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§1. Introduction. (a) Let D be a simply-connected domain in the zy—plane
bounded by the simple closed curve €, assumed to be analytic. We consider the
problem of determining those twice-continuously differentiable functions ¢ =
¢(z, y) which satisfy

(1.1) V¢ =0 in 9D,
% _
(12) n h¢ on e,

where 9/dn indicates differentiation with respect to the exterior normal to e,
V? is the two-dimensional laplacian operator, and & is a constant. We call this
the “problem of Stekloff” [5].

It can be shown [1, 2] that only for a discrete infinite set of non-negative real
values of h (eigenvalues) do there exist functions ¢ (eigenfunctions) that satisfy
(1.1) and (1.2). We denote the totality of eigenvalues by he, by, ks, - - - (With
hi £ hi4a for all k), and the corresponding eigenfunctions by ¢o, ¢1, ¢, - -+ . We
suppose the latter to be normalized according to the rule

(1.3) feqs,i ds =1 k=01,2--).

(It is clear from (1.1) and (1.2) that hy = 0, ¢ = constant.) The main interest
of the present paper lies in determining an upper bound for the first non-trivial
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eigenvalue h;. In fact, adaptation of a method devised by Szego [6] leads to the
result (§2, below)

(1.4) h < 2x/L,

where L is the perimeter of €. Since the equality in (1.4) holds if and only if €
is a circle (§3, below), we prove that
of all simply-connected domains with analytic boundary of assigned per-
imeter L, the circle yields the largest value of hi.
A weaker result is achieved if we substitute “area” for “perimeter.” This
follows from (1.4) with the aid of the classical isoperimetric inequality L’ = 4rA :

(1.5) =4/
where A is the area of . Equality in (1.5) holds only if @ is a circle.

(b) In order to achieve an elementary derivation of (1.4) valid when © is
convex, the following purely geometric inequality [7] is employed in §5(a) below:

(1.6) LA £ nJ,

where L is the length of @, A is the area of D (assumed convex), and J is the
polar moment of inertia of € with respect to the centroid of @.

(c) If @ is the circle z* + y° = o, the Stekloff problem (1.1), (1.2) is com-
pletely soluble in explicit form. We have, in fact,

Gar1 = by r* cos k6
e ’ } (k= 172)3) "");

. koo
1.7 hor—1 = hy = -, k.
a b, = bp 1 sin kb

where (r, 8) are plane polar coordinates (x = 7 cos 6, y = r sin 6) and the by are
numerical factors chosen so as to effect the normalization (1.3).

In particular, we have hy = hy = 1/a, so that, since L = 2ra and A = ra’,
(1.4) and (1.5) reduce to equalities. Also

(1.8) ¢1 = byrcos @ = bz, ¢ =Dbirsinb = by

are eigenfunctions corresponding to the lowest non-trivial eigenvalue by = hs.

§2. Upper bound for hy. (a) A definition of the lowest non-trivial Stekloff
eigenvalue equivalent to the one given in §1(a) is the following [1, 2]:

[ G+ ul) da dy
(2.1) hy = min =2

ueQ 2
f u” ds
c

H
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where u, = du/dx, u, = du/9y, and Q is the class of functions u continuously
differentiable in ®, continuous on €, and such that

(2.2) _/e uds = 0.

Thus for u € @ we have the inequality
[[[ 6+ ) d ay
D

fu2 ds
e

with equality achieved if and only if = ¢, where ¢ is an eigenfunction satisfying

©24) V=0 in D, z—z=h1¢1 on e

2.3) h

IIA

To select a pair of functions from the class @ for substitution into (2.3) we
write 2 = 2 + 7y and w = £ + iy and consider the family of analytic functions
z = f(w) which map D univalently onto the circle |w| < 1 in the &y—plane.
(Since € is analytic, each such function is analytic in | w | < 1.) We denote the
(unique) mapping inverse to z = f(w) by

(2.5) E4+im=w=gk = U,y + V),

where U and V are real functions harmonic in ©. (We note that because of the
analyticity of @

(2.6) (@) = 1/f'(w)

holds for z £ @ as well as for z ¢ ©.)

In (d) below it is shown that there exists at least one f(w) such that both U £ @
and V ¢ Q. In fact by (2.2)

@.7) fe (U + iV) ds = fe 4(2) ds = 0.

(b) In what follows we need the following elementary arithmetic result: When
m, n, m', and n’ are all positive

s

n ’

28) | implies & < TR
m
h=or

(¢) Assuming the validity of (2.7) until its proof in (d) below, we employ
(2.3) to obtain the pair of inequalities
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[[ v+ wh aw ay
D

W* ds
l

On introduction of the change of variables z = f(w), whose inverse is provided
by (2.5), the inequalities (2.9) read

(2.9) h

IIA

w=1u,V).

[[ vt w g an
(2.10) lol<t

=
IIA

(W = g, 77)7
W £ (w) dw|

ll=1

where we have used the well-known invariance of form of the Dirichlet integral
under conformal transformation. Substitution of W = & W = 5 then gives

[t [t

[‘ L EITw) vl f| L) )

(2.11) h = h

I\

from which follows directly, according to (2.8),

2 fj;wkl d§ dn _ 2r

[N

212) = = ==,
[ @+dirwal [ irwa ©
|w|=1 Jw]=1

where

2.13) L= fe ds = fl L) av)

is the perimeter of €. This is the result announced in (1.4).
(d) We fix our attention upon z = fo(w), a particular univalent conformal
mapping of D onto | w | < 1, and note that another such mapping is [3]

1) r=jw =i (PT2), a=f, 0sp<1,

for arbitrary real v. Writing w = g(z) for the inverse of (2.14), we may express

the line integral (2.7) as
feg(z) ds = [wl_lw]f'(w) dw | =f w 1—|af / (;"’:';:v)dw'
f&(ew = ”eh>lde = I(e),

Jw]=1 l 1 —aw l2
(2.15)
1 — pei(o-'/)

_ f21r—6 eiO(l — ,02)
Ls |

I — pe@v
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where 6 is an arbitrary real number. We note that I(«), defined by (2.15), is a
continuous function of a for |a| < 1.

Since the integrand has the period 27 with respect to 6, we may rewrite (2.15)
as

(2.16) I(@) = ¢""H(),
where

B 2w—38 eiO(l _ p2) , ’ez"y(eiﬁ . P)
(2.17) H(a) = j:s 1 — pc? fo( 1= pe? >] 2

The steps involved in the transformation of (2.15) similarly lead from (2.13) to

2w~ 1
(218) L= m[foldo
in which the argument of f; is the same as that in (2.17).

In order to justify the use of (2.7) in (¢) above, we employ the method of
Szegd [6] to demonstrate the existence of at least one «, with | « | < 1, for which
I(a) = 0. This method employs the fact that the mapping 8 = I(e) is continuous
for | @ | < 1, as follows from (2.15); and, moreover that the index (with respect
to 8 = 0) of the -plane image of @ = pe'?, as y runs from 0 to 2=, is unity if
p (<1) is a constant sufficiently close to one. To prove the latter fact, by (2.16)
it is adequate to show that

(2.19) |H@) — L| < ¢

for any preassigned positive ¢, provided positive (1 — p) is sufficiently close to
zero. The proof of (2.19) follows:
We choose & so that

(2.20) |1 — 6’| < e2L for —6<8<8 (0<38<m).
With the aid of (2.17) and (2.18) a short calculation then gives
2T—§
11—¢"]( =0
IH(a) l f I]- _pe,olg |f0|d0
¢ = lfl f”"‘ (2sin 36)(1 — o°) [/ |
(2.21) <3r 2L J-s I 1 — pe? |2 @ + (1 — p)2 + 4psin% 10 a0

27 —d 2 2 p2m—d /
L= o) Ifsl —p f | fol
2L f 1 = pe? P [2 o + 20 Js sin 36 o
2 M
p sin 18

< + (]- - P) )

where | fo(w) | < M on l w| = 1. (That M is finite follows from the analyticity
of €.) With 6 already fixed by (2.20), we choose p so close to one that the final
term of (2.21) is less than %e. This completes the proof of (2.19).
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§3. The case of equality. (a) Although it is clear (§1 (¢)) that (2.12) becomes
an equality if @ is a circle, the mode of derivation fails to indicate whether
there exists any other form of @ for which h; = 2x/L. To answer this question
(in the negative), we first note that equality holds in (2.3) if and only if u = ¢,
where ¢ satisfies (24); we next proceed to show that the functions U(zx, y) and
V(z, y), introduced in (2.5), satisfy

(3.1) U _mu, Lony on e
an an
only if @ is a circle.

Since the mapping z = f(w) of D onto | w| < 1 is conformal, we have

oU 1 Jok _
(3.2) .(")_7:1:. = Im [é-;]rnl on C (IU)I = 1),

because U = ¢ = r cos 0. Since the partial derivative on the right is thus equal
tocos @ = ¢ (forr = 1) = U, from (3.2) and (2.6) follows

ou _ .,
(3.3) i |g’(z) |[U on e.
Thus the first relation of (3.1) requires | ¢'(2) | = hi, a positive constant, on €.

(Clearly the same requirement follows also from the second relation of (3.1).)
Since the univalence of w = ¢(z) requires ¢'(z) = 0 in D, this implies that ¢’'(z) =
constant throughout ©. Hence (3.1)—and therefore equality in (2.12)—holds
only if g(z) = b1z 4 be, so that @ is necessarily a circle.

(b) Tt is clear that the results of §2 and (a) above remain valid if € is merely
piecewise analytic, provided that |f'(w)| and |f’(w)|™ remain bounded as
| w| — 1. We do not investigate the geometric implications of this requirement.

§4. A generalization. (a) A modified Stekloff problem involves determination
of functions ¢ that satisfy

(4.1) V¢ =0 in D, g-% = jp(s)y on €,

where 7 is a constant and p(s) is a given positive continuous function of position
on €. As in the ordinary Stekloff problem (p = 1) there exists [1, 2] a discrete
infinite set of non-negative real eigenvalues of j and corresponding eigenfunc-
tions. If j; is the lowest nonzero eigenvalue, then [1, 2]

m@+@mw

(4.2) B =
L v*p(s) ds

b

where v = v(z, y) satisfies
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(4.3) f vp(s) ds = 0.
[
Step-by-step use of the technique employed in §2 provides the inequality
. 2
(4:.4:) Ji é )
f p(s) ds
c

of which (2.12) is a special case (p = 1). If w = ¢g(2) maps D univalently onto
| w| < 1 with the normalization which (4.3) indicates to be the proper extension
of (2.7), namely,

5) [ p6)0@ as = o,

equality holds in (4.4) if and only if
(4.6) l9'@) | = jip(s) on €.

(This follows, in applying the technique of §3(a) to the modified Stekloff problem,
on comparison of (3.3) with the second relation of (4.1).)

(b) An interesting special case of the modified Stekloff problem is that in
which © is convex and p(s) = K(s), the (positive) curvature of €. Since

@7 fe K(s) ds = 2m,
(4.4) reads
(4.8) as1l  [p=K@).

If 2 = f(w) is the mapping inverse to w = g¢g(z) mentioned in (a) above, the
curvature of @ is given by the formula [4]

1+ Re{wf,(w)
[ (w) |

It is obvious that if @ is a circle the equality in (4.8) holds; conversely, by (4.6),
(2.6), and (4.9) it follows that equality in (4.8) leads to the relation

i (w)}
4.10 Reswl 2t =0 w| = 1).
.10 (ol ol
Since f'(w) = 0 for |w| = 1, the left-hand member of (4.10) is a regular har-
monic function; therefore it is identically zero, in | w | = 1. It then follows that
Im {wf”(w)/f'(w)} is constant; since this quantity vanishes at w = 0, it also is
zero. That is, we must have

4.9) K(s) = (lw|=1).
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7w _

whence f”(w) = 0 identically; equality in (4.8) thus holds only if f(w) = by +
by w, so that € is a circle.

§6. A second upper bound for k. (@) We suppose the coordinate system in the

zy-plane so situated that its origin is the centroid of the boundary curve € of
D; that is,

(5.1) fexds=feyds=0.

Thus, according to (2.2) and (2.3), we have

fj;)dxdy
fex2ds ’

whence it follows from (2.8) that

/:[dedy

(5.2) h = —_
f o ds
e

h =

(56.3) h = 24/J,

where 4 is the area of D and

(54) J = fe @ + ) ds

is the polar moment of inertia of @ with respect to its centroid.

(b) For a circle of radius @, A = wa’ and J = 2wd’, so that, according to
§1(c), equality holds in (5.3); that such is the case only if @ is a circle is seen as
follows.

Equality in (5.3) implies equality in both of the relations (5.2); by (2.4),
these latter require that

or a
(5.5) T = h z, 5% =hy on @,
whence
1 o) = (2 ézz) -
(5.6) hi@® + o) = (6%) -+ <6n 1 on €.

(¢) Tt is clear that at least for some domains the upper bound presented by
(5.3) is less than that given by (2.12). For a square of side b, for example, we
easily compute
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(5.7) 24/J = 3/(2b) < w/(2b) = 2x/L;

clearly the same inequality holds for any long, slender domain whose area A is
close to zero. When D is convex and @ has piecewise continuous curvature the
inequality 24/J =< 2n/L always holds [7]; thus, for such domains the inequality
(5.3) implies (1.4). That this is not the case generally for non-convex domains
is exhibited by the counter example furnished by the case in which @ is the cardioid

(5.8) r=1— coséb,
in plane polar coordinates: We readily compute
(5.9) 2n/L = 2n/8 < 3wgs = 24/J.

(d) Demonstration of the validity of (5.3) is effected under a far weaker as-
sumption as to € than that which is required for the proof of (2.12) carried out
in §2. It is sufficient in (a) and (b) above to assume merely piecewise smoothness
of @. In (c), as stated, in deriving from (5.3) and (1.6) the main inequality (1.4)
for convex domains we make the additional assumption of piecewise continu-
ous curvature—still an assumption less severe than the restricted piecewise
analyticity called for in §3(b).
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