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Recently, a unified integral operator has been introduced by Farid, 2020, which produces several kinds of known fractional and
conformable integral operators defined in recent decades (Kwun, 2019, Remarks 6 and 7). +e aim of this paper is to establish
bounds of this unified integral operator by means of (α, m)-convex functions. +e resulting inequalities provide the bounds of all
associated fractional and conformable integral operators in a compact form. Also, the results of this paper hold for different kinds
of convex functions connected with (α, m)-convex functions.

1. Introduction

To prove the mathematical inequalities, fractional integral
operators play an important role in the field of different
branches of mathematics and engineering. Many mathe-
maticians have used fractional integrals and conformable
fractional integrals to develop integral inequalities [1–14].
We start from definitions of fractional integral operators
which are direct consequences of unified integral operators
given in (8) and (9).

Definition 1 (see [15]). Let η1: [a, b]⟶ R be an integrable
function. Also, let η2 be an increasing and positive function
on (a, b], having a continuous derivative η2′ on (a, b). +e
left-sided and right-sided fractional integrals of a function η1
with respect to another function η2 on [a, b] of order μ,
where R(μ)> 0, are defined by

μ
η2Ia+η1(x) �

1

Γ(μ) ∫
x

a
η2(x) − η2(t)( )μ− 1η2′(t)η1(t)dt, x> a,

μ
η2
Ib−η1(x) �

1

Γ(μ) ∫
b

x
η2(t) − η2(x)( )μ− 1η2′(t)η1(t)dt, x< b,

(1)
where Γ(·) is the gamma function.

A k-analogue of the above definition is defined as
follows.

Definition 2 (see [16]). Let η1: [a, b]⟶ R be an integrable
function. Also, let η2 be an increasing and positive function
on (a, b], having a continuous derivative η2′ on (a, b). +e
left-sided and right-sided fractional integrals of a function η1
with respect to another function η2 on [a, b] of order
μ;R(μ), k> 0 are defined by

μ
η2I

k
a+η1(x) �

1

kΓk(μ)
∫x
a
η2(x) − η2(t)( )(μ/k)− 1η2′(t)η1(t)dt, x> a, (2)

μ
η2I

k
b−η1(x) �

1

kΓk(μ)
∫b
x
η2(t) − η2(x)( )(μ/k)− 1η2′(t)η1(t)dt, x< b, (3)

Hindawi
Journal of Mathematics
Volume 2020, Article ID 2345416, 9 pages
https://doi.org/10.1155/2020/2345416

mailto:faridphdsms@hotmail.com
https://orcid.org/0000-0002-4103-7745
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2345416


where Γk(·) is defined by [17]

Γk(x) � ∫∞
0
tx− 1e− tk/k( )dt, R(x)> 0. (4)

A well-known function named Mittag-Leffler function is
defined by [18]

Eα(z) � ∑
∞

n�0

zn

Γ(αn + 1)
, (5)

where α, z ∈ C and R(α)> 0.
One can see [19–22] to study the Mittag-Leffler function

and its generalizations. Also, (2) and (3) produce many types
of fractional integral operators (see [10], Remark 6).

A generalized fractional integral operator containing an
extended generalized Mittag-Leffler function is defined as
follows.

Definition 3 (see [1]). Let ω, μ, α, l, c, c ∈ C,
R(μ), R(α), R(l)> 0, and R(c)>R(c)> 0 with p≥ 0,
δ > 0, and 0< k≤ δ +R(μ). Let η1 ∈ L1[a, b] and x ∈ [a, b].
+en, the generalized fractional integral operators ϵc,δ,k,cμ,α,l,ω,a+η1
and ϵc,δ,k,cμ,α,l,ω,b− η1 are defined by

ϵc,δ,k,cμ,α,l,ω,a+η1( )(x;p) � ∫x
a
(x − t)α− 1E

c,δ,k,c
μ,α,l ω(x − t)μ;p( )η1(t)dt,

ϵc,δ,k,cμ,α,l,ω,b− η1( )(x;p) � ∫b
x
(t − x)α− 1E

c,δ,k,c
μ,α,l ω(t − x)μ;p( )η1(t)dt,

(6)
where

E
c,δ,k,c
μ,α,l (t;p) � ∑

∞

n�0

βp(c + nk, c − c)

β(c, c − c)

(c)nk
Γ(μn + α)

tn

(l)nδ
, (7)

is the extended generalized Mittag-Leffler function.
Recently, Farid defined a unified integral operator which

unifies several kinds of fractional and conformable integrals
in a compact formula which is defined as follows.

Definition 4 (see [23]). Let η1, η2: [a, b]⟶ R, 0< a< b, be
the functions such that η1 be positive and η1 ∈ L1[a, b] and
η2 be differentiable and strictly increasing. Also, let ϕ/x be an
increasing function on [a,∞) and α, l, c, c ∈ C,
R(α),R(l)> 0, R(c)>R(c)> 0, p, μ, δ ≥ 0, and 0< k≤
δ + μ. +en, for x ∈ [a, b], the left and right integral oper-
ators are defined by

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(x,ω;p) � ∫x

a
Ky
x E

c,δ,k,c
μ,α,l , η2;ϕ( )η1(y)d η2(y)( ),

(8)

η2F
ϕ,c,δ,k,c

μ,α,l,b−
η1( )(x,ω;p) � ∫b

x
Kx
y E

c,δ,k,c
μ,α,l , η2;ϕ( )η1(y)d η2(y)( ),

(9)
where K

y
x(E

c,δ,k,c
μ,α,l , η2; ϕ) � (ϕ(η2(x) − η2(y))/η2(x) −

η2(y))E
c,δ,k,c
μ,α,l (ω(η2(x) − η2(y))

μ
;p).

For suitable settings of function ϕ, η2, and certain values
of parameters included in Mittag-Leffler function (7), very
interesting consequences are obtained which are comprised
in Remarks 6 and 7 of [10].

+e objective of this paper is to obtain bounds of unified
integral operators explicitly which are directly linked with
various fractional and conformable integrals. +e
(α, m)-convexity has been used for establishing these
bounds. +e notion of (α, m)-convexity is defined by
Mihesan in [24].

Definition 5. A function η1: [0, b]⟶ R, b> 0, is said to be
(α, m)-convex, where (α, m) ∈ [0, 1]2, if

η1(tx +m(1 − t)y) ≤ tαη1(x) +m 1 − tα( )η1(y), (10)

holds for all x, y ∈ [0, b] and t ∈ [0, 1].

Remark 1

(i) If we put (α, m) � (1, m), then (10) gives the defi-
nition of m-convex function

(ii) If we put (α, m) � (1, 1), then (10) gives the defi-
nition of convex function

(iii) If we put (α, m) � (1, 0), then (10) gives the defi-
nition of star-shaped function

For some recent citations and utilizations of
(α, m)-convex functions, one can see [9, 25–28] and ref-
erences therein. In the upcoming section, bounds of unified
integral operators are established by using (α, m)-convexity.
+ese bounds provide general formulas to obtain bounds of
fractional and conformable integral operators described in
Remarks 6 and 7 of [10]. Among the well-known inequalities
which are related to the integral mean of a convex function,
the Hadamard inequality is of great importance. Many
mathematicians worked on new types of Hadamard in-
equalities using convex functions, see [8, 29–31]. We also
established the general Hadamard-type inequality by ap-
plying Lemma 1 which further produces various inequalities
of Hadamard type for fractional and conformable integrals.
At the end, by using (α, m)-convexity of |η1′|, a modulus
inequality is obtained.

2. Main Results

Bounds of unified integral operators (8) and (9) using
(α, m)-convexity are studied in the following result:

Theorem 1. Let η1: [a, b]⟶ R be a positive integrable
(α, m)-convex function with m ∈ (0, 1]. Let η2: [a, b]⟶ R

be differentiable and strictly increasing function, and also, let
ϕ/x be an increasing function on [a, b]. If α, l, c, c ∈ C,
R(α),R(l)> 0, R(c)>R(c)> 0, p, μ, δ ≥ 0, and 0< k≤
δ + μ, then for x ∈ (a, b), we have
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η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(x,ω;p)≤Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( ) mη1

x

m
( )η2(x) − η1(a)η2(a)( ) − Γ(α + 1)

(x − a)α
mη1

x

m
( ) − η1(a)( )αIa+η2(x)( ),

η2
Fϕ,c,δ,k,c
μ,α,l,b−

η1( )(x,ω;p)≤Kx
b E

c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

x

m
( )η2(x)( ) Γ(α + 1)

(b − x)α
η1(b) −mη1

x

m
( )( )αIb−η2(x)( ),

(11)

and hence,

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(x,ω;p) + η2

Fϕ,c,δ,k,c
μ,α,l,b−

η1( )(x,ω;p)
≤Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( ) mη1

x

m
( )η2(x) − η1(a)η2(a)( )(

−
Γ(α + 1)

(x − a)α
mη1

x

m
( ) − η1(a)( )αIa+η2(x))

+Kx
b E

c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

x

m
( )η2(x)( )(

−
Γ(α + 1)

(b − x)α
η1(b) −mη1

x

m
( )( )αIb−η2(x)).

(12)

Proof. Under the assumptions of ϕ and η2, one can write the
following inequality:

ϕ η2(x) − η2(t)( )
η2(x) − η2(t)

≤ϕ η2(x) − η2(a)( )
η2(x) − η2(a)

; t ∈ [a, x], x ∈ (a, b).

(13)

Multiplying with E
c,δ,k,c
μ,α,l (ω(η2(x) − η2(t))

μ
;p)η2′(t), we

can obtain

Kt
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η2′(t)

≤ ϕ η2(x) − η2(a)( )
η2(x) − η2(a)

E
c,δ,k,c
μ,α,l ω η2(x) − η2(t)( )μ;p( )η2′(t).

(14)
By using E

c,δ,k,c
μ,α,l (ω(η2(x) − η2(t))

μ
;p)≤Eμ, α, lc,δ,k,c(ω

(η2(x) − η2(a))
μ
;p), the following inequality is obtained:

Kt
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (t)≤Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (t). (15)

Using the definition of (α, m)-convexity for η1, the
following inequality is valid:

η1(t)≤
x − t

x − a
( )αη1(a) +m 1 −

x − t

x − a
( )α( )η1 x

m
( ). (16)

Multiplying (15) with (16) and integrating over [a, x],
one can obtain

∫x
a
Kt
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η1(t)d η2(t)( )≤ η1(a)Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( )∫x

a

x − t

x − a
( )αd η2(t)( )

+mη1
x

m
( )Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( )∫x

a
1 −

x − t

x − a
( )α( )d η2(t)( ).

(17)

By using (8) of Definition 4 and integrating by parts, the
following inequality is obtained:

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(x,ω;p)≤Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( ) (x − a)α mη1

x

m
( )η2(x) − η1(a)η2(a)( )(

·
Γ(α + 1)

(x − a)α
mη1

x

m
( ) − η1(a)( )αIa+η2(x)).

(18)
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Now, on the other side, for t ∈ (x, b] and x ∈ (a, b), the
following inequality holds true:

Kt
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (t)≤Kx

b E
c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (t). (19)

Using (α, m)-convexity of η1, we have

η1(t)≤
t − x

b − x
( )αη1(b) +m 1 −

t − x

b − x
( )α( )η1 x

m
( ). (20)

Adopting the same procedure as we did for (15) and (16),
the following inequality from (19) and (20) can be obtained:

η2F
ϕ,c,δ,k,c

μ,α,l,b−
η1( )(x,ω;p)≤Kx

b E
c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

x

m
( )η2(x)( ) − Γ(α + 1)

(b − x)α
η1(b) −mη1

x

m
( )( )αIb−η2(x)( ).

(21)

By adding (18) and (21), (12) can be obtained. □

Remark 2

(i) If we consider (α, m) � (1,1) in (12), +eorem 8 in
[10] is obtained

(ii) If we consider ϕ(t) � (Γ(μ)tμ/k/kΓk(μ)) for the
left-hand integral and ϕ(t) � (Γ(])t]/k/kΓk(])) for
the right-hand integral and p � ω � 0 in (12), then
+eorem 1 in [9] can be obtained

(iii) If we consider μ � ] in the result of (ii), then
Corollary 1 in [9] can be obtained

(iv) If we consider ϕ(t) � Γ(μ)tμ, p � ω � 0, and
(α, m) � (1,1) in (12), +eorem 1 in [6] is obtained

(v) If we consider μ � ] in the result of (iv), Corollary 1
in [6] is obtained

(vi) If we consider ϕ(t) � (Γ(μ)tμ/k/kΓk(μ)) for the left-
hand integral and ϕ(t) � (Γ(])t]/k/kΓk(]))for the
right-hand integral, (α, m) �(1,1), η2(x) � x, and
p � ω � 0, then +eorem 1 in [4] can be obtained

(vii) If we consider μ � ] in the result of (vi), then
Corollary 1 in [4] can be obtained

(viii) If we consider ϕ(t) � Γ(μ)tμ for the left-hand
integral and ϕ(t) � Γ(])t] for the right-hand in-
tegral, η2(x) � x, and p � ω � 0 and (α, m) �(1,1)
in (12), then +eorem 1 in [5] is obtained

(ix) By setting μ � ] in the result of (viii), Corollary 1 in
[5] can be obtained

(x) By setting μ � ] � 1 and x � a orx � b in the result
of (ix), Corollary 2 in [5] can be obtained

(xi) By setting μ � ] � 1 and x � (a + b/2) in the result
of (ix), Corollary 3 in [5] can be obtained

To prove the next result, we need the following lemma [9].

Lemma 1. Let η1: [0,∞]⟶ R be an (α, m)-convex
function with m ∈ (0, 1]. If η1(x) � η1(a + b − x/m), 0<
a< b, then the following inequality holds:

η1
a + b

2
( )≤ 1

2α
1 +m 2α − 1( )( )η1(x), (22)

for all x ∈ [a, b] and m ∈ (0, 1].

+e following result provides upper and lower bounds of
the sum of operators (8) and (9) in the form of a Hadamard
inequality.

Theorem 2. With the assumptions of <eorem 1 in addition,
if η1(x) � η1(a + b − x/m), then we have

2αη1(a + b/2)

1 +m 2α − 1( )( ) η2
Fϕ,c,δ,k,c
μ,α,l,b−

1( )(a,ω;p)(

+ η2
Fϕ,c,δ,k,c
μ,α,l,a+

1( )(b,ω;p))
≤ η2

Fϕ,c,δ,k,c
μ,α,l,b−

η1( )(a,ω;p) + η2
Fϕ,c,δ,k,c
μ,α,l,a+

η1( )(b,ω;p)
≤ 2Kab E

c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

a

m
( )η2(a)( )(

−
Γ(α + 1)

(b − a)α
η1(b) −mη1

a

m
( )( )αIb−η2(a)).

(23)

Proof. Under the assumptions of ϕ and η2, we have

ϕ η2(x) − η2(a)( )
η2(x) − η2(a)

≤ ϕ η2(b) − η2(a)( )
η2(b) − η2(a)

. (24)

Multiplying with E
c,δ,k,c
μ,α,l (ω(η2(x) − η2(a))

μ
;p)η2′(x), we

can obtain from (24) the following inequality:

Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η2′(x)

≤ ϕ η2(b) − η2(a)( )
η2(b) − η2(a)

E
c,δ,k,c
μ,α,l ω η2(x) − η2(a)( )μ;p( )η2′(x).

(25)
By using E

c,δ,k,c
μ,α,l (ω(η2(x) − η2(a))

μ
;p)≤Eμ,α, lc,δ,k,c(ω

(η2(b) − η2(a))
μ
;p), the following inequality is obtained:

Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (x)≤Ka

b E
c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (x). (26)

Using (α, m)-convexity of η1 for x ∈ (a, b), we have
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η1(x)≤
x − a

b − a
( )αη1(b) +m 1 −

x − a

b − a
( )α( )η1 a

m
( ). (27) Multiplying (26) and (27) and integrating the resulting

inequality over [a, b], one can obtain

∫b
a
Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η1(x)d η2(x)( )

≤mη1
a

m
( )Ka

b E
c,δ,k,c
μ,α,l , η2; ϕ( )∫b

a
1 −

x − a

b − a
( )α( )d η2(x)( )

+ η1(b)
ϕ η2(b) − η2(a)( )
η2(b) − η2(a)

E
c,δ,k,c
μ,α,l ω η2(b) − η2(a)( )μ;p( ) ∫b

a

x − a

b − a
( )αd η2(x)( ).

(28)

By using Definition 4 and integrating by parts, the
following inequality is obtained:

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(b,ω;p)≤Ka

b E
c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

a

m
( )η2(a)( )(

−
Γ(α + 1)

(b − a)α
η1(b) −mη1

a

m
( )( )αIb−η2(a)).

(29)

On the other hand, for x ∈ (a, b), the following in-
equality holds true:

Kx
b E

c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (x)≤Ka

b E
c,δ,k,c
μ,α,l , η2; ϕ( )η2′ (x). (30)

Adopting the same pattern of simplification as we did for
(26) and (27), the following inequality can be observed from
(27) and (30):

η2F
ϕ,c,δ,k,c

μ,α,l,b−
η1( )(a;p)≤Ka

b E
c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

a

m
( )η2(a)( )(

−
Γ(α + 1)

(b − a)α
η1(b) −mη1

a

m
( )( )αIb−η2(a)).

(31)

By adding (29) and (31), the following inequality can be
obtained:

η2F
ϕ,c,δ,k,c

μ,α,l,b−
η1( )(a,ω;p) + η2

Fϕ,c,δ,k,c
μ,α,l,a+

η1( )(b,ω;p)

≤Ka
b E

c,δ,k,c
μ,α,l , η2; ϕ( ) η1(b)η2(b) −mη1

a

m
( )η2(a)( )(

−
Γ(α + 1)

(b − a)α
η1(b) −mη1

a

m
( )( )αIb−η2(a)).

(32)
Multiplying both sides of (22) by Ka

x(E
c,δ,k,c
μ,α,l , η2;

ϕ)d(η2(x)) and integrating over [a, b], we have

η1
a + b

2
( )∫b

a
Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )d η2(x)( )

≤ 1

2α
( ) 1 + tmn 2α − 1( ))(

× ∫b
a
Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )η1(x)d η2(x)( ).

(33)

From Definition 4, the following inequality is obtained:

η1
a + b

2
( ) 2α

1 +m 2α − 1( )( ) η2
Fϕ,c,δ,k,c
μ,α,l,b−

1( )(a;p)

≤ η2
Fϕ,c,δ,k,c
μ,α,l,b−

η1( )(a;p).
(34)
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Similarly, multiplying both sides of (22) by
Kx
b(E

c,δ,k,c
μ,α,l , η2; ϕ)d(η2(x)) and integrating over [a, b], we

have

η1
a + b

2
( ) 2α

1 +m 2α − 1( )( )
η2
F
ϕ,c,δ,k,c
μ,α,l,a+ 1( )(b;p)

≤ η2
F
ϕ,c,δ,k,c
μ,α,l,a+ η1( )(b;p).

(35)

By adding (34) and (35), the following inequality is
obtained:

η1
a + b

2
( ) 2α

1 +m 2α − 1( )( )

· η2
Fϕ,c,δ,k,c
μ,α,l,b−

1( )(a,ω;p) + η2
Fϕ,c,δ,k,c
μ,α,l,a+

1( )(b,ω;p)( )
≤ η2

Fϕ,c,δ,k,c
μ,α,l,b−

η1( )(a,ω;p) + η2
Fϕ,c,δ,k,c
μ,α,l,a+

η1( )(b,ω;p).
(36)

Using (32) and (36), inequality (23) can be achieved. □

Remark 3

(i) If we consider (α, m) � (1,1) in (23),+eorem 22 in
[10] is obtained

(ii) If we consider ϕ(t) � Γ(μ)t(μ/k)+1 for the left-hand
integral and ϕ(t) � Γ(])t(]/k)+1 and p � ω � 0 in
(23), then +eorem 3 in [9] can be obtained

(iii) If we consider μ � ] in the result of (ii), then
Corollary 3 in [9] can be obtained

(iv) If we consider ϕ(t) � Γ(μ)tμ+1 for the left-hand
integral and ϕ(t) � Γ(])t]+1for the right-hand
integral in (23), p � ω � 0, and (α, m) � (1,1) in
(23), +eorem 3 in [6] is obtained

(v) If we consider μ � ] in the result of (iv), Corollary 3
in [6] is obtained

(vi) If we consider ϕ(t) � Γ(μ)t(μ/k)+1 for the left-hand
integral and ϕ(t) � Γ(])t(]/k)+1for the right-hand
integral, (α, m) � (1,1), η2(x) � x, and p � ω � 0
in (23), then +eorem 3 in [4] can be obtained

(vii) If we consider μ � ] in the result of (vi), then
Corollary 6 in [4] can be obtained

(viii) By setting ϕ(t) � Γ(μ)tμ+1 for the left-hand integral
and ϕ(t) � Γ(])t]+1 for the right-hand integral,
p � ω � 0, (α, m) � 1, and g(t) � t in (23), +e-
orem 3 in [5] can be obtained

(ix) By setting μ � ] in the result of (viii), Corollary 6 in
[5] can be obtained

Theorem 3. Let η1: [a, b]⟶ R be a differentiable function.
|η1′| is (α, m)-convex withm ∈ (0, 1], and let η2: [a, b]⟶ R

be differentiable and strictly increasing function; also, let ϕ/x
be an increasing function on [a, b]. If α, l, c, c ∈ C,
R(α),R(l)> 0, R(c)>R(c)> 0, p, μ, δ ≥ 0, and 0< k≤
δ + μ, then for x ∈ (a, b), we have

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(x,ω;p) + η2

Fϕ,c,δ,k,c
μ,α,l,b−

η1( )
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣(x,ω;p)

≤Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( ) m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η2(x) − η1′(a)

∣∣∣∣ ∣∣∣∣η2(a)( )(

−
Γ(α + 1)

(x − a)α
m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ − η1′(a)
∣∣∣∣ ∣∣∣∣( )αIa+η2(x))

+Kx
b E

c,δ,k,c
μ,α,l , η2; ϕ( ) η1′(b)

∣∣∣∣ ∣∣∣∣η2(b) −m η1′
x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η2(x)( )(

−
Γ(α + 1)

(b − x)α
η1′(b)
∣∣∣∣ ∣∣∣∣ −m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣( )αIb−η2(x)),

(37)
where

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1∗η2( )(x,ω;p) ≔ ∫x

a
Kt
x E

c,δ,k,c
μ,α,l , η2;ϕ( )η1′(t)d η2(t)( ),

η2
Fϕ,c,δ,k,c
μ,α,l,b−

η1∗η2( )(x,ω;p) ≔ ∫b
x
Kx
t E

c,δ,k,c
μ,α,l , η2;ϕ( )η1′(t)d η2(t)( ).

(38)

Proof. Let x ∈ (a, b) and t ∈ [a, x]. +en, using
(α, m)-convexity of |η1′|, we have

η1′(t)
∣∣∣∣ ∣∣∣∣≤ x − t

x − a
( )α η1′(a)∣∣∣∣ ∣∣∣∣ +m 1 −

x − t

x − a
( )α( ) η1′ xm( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.
(39)

Inequality (39) can be written as follows:

−
x − t

x − a
( )α η1′(a)∣∣∣∣ ∣∣∣∣ +m 1 −

x − t

x − a
( )α( ) η1′ xm( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣( )

≤ η1′(t)≤
x − t

x − a
( )α η1′(a)∣∣∣∣ ∣∣∣∣ +m 1 −

x − t

x − a
( )α( ) η1′ xm( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.

(40)
Let us consider the second inequality of (40):

η1′ (t)≤
x − t

x − a
( )α η1′(a)∣∣∣∣ ∣∣∣∣ +m 1 −

x − t

x − a
( )α( ) η1′ xm( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.
(41)

Multiplying (15) and (41) and integrating over [a, x], we
can obtain

∫x
a
Kt
x E

c,δ,k,c
μ,α,l , η2; ϕ( )d η2(t)( )

≤ η1(a)
∣∣∣∣ ∣∣∣∣Ka

x E
c,δ,k,c
μ,α,l , η2; ϕ( )∫x

a

x − t

x − a
( )αd η2(t)( )

+m η1
x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Kax E

c,δ,k,c
μ,α,l , η2; ϕ( )∫x

a
1 −

x − t

x − a
( )α( )d η2(t)( ).

(42)
By using (8) of Definition 4 and integrating by parts, the

following inequality is obtained:
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η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1( )(x,ω;p)

≤Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )

× m η1′
x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η2(x) − η1′(a)

∣∣∣∣ ∣∣∣∣η2(a)( )(

−
Γ(α + 1)

(x − a)α
m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ − η1′(a)
∣∣∣∣ ∣∣∣∣( )αIa+η2(x)).

(43)

If we consider the left-hand side from inequality (40) and
adopt the same pattern as we did for the right-hand side
inequality, then

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1∗η2( )( )(x,ω;p)

≥ −Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( )

× m η1′
x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η2(x) − η1′(a)

∣∣∣∣ ∣∣∣∣η2(a)( )(

−
Γ(α + 1)

(x − a)α
m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ − η1′(a)
∣∣∣∣ ∣∣∣∣( )αIa+η2(x)).

(44)

From (43) and (44), the following inequality is observed:

η2F
ϕ,c,δ,k,c

μ,α,l,a+
η1∗η2( )( )(x,ω;p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤Ka
x E

c,δ,k,c
μ,α,l , η2; ϕ( ) × m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η2(x) − η1′(a)

∣∣∣∣ ∣∣∣∣η2(a)( )(

−
Γ(α + 1)

(x − a)α
m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ − η1′(a)
∣∣∣∣ ∣∣∣∣( )αIa+η2(x)).

(45)
Now, using (α, m)-convexity of |η1′| on (x, b] for

x ∈ (a, b), we have

η1′(t)
∣∣∣∣ ∣∣∣∣≤ t − x

b − x
( )α η1′(b)∣∣∣∣ ∣∣∣∣ +m 1 −

t − x

b − x
( )α( ) η1′ xm( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣.
(46)

On the same procedure as we did for (15) and (39), one
can obtain the following inequality from (19) and (46):

η2F
ϕ,c,δ,k,c

μ,α,l,b−
η1∗η2( )( )(x,ω;p)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤Kx
b E

c,δ,k,c
μ,α,l , η2; ϕ( )

× η1′(b)
∣∣∣∣ ∣∣∣∣η2(b) −m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣η2(x)( )(

−
Γ(α + 1)

(b − x)α
η1′(b)
∣∣∣∣ ∣∣∣∣ −m η1′

x

m
( )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣( )αIb−η2(x)).

(47)

By adding (45) and (47), inequality (37) can be
achieved. □

Remark 4

(i) If we consider (α, m) � (1,1) in (37), then +eorem
25 in [10] is obtained

(ii) If we consider ϕ(t) � Γ(μ)t(μ/k)+1 for the left-hand
integral and ϕ(t) � Γ(])t(]/k)+1 for the right-hand
integral and p � ω � 0 in (37), then +eorem 2 in
[9] can be obtained

(iii) If we consider μ � ] in the result of (ii), then
Corollary 2 in [9] can be obtained

(iv) If we consider ϕ(t) � Γ(μ)tμ+1 for the left-hand
integral and ϕ(t) � Γ(])t]+1 for the right-hand
integral, p � ω � 0, and (α, m) � (1,1) in (37), then
+eorem 2 in [6] is obtained

(v) If we consider μ � ] in the result of (iv), then
Corollary 2 in [6] is obtained

(vi) If we consider ϕ(t) � Γ(μ)t(μ/k)+1 for the left-hand
integral and ϕ(t) � Γ(])t(]/k)+1 for the right-hand
integral, (α, m) �(1,1), η2(x) � x, and p � ω � 0 in
(37), then +eorem 2 in [4] can be obtained

(vii) If we consider μ � ] in the result of (vi), then
Corollary 4 in [4] can be obtained

(viii) If we consider μ � ] � k � 1 and x � (a + b/2) in
the result of (vii), then Corollary 5 in [4] can be
obtained

(ix) If we consider ϕ(t) � Γ(μ)tμ+1 for the left-hand
integral and ϕ(t) � Γ(])t]+1 for the right-hand
integral, η2(x) � x, p � ω � 0, and (α, m) �(1,1) in
(37), then +eorem 2 in [5] is obtained

(x) By setting μ � ] in the result of (ix), then Corollary
5 in [5] can be obtained

3. Concluding Remarks

+is research paper explores fractional and conformable
fractional integral inequalities in a unified form, which
provide the bounds of conformable fractional integral op-
erators and fractional integral operators containing Mittag-
Leffler functions in their kernels. +e results of this paper
hold for fractional and conformable integral operators and
convex, m-convex, and star-shaped functions (see Remarks
6 and 7 of [10] and Remark 1) simultaneously.
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