we obtain some new inequalities which reveal the further relationship

between the inverse tangent function arctan x and the inverse hyperbolic sine

function sinh–1 x. At the same time, we give the analogue for inverse hyperbolic

tangent and inverse sine.
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1 Introduction

In 2010, Masjed-Jamei [1] obtained the following inequality:

(arctanx)2 ≤
x ln(x +

√
1 + x2)

√
1 + x2

, |x| < 1. (1.1)

[1] also reminded us that the above inequality is established in a larger interval (–∞,∞)

because it was detected by Maple software. Inequality (1.1) gives the upper bound for

the square of the inverse tangent function arctanx by the inverse hyperbolic sine function

sinh
–1 x = ln(x +

√
1 + x2).

In this paper, we first affirmMasjed-Jamei’s quest, conclude that the scope of the inequal-

ity is indeed the large interval (–∞,∞), and give a simple proof of this result. Second, we

get the strengthening of the inequality that we have just given. Then, we obtain some nat-

ural generalizations of this inequality. At the same time, we show the analogue for inverse

hyperbolic tangent function arctanhx = (1/2) ln((1 + x)/(1 – x)) and inverse sine function

arcsinx. Finally, we propose a conjecture on this topic.

Theorem 1.1 The inequality

(arctanx)2 ≤
x ln(x +

√
1 + x2)

√
1 + x2

(1.2)

holds for all x ∈ (–∞,∞), and the power number 2 is the best in (1.2).
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Theorem 1.2 Let 0 < r < ∞, λ = 1, and µ = r ln(r +
√
r2 + 1)/(

√
r2 + 1(arctan r)2). Then the

double inequality

λ(arctanx)2 ≤
x ln(x +

√
1 + x2)

√
1 + x2

≤ µ(arctanx)2 (1.3)

holds for all x ∈ (–r, r), where λ and µ are the best constants in (1.3).

Theorem 1.3 Let –∞ < x <∞. Then we have

–
1

45
x6 ≤ (arctanx)2 –

x ln(x +
√
1 + x2)

√
1 + x2

≤ –
1

45
x6 +

4

105
x8, (1.4)

–
1

45
x6 +

4

105
x8 –

11

225
x10 ≤ (arctanx)2 –

x ln(x +
√
1 + x2)

√
1 + x2

≤ –
1

45
x6 +

4

105
x8 –

11

225
x10 +

586

10,395
x12. (1.5)

Theorem 1.4 The inequality

(arctanhx)2 ≤
x arcsinx
√
1 – x2

(1.6)

holds for all x ∈ (–1, 1), and the power number 2 is the best in (1.6).

Theorem 1.5 Let 0 < r < 1, α = 1, and β = r(arcsin r)/(
√
1 – r2(arctanh r)2). Then the dou-

ble inequality

α(arctanhx)2 ≤
x arcsinx
√
1 – x2

≤ β(arctanhx)2 (1.7)

holds for all x ∈ (–r, r), where α and β are the best constants in (1.7).

Theorem 1.6 Let n, N be two integers, n,N ≥ 3, and

vn =
1

n

(

n!2n–1

(2n – 1)!!
–

(

1 +
1

3
+ · · · +

1

2n – 1

))

. (1.8)

Then the inequality

x arcsinx
√
1 – x2

– (arctanhx)2 ≥
N

∑

n=3

vnx
2n (1.9)

holds for all x ∈ (–1, 1).

2 Simple proof of Theorem 1.1

Let arctanx = t, x ∈ (–∞,∞). Then x = tan t, t ∈ (–π/2,π/2), and (1.2) is equivalent to

ln(tan t + sec t) = ln
1 + sin t

cos t
>

t2

sin t
(2.1)
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for t �= 0 since the equality in (1.2) holds for x = 0. Let

F1(t) = ln
1 + sin t

cos t
–

t2

sin t
= ln(1 + sin t) – ln cos t –

t2

sin t
.

Then

F ′
1(t) =

cos t

sin t + 1
+

1

cos t
sin t +

1

sin
2 t

(

t2 cos t – 2t sin t
)

=
1

cos t
+

1

sin
2 t

(

t2 cos t – 2t sin t
)

=
(– sin t + t cos t)2

cos t sin
2 t

,

which means that F ′
1(t) > 0 for all t ∈ (0,π/2) and F ′

1(t) < 0 for all t ∈ (–π/2, 0). So F1(t) >

F1(0
+) = 0 for all t ∈ (–π/2, 0)∪ (0,π/2). In view of

lim
x→0

ln
x ln(x+

√
1+x2)√

1+x2

ln tan–1 x
= 2,

the proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

In order to prove Theorem 1.2, we use a key method as follows, which is called the mono-

tone form of l’Hospital’s rule.

Lemma 3.1 ([2, 3]) For –∞ < a < b < ∞, let f , g : [a,b] → R be continuous functions that

are differentiable on (a,b), with f (a) = g(a) = 0 or f (b) = g(b) = 0. If f ′/g ′ with g ′(x) �= 0 for

each x in (a,b) is increasing (decreasing) on (a,b), then so is f /g .

Now, we are in the state of proving Theorem 1.2. After making the same transformation

with the second section, we obtain that t ∈ (– arctan r, arctan r)⊂ (–π/2,π/2). Considering

that the two functions involved in (1.3) are even functions, we can discuss problems in the

range (0, arctan r). Let

G1(t) =
t2

(tan t) ln(tan t+sec t)
sec t

=
t2

(sin t)(ln(1 + sin t) – ln cos t)

=
t2

sin t

ln(1 + sin t) – ln cos t
:=

f1(t)

g1(t)
,

where

f1(t) =
t2

sin t
, g1(t) = ln(1 + sin t) – ln cos t.

Then

f ′
1(t) =

2t sin t – t2 cos t

sin
2 t

, g ′
1(t) =

1

cos t
,

and

f ′
1(t)

g ′
1(t)

= 2t cot t – t2 cot
2 t.
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Since

(

f ′
1(t)

g ′
1(t)

)′
= 2t2 cot

3 t + 2t2 cot t – 4t cot
2 t – 2t + 2 cot t

= 2(t cot t – 1)
(

t – cot t + t cot
2 t

)

= 2(t cot t – 1)

(

t

sin
2 t

–
cos t

sin t

)

= 2(t cot t – 1)
t – sin t cos t

sin
2 t

< 0,

we have that the function f ′
1(t)/g

′
1(t) is decreasing on (0, arctan r). Then G1(t) = f1(t)/g1(t)

is decreasing on (0, arctan r) too by Lemma 3.1. In view of

1

λ
:= lim

t→0+
G1(t) = 1,

1

µ
:= lim

t→arctan r
G1(t) =

√
r2 + 1(arctan r)2

r ln(r +
√
r2 + 1)

,

the proof of Theorem 1.2 is complete.

Remark 3.1 Letting r → ∞ in Theorem 1.2, we can obtain Theorem 1.1.

4 Proof of Theorem 1.3

Because the functions involved in this section are all even functions, we only assume x > 0.

After doing the same transformation with the second section, we will only discuss prob-

lems in the situation t ∈ (0,π/2). Let

h1(t) =
t2 – (sin t) ln

1+sin t
cos t

+ 1
45

tan
6 t

sin t
=

t2

sin t
– ln

1 + sin t

cos t
+

1

45

tan
6 t

sin t
,

h2(t) =
t2

sin t
– ln

1 + sin t

cos t
+

1

45

tan
6 t

sin t
–

4

105

tan
8 t

sin t
,

h3(t) =
t2

sin t
– ln

1 + sin t

cos t
+

1

45

tan
6 t

sin t
–

4

105

tan
8 t

sin t
+

11

225

tan
10 t

sin t
,

h4(t) =
t2

sin t
– ln

1 + sin t

cos t
+

1

45

tan
6 t

sin t
–

4

105

tan
8 t

sin t
+

11

225

tan
10 t

sin t
–

586

10,395

tan
12 t

sin t
.

Then we get hi(0
+) = 0, i = 1, 2, 3, 4, and

h′
1(t) =

cos t

45 sin
2 t

g1(t),

h′
2(t) = –

cos t

315 sin
2 t

g2(t),

h′
3(t) =

cos t

1575 sin
2 t

g3(t),

h′
4(t) = –

cos t

51,975 sin
2 t

g4(t),
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where

g1(t) = –45t2 + 90t tan t – 45 tan
2 t + 5 tan

6 t + 6 tan
8 t,

g2(t) = 315t2 – 630t tan t + 315 tan
2 t – 35 tan

6 t + 42 tan
8 t + 96 tan

10 t,

g3(t) = –1575t2 + 3150t tan t – 1575 tan
2 t + 175 tan

6 t – 210 tan
8 t

+ 213 tan
10 t + 770 tan

12 t,

g4(t) = 51,975t2 – 103,950t tan t + 51,975 tan
2 t – 5775 tan

6 t + 6930 tan
8 t

– 7029 tan
10 t + 6820 tan

12 t + 35,160 tan
14 t,

and gi(0) = 0, i = 1, 2, 3, 4. We compute to get

f1(t) :=
g ′
1(t)

6 tan2 t
= 8 tan

7 t + 13 tan
5 t + 5 tan

3 t – 15 tan t + 15t,

f2(t) :=
g ′
2(t)

6 tan2 t
= 160 tan

9 t + 216 tan
7 t + 21 tan

5 t – 35 tan
3 t + 105 tan t – 105t,

f3(t) :=
g ′
3(t)

30 tan2 t

= 308 tan
11 t + 379 tan

9 t + 15 tan
7 t – 21 tan

5 t + 35 tan
3 t – 105 tan t + 105t,

f4(t) :=
g ′
3(t)

30 tan2 t
= 16,408 tan

13 t + 19,136 tan
11 t + 385 tan

9 t – 495 tan
7 t + 693 tan

5 t

– 1155 tan
3 t + 3465 tan t – 3465t

with fi(0) = 0, i = 1, 2, 3, 4. Then

f ′
1(t) =

(

tan
4 t

)(

56 tan
4 t + 121 tan

2 t + 80
)

> 0,

f ′
2(t) =

(

tan
6 t

)(

1440 tan
4 t + 2952 tan

2 t + 1617
)

> 0,

f ′
3(t) =

(

tan
8 t

)(

3388 tan
4 t + 6799 tan

2 t + 3516
)

> 0,

f ′
4(t) =

(

tan
10 t

)(

213,304 tan
4 t + 423,800 tan

2 t + 213,961
)

> 0.

Through differential deduction, we complete the proof of Theorem 1.3.

5 Proof of Theorem 1.4

Since the two functions showed in (1.6) are even functions, we can discuss problems in

the range (0, 1). Let arcsinx = t, x ∈ (0, 1). Then x = sin t, t ∈ (0,π/2). We find that

arctanh(sin t) =
1

2
ln

1 + sin t

1 – sin t
=
1

2
ln

(1 + sin t)2

(1 – sin t)(1 + sin t)

=
1

2
ln

(

1 + sin t

cos t

)2

= ln
1 + sin t

cos t
,

and (1.6) is equivalent to

(

ln
1 + sin t

cos t

)2

<
t sin t

cos t
, 0 < t <

π

2
. (5.1)
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Let

F2(t) =
t sin t

cos t
–

(

ln
1 + sin t

cos t

)2

.

Then

F ′
2(t) =

t + cos t sin t

cos2 t
–

2

cos t
ln

sin t + 1

cos t
,

or

(cos t)F ′
2(t) =

t + cos t sin t

cos t
– 2 ln

sin t + 1

cos t
.

We can compute to obtain

(

(cos t)F ′
2(t)

)′
=
(sin t)(2t – sin2t)

2 cos2 t
> 0, 0 < t <

π

2
,

which implies that

(cos t)F ′
2(t) > lim

t→0+
(cos t)F ′

2(t) = 0

for all t ∈ (0,π/2). Then

F ′
2(t) > 0 �⇒ F2(t) > F2

(

0+
)

= 0

for all t ∈ (0,π/2).

In view of

lim
x→0

ln
x arcsinx√

1–x2

ln arctanhx
= 2,

the proof of Theorem 1.4 is complete.

6 Proof of Theorem 1.5

After making the same transformation as in the section above, we obtain that t ∈
(– arcsin r, arcsin r) ⊂ (–π/2,π/2). Considering that the two functions involved in (1.7)

are even functions, we can discuss problems in the range (0, arcsin r). Let

G2(t) =

t(sin t)
cos t

(ln 1+sin t
cos t

)2
:=

f2(t)

g2(t)
,

where

f2(t) =
t(sin t)

cos t
, g2(t) =

(

ln
1 + sin t

cos t

)2

.

Then

f ′
2(t) =

t + cos t sin t

cos2 t
, g ′

2(t) =
2

cos t
ln

sin t + 1

cos t
,
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and

f ′
2(t)

g ′
2(t)

=

t+cos t sin t
cos2 t

2
cos t

ln
sin t+1
cos t

=
t+cos t sin t

cos t

2 ln
sin t+1
cos t

:=
f3(t)

g3(t)
.

Since

f ′
3(t) =

(

t + cos t sin t

cos t

)′
=

1

cos2 t

(

cos
3 t + cos t + t sin t

)

,

g ′
3(t) =

(

2 ln
sin t + 1

cos t

)′
=

2

cos t
,

we have

f ′
3(t)

g ′
3(t)

=
1

2 cos t

(

cos
3 t + cos t + t sin t

)

.

So

(

f ′
3(t)

g ′
3(t)

)′
=

1

8 cos2 t
(4t – sin4t) > 0,

which leads to the fact that the function f ′
3(t)/g

′
3(t) is increasing on (0, arcsin r). Then

f3(t)/g3(t) is increasing on (0, arcsin r) too by Lemma 3.1. Using Lemma 3.1 again, we come

to the conclusion that G2(t) = f2(t)/g2(t) is increasing on (0, arcsin r).

In view of

α := lim
t→0+

G2(t) = 1,

β := lim
t→arcsin r

G2(t) =
r arcsin r

(arctanh r)2
√
1 – r2

,

the proof of Theorem 1.5 is complete.

Remark 6.1 Letting r → 1 in Theorem 1.5, we can obtain Theorem 1.4.

7 Proof of Theorem 1.6

In order to prove Theorem 1.6, we need the following lemma.

Lemma 7.1 ([4–8]) Let |x| < 1. Then

2x arcsinx
√
1 – x2

=

∞
∑

n=1

(2x)2n

n
(

2n
n

) . (7.1)

We are in the state of proving Theorem 1.6.

First, by Lemma 7.1 we get

x arcsinx
√
1 – x2

=

∞
∑

n=1

n!2n–1

n(2n – 1)!!
x2n (7.2)
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due to

(

2n

n

)

=
2n(2n – 1)!!

n!
.

Second, we have

d

dx
(arctanhx)2 =

2

1 – x2
arctanhx = 2

( ∞
∑

n=0

x2n

)( ∞
∑

n=0

x2n+1

2n + 1

)

= 2

∞
∑

n=1

(

1 +
1

3
+ · · · +

1

2n – 1

)

x2n–1. (7.3)

Integrating two sides of (7.3) on [0,x], we can obtain

(arctanhx)2 =

∞
∑

n=1

1

n

(

1 +
1

3
+ · · · +

1

2n – 1

)

x2n. (7.4)

From (7.2) and (7.4) we have

x arcsinx
√
1 – x2

– (arctanhx)2 =

∞
∑

n=1

(

n!2n–1

n(2n – 1)!!
x2n –

1

n

(

1 +
1

3
+ · · · +

1

2n – 1

))

x2n

=

∞
∑

n=3

1

n

(

n!2n–1

(2n – 1)!!
x2n –

(

1 +
1

3
+ · · · +

1

2n – 1

))

x2n

:=

∞
∑

n=3

vnx
2n, (7.5)

where

vn =
1

n

(

n!2n–1

(2n – 1)!!
–

(

1 +
1

3
+ · · · +

1

2n – 1

))

, n≥ 3.

Below we shall prove that

un := nvn =
n!2n–1

(2n – 1)!!
–

(

1 +
1

3
+ · · · +

1

2n – 1

)

> 0 (7.6)

for n≥ 3.

In fact, when n = 3, inequality (7.6) holds. Now, we assume that (7.6) holds for n =m,

that is,

m!2m–1

(2m – 1)!!
> 1 +

1

3
+ · · · +

1

2m – 1
.

Since

(m + 1)!2m

(2m + 1)!!
=
2(m + 1)

2m + 1

m!2m–1

(2m – 1)!!
>
2(m + 1)

2m + 1

(

1 +
1

3
+ · · · +

1

2m – 1

)

,
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in order to prove that (7.6) is also true for n =m + 1, it suffices to show that

2(m + 1)

2m + 1

(

1 +
1

3
+ · · · +

1

2m – 1

)

>

(

1 +
1

3
+ · · · +

1

2m – 1

)

+
1

2m + 1
,

which is true due to

1

2m + 1

(

1 +
1

3
+ · · · +

1

2m – 1

)

>
1

2m + 1
,

or

1 +
1

3
+ · · · +

1

2m – 1
> 1.

So, vn > 0 for n≥ 3, and

x arcsinx
√
1 – x2

– (arctanhx)2 ≥
N

∑

n=3

vnx
2n

holds for all x ∈ (–1, 1), where N is any integer greater than or equal to 3.

Remark 7.1 Theorem 1.6 is obviously a natural extension of Theorem 1.4.

8 Conjecture

Inspired by [9], in the last section, we pose the following conjecture in the form of (1.4)

and (1.5).

Conjecture 8.1 Let x ∈ R,m ≥ 1, and vn as defined by (1.8). Then the double inequality

2m+1
∑

n=3

(–1)nvnx
2n ≤ (arctanx)2 –

x ln(x +
√
1 + x2)

√
1 + x2

≤
2m+2
∑

n=3

(–1)nvnx
2n (8.1)

holds.

Remark 8.1 There are several factors that lead to the fact that this double inequality cannot

be proved by Leibniz’s theorem for alternating series. The first is that the interval we are

discussing now is infinite, and the second is that the sequence {vn}n≥3 does not have the

characteristic of monotone decreasing.
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