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Inequalities connecting the
eigenvalues of a hermitian matrix

with the eigenvalues of
complementary principal submatrices

Robert C. Thompson and S. Therianos

[A X]

Let C = L,^ be a hermitian matrix in partitioned form.

Let the eigenvalues of A, B, C be a > ... > a ,

3., > . . . > &b , Yj i ••• 2 Y n > respectively. In this paper

four classes of inequalities are proved comparing the a. and
If

3- with the Yj, • The simplest of these is:
3 K-

m
1 Y -

s=l V

m
+ I Y

•7<j~s
 Q - i n ~ m

a & —X

< I a.
S s = l %i

m
+ J!

s = l

if the subscripts £ , j satisfy 1 <t, < ... < t 5 a ,
* s' °s 1 m '

1. Introduction

Let A,B,C=A+B be hermitian matrices with eigenvalues

a > ... > a , B1 > ... > 3 , y > ... > y , respectively. The

inequality

(1) yi+j-l ~ ai + ej ' 1 - i 5 J' " "' i + J' ' 1 ~ n '

is due to Weyl [15]. The inequality
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18 Robert C. Thompson and S. Therianos

(2) I y £ I a + I Ss , 1 5 i < ... < i £ n ,
8=1 8 8=1 S 8=1

is due to LidskiT [S] and. Wielandt [76]. An inequality containing both (l)

and (2) as special cases was found by Amir-Moez [7]. His somewhat

complicated result goes as follows. If we are given integers i., ... , i

satisfying 1 5 i , 5 ... ; i £ n and i £ n - m + s for
^ 1 m e

e = l m , define i", ..., i" by i" = i , i" = max(i , £" +l) ,
-L Til J. J. o O O~J-

2 5 s £ m . If 1 < i 1 £ ... < im S n , 1 £ j < ... < jm 5 n , and if

i + j - 1 £ n - m + s for 8 = 1 , ..., m , Amir-Moez's inequality for
O O

the eigenvalues of A9 Bt C = A + B then takes the form

s=l ^ s J e ^ 8=1 vs s=l Js

Recently it has been shown [77] that a simpler and sharper

generalization of (l) and (2) may be found: if

(10 1 £ ix < ... < im £ n , 1 £ j1 < ... < 3m £ n , im • Jm - m < n ,

then

(5)
W? 777 fn

8=1 ^ JS 6 8=1 %8 8=1 "̂8

It was shown in [II] that (5) implies (3). (It is also shown in [9] that

(5) is equal in strength to a more complicated inequality given by Hersch

and Zwahlen [7, 79].)

Now let

C =

be a partitioned hermitian matrix, where A, B are square (not necessarily

of the same size), and where the eigenvalues of A, B, C are

respectively. Then an inequality of Aronszajn [3, 6] states that
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Inequalities connecting eigenvalues 119

In [JO] a generalization of (6) in the spirit of (3) was found, namely

m m m m
( 7 ) I Y(i +i -l)" + \ Vm+S ~ \ V + I fy

s = l ^ s "s ' s= l s = l s s = l °s

i f

( 7 . 1 ) I S ^ S . . . < i w < a , 1 * ^ * . . . < j m < b ,

(7 -2 ) £ £ a - m + s , ,; £ i - m + s , s = 1 , . . . , m .
O O

The proof of (7) given in [JO] has recently been simplified by Amil—Moez

and Perry [Z].

Since (5) is sharper then (3), it is natural to ask whether an

improvement and simplification of (7) along the lines of (5) is possible.

That such a simplification will exist is suggested by the fact that some of

the subscripts in the first part of the left-hand side of (7) may coincide

with some of the subscripts in the second part of the left-hand side. The

proposed generalization of (6) along the lines suggested by (5) should take

the following form:

(8)

It is not difficult to show that (8) is free of the defect that blemishes

(7), that is, the subscripts in the left-hand side of (8) are distinct.

Moreover, were (8) true, it would be sharper than (and simpler than) (7),

in the same way that (5) is sharper and simpler than (3).

After this preamble, we announce one of the main results of this

paper: the inequality (8) is valid. We shall in fact prove four classes

of inequalities comparing the eigenvalues of a partitioned hermitian matrix

with those of its main diagonal blocks A , t = 1, ..., k . One of

these classes will contain (8) as a special case. Two proofs will be

m

-i YV

m
V - + I Y

s~ s=l

m

1 8 8=1 l 8

m
- I

s=l
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120 Robert C. Thompson and S. Therianos

given. The f i r s t wi l l use a device of Wielandt 118, p. 120] to derive (8)

from (5), and the second wil l derive (8) directly by invoking the

properties of a subspace constructed in [73].

2. The basic resu l t

THEOREM 1. Let

\A
C ~ ' "* B

be a hermitian n-square matrix partitioned as indicated, where A is

a x a and B is b x b , and where

denote the eigenvalues of A, B, C respectively. Let 0 5 y 5 a and

0 2 v 5 b . Let integers i , ... , i , j ' , . . . , j satisfy

Define i = a - y + s for s > p and j = b - v + s for s > v .s s

y+v y v
(10) I Yv + - _s s I a. + I B. .

s=l s ds s=l s s=l Js

REMARK. If one sets y = v = m then (10) reduces to (8).

First proof. (Compare [JS], p. 120.) The inequality (10) is

invariant under translation of A, B, C by scalar matrices. We may

therefore assume C is positive definite. Let C = X*X . Partition

X = (Xi, X2) where X1 is n * a and X2 is n x fc . Then -4 = XJ#

and B = X*JZ . Also ;a* = X^* + X2#* . The eigenvalues of X^X* and

/Sf2-̂ 2 coincide, except for zeros, with the eigenvalues of X*Xj = A and

X*Z2 = B , and the eigenvalues of XX* are those of C . Thus if we apply

(5) to XX* = tfjtf* + ^ X * , we obtain

y+v y v
X Y- • s £ a . + 0 + £ g . + 0 ,
8=1 l8 ^e"8 s=l ^ s=l •'s

completing the proof.

Second proof. Let g , . . . , <? be an orthonormal system of column
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n-tuple eigenvectors of C associated with the eigenvalues Y-. » • • • > Y

Let e , ... , e be an orthonormal system of column a-tuple eigenvectors

of A associated respectively with OL , ..., a and let f , ..., f, be

an orthonormal system of column b-tuple eigenvectors of B associated

respectively with B-, , • • • > 3r • Define column n-tuples E , F by
-L u S S

It is known [73] that a p-dimensional space

L = < X X > =<*,. •••» y > exists (the symbol < > denotes the

linear span of the enclosed vectors) such that

ri ri \ _ _ -i y

is a/ ' ' "" '

?1 F b ) > s = 1 ' • • • ' v '

Here X, ..., X are orthonormal, as are Y , ..., Y . Set

, y

, s = 1 v .

Taking the trace of the restriction of C to L , we get

y+v y y+v
(12) y y*cr = 7 x*cx + 7 x*cx

s=i
 8 8

 s=i
 8 s

 8=y+i
 s 8

8=1 " ° e=y+l

Since
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, b y (11),

6 5 ou , s = 1 y , because xg i

xV+s
BxV+s -*je , « = 1. .... V , because * s + y € (/^, .. . , fb) ,

we immediately obtain (8) from (12).

3. The four principal classes of inequalities

Throughout this section we let

C = ^Asi)s,t=\ k

be a partitioned hermitian matrix, in which diagonal block A, is

n -square, t = 1, . . . , k . Let

be the eigenvalues of A , , t = 1, — , k , and let yn - ••> - Y
 t e

the eigenvalues of C . By induction on k it is relatively simple to

establish the following generalization of Theorem 1.

THEOREM 2. Let C = (A ) be as described above. Let integers

">t, dt8 satisfy

st-

t t 3 t~L t9Tn, t 3

define

(15) 3 .„ = n, - m + s for all s > m .

Let m = m_ + . . . + m, . f/zen the eigenvalues y. of C and the

eigenvalues a of its main diagonal blocks A . satisfy

m k ( t
y v , < y

S—1 I S "2.S K.S Z-=J
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REMARK. If we se t k = n and each n = 1 , then specifying

m = . . . = " i = l , m
r+1 = ••• = m = 0 reduces the inequa l i ty ( l6) t o

r r

where C = [a ) . The inequality (17) is a classical result of

Fan [4] asserting that the sum of r diagonal elements of a hermitian

matrix C dominates the sum of the r lowest eigenvalues of C . Thus

Fan's result is included in (l6) as a special case.

In the following we let 6 (y) be a jump function: 6 (y) = 0 if

y 5 x , 6Ay) = 1 if y > x .

THEOREM 3. Let integers p , ..., p, satisfy

0 5 p 5 n., ..., 0 S p, 5 «. . Suppose that integers z satisfy

Define

(19) s.e = p + /or s > n - p .

Set p = p. + ... + p, . Let

(20) C = X z , t = 1, ..., n-p .
t p=l P' £

Define subscripts i and k. by
VS V

(21) i = s + 6 (s) + ... + 6 (s) j

s = 1, ..., p., t = 1, ..., k ,

( 2 2 ) feo = s + 6 T (s) + . . . + 6 . ( s ) j s = 1 , . . . , p .
w-p

t — O T u v o / T • • • ' V r

t/ze eigenvalues y. of C = [A ) an̂ f t/ze eigenvalues a . of

, i t s main diagonal blocks, satisfy
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(23) I yk > I
8=1

Pt

L "M J
Proof. Define g = z + p for all p i l and m.=n.~p. .

vp ~vp v t t

Then the conditions of Theorem 2 are satisfied. We now use the following

fact proved in the Lemma of [9]: if integers a,, ..., a satisfy
-L n—p

l £ a , < . . . < a £ n then the integers a', ..., a' satisfying

1 £ a' < ... < a' £ n and distinct from a. , ..., a are given by the
1 p i n—p

formula

rt-p
a' = s + f 6 _Q(s) , s = 1, .... p .

p=l p

By this fact the integers in 1, ..., n, complementary to the g. ,

s = l , ..., m , are the i. defined above, and the integers in

1, . .., n complementary to the integers j. + .•. + g. - (k-l)s ,

s = 1, ..., m , are the k , s = l p , given above. Since

traceC = trace/I^- + ... + traced,. , it is clear that the inequality of

Theorem 2 induces an inequality in the opposite sense involving these

complementary subscripts.

THEOREM 4. Let C = [A ) be as described above. For each fixed

t , l £ t £ f e j let integers p., Z , s = 1, 2, 3 satisfy

0 - Pt -
 nt>

Ztp = 0 for p > nt - pt .

Define subscripts I and K by
uS S

I = s + 6 7 (s) + ... + 6 (3) , s = 1, ..., p t = 1, ..., fe ,

X = 8 + 6 (s) + ... + 6 (s) , s = 1, ..., p ,
s 1̂ Knp
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lp
* P = 1 n~Pwhere p = px + ... + pfe , and ?p = z

Then the eigenvalues y. of C and the eigenvalues a . of A . , its

main diagonal blocks, satisfy

K

8=1 S t=l
I a t l
3=1 t'St

Proof. Apply Theorem 3 to -C = {-A ) , setting z = p - 1 and)

using the fact that

THEOREM 5. Let C = [A } fee as described above. For each fixed
8 u

t , 1 < t 5 k , let mt, Jts satisfy O S « t S J i t ,

(25) , = m + 1 - s / o r s > m .
VS Xr V

Let m = m. + ... + m, . Then the eigenvalues y. of C and a . of

j -its main diagonal blocks, satisfy

(26)
s=l is

fe-l)(s-l)

k

"A
t

Is=l
a

' ts

Proof. Apply Theorem 3 to -C = (--4 ) , taking j, = n + 1 - J .
S V to v VS

REMARK. The y subscripts on the left-hand side of (26) decrease as

t increases.

4. Comparison with previously known inequalities

The previously known inequalities are those in 1101. We compare the

inequalities in [J0, Theorem 2] with the inequalities in Theorem 1 above.

Thus we shall compare the subscripts in (7) and (8).

Given a set of integers i , ,; satisfying (7.1) and (7-2) let
s s

(27)
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Then

1 < J < . . . < J < a , 1 < <7 , < . . . < J s b .
1 m l m

We may sharpen the inequality (7) if the integers i , j are decreased in
s s

such a fashion that the I , J remain unaltered and such that (7-1)

s s

continues to hold. Assuming that all possible such decreases in the

i , 3 have been made, we say that the resulting set of i , j are fully
G S S S

reduced. For a fully reduced set of i , j , le t K = [i +j - l ) " ,
s s s s s

s = 1 , . . . , m . The (7) becomes

mm mm

S=l 6 S=l S=l S S=l S

For each fixed s , 1 5 s 5 m , the proof of Theorem 2 of [ J / ] gives
K = I + J - 1 - max [l -i , J -j }s s s l s s ' s ° sJ

= I + J - s +s s {(S-l)-max(ls-is,

Thus

(29) iC > J + J - s , s = 1, . . . , m .
b o o

In (8) take the a and B subscripts to be J , J , respectively. Then
s s

(8) becomes

m m m m
(30) I YJ+c7-a

 + I V m + s
5 I aJ + n̂

 6J •
s=l s s s=l s=l s s=l s

By virtue of (29), it is clear that (30) is a sharper assertion than (28).

Thus the inequalities in this paper are stronger than the inequalities

in [JO].

It is also clear from the first proof of Theorem 1 that the

inequalities of [70] could have been derived from [/]. This was not

realized until some time after Theorem 1 was proved (by the method of the

second proof).

https://doi.org/10.1017/S0004972700044324 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044324


Inequalities connecting eigenvalues 127

5. Singular value inequalities

Throughout this section we let C = [A ,},., .<L, be a not necessarily

hermitian matrix, in partitioned form, with A having dimensions

n x K, , t = 1, ..., k . We let (13) be the singular values of A ,

for t = 1, .. . , k , and we let Y-, — • • • - Y be the singular values of

C . Thus Y, - ••• - Y - ~Y - ... 2 -Y, are the eigenvalues of the

(2n)-square hermitian matrix

[0 C

On this matrix perform the unitary similarity in which we rearrange the

block rows and block columns in the same way, by taking them in the order

1, k+1, 2, k+2, 3, k+3, ..., k, 2k . Let K be the resulting matrix. Its

eigenvalues are still Y-, - • • • - Y - ~Y - • • • - ~Yn » ̂ u*
 n o w down the

block diagonal we see the matrices

A =
s

0 A
ss

A* Q
ss

which have eigenvalues a , > . . . > a 2 -a > . . . > - a ;
si S,K s,n s,l

o S

s = 1, ..., k .

THEOREM 6. Let the not necessarily hermitian matrix C = [A ) be
S t-

as described above. Let 0 5 p 5 n , s = 1, ..., k , and let integers
s s

z satisfy (18) and (19). Define subscripts i ., k, by (20)., (21), and

(22). Then the singular values y. of C and the singular values a .

of A t j its main diagonal blocks, satisfy (23).

Proof. Apply Theorem 3 to the 2n-square matrix K in which the main

diagonal blocks are the 2n -square matrices A . Kote that

6 (s) = 0 for s < p and p > n - p
Ztp t t t

since z = p. for p > n. - p . Also note that
cp v v ~c
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6 (s) = 0 for e 5 p and p > n - p ,
Zlp+---+Zkp

since if p > n - p = (\~P-J + • • • + (nj--P̂ ) - \ ~ V± •> we have

2tp = pt ' h e n c e 2ip + "'• + 3fep = p l + '"" + pk = p " U s i n g t h e s e f a c t s '

Theorem 3 applied to K yields (23).

THEOREM 7. Let the not necessarily hermitian matrix C be as

described above. Let 0 < m, < n. , * = 1, • ••, fc and let integers J

satisfy (2h) and (25). Then the singular values y. of C and the

singular values a . of A 3 its main diagonal block, satisfy (26).

Proof. Apply Theorem 5 to K . One may verify that

J + ... + J. + (fe-l)(8-l) S n for 1 < s 5 m and so none of the

negative eigenvalues of K enter when we apply Theorem 5 to K .

REMARK I. In Theorem 6 set each z = p . Then the inequality (23)

becomes

s=i ° t=:

In Theorem 7 set <7 = m. + 1 - s for all s, t . Then the inequality
to u

(26) reduces to (31). The inequality (31) is known; it is due to Gohberg

and KreTn and appears as (5.U) on page 53 of [5]. Thus both Theorems 5 and

7 generalize the inequality of Gohberg and KreTn.

REMARK 2. ?y considering a nonsingular matrix with zero blocks on its

main diagonal it is easy to see that Theorem 2 and k cannot be valid for

singular values.

6. Applications

1. Let

be hermitian. Let a > a 2 ... , X > X > ... be the eigenvalues of

A and L respectively. Let
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= r°
IB

was shown

B* C

and let 52 2 62 2 ... be the eigenvalues of D2 . In [76] it

that if a 2 0 then

(32) p~ p~ 2 61 *

The proof involved a combination of the Aronszajn inequality

Y.+ . , + Y - o. + B. with the Weyl inequality Y-+- •> - <*•
 + 6- for the

eigenvalues of a sum C = A + B . By using the generalization (8) of

Aronszajn's inequality and the LidskiT inequality (see [8] or [77]) for the

eigenvalues of a sum, and slightly sharpening the argument in [76], the

following generalization of (32) may be established: If

i^ < i^ < ... < i and a. 2 0 , then

t=l

Here 6 = 0 if t exceeds the number of rows in D .

2. Let C = y ^ where all blocks A, X, Y, B are fc-square. Let

CL * ... , I * ... , ($.>..., y 2 ... be the singular values of

A, X, B, Y , respectively. Let y. > — be the singular values of C .

If 1 S i± < ... < i < k , 1 5 j1 < ... < jm < k , then

r 2 ? 2 ? 2 ? 2 ? 2 r 2I y • • + I yt 2 I a. + I 8. + I x + I y .
8=1 -8'"e" 6=1 " '" ° 6=1 "8 6=1 "S 8=1 " 8=1 °

If, instead, we have k > i > ... > i 2 1 , k > j' > ... > j 2 1 , then

These inequalities may be obtained by applying Theorems 3 and 5 to CC* in

which AA* + XX*, YY* + BB* are the main diagonal blocks, and using

LidskiT's inequalities.
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Many other inequali t ies of this nature may be proved by combining

Theorems 3-6 with the inequalities in [9 , 112 for the eigenvalues of the

sum of hennitian matrices.
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