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ABSTRACT. We consider the averages,(f) = 1/(n — 1)2;’;11 f(r/n) and B,(f) =
1/(n+1)>"_, f(r/n). If fis convex, thend,(f) increases witth and B,,(f) decreases.

For the class of functions called superquadratic, a lower bound is given for the successive differ-
ences in these sequences, in the form of a convex combination of functional values, in all cases
at leastf(1/3n). Generalizations are formulated in whicfw is replaced by:,/a,, and1/n by

1/c,. Inequalities are derived involving the sun)'_, (2r — 1)P.
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1. INTRODUCTION
For a functionf, define

1 n—1

(LD A === f(z) =2

r=1
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and

(12) BO=230(0) ez

n+1

the averages of values at equally spaced poini8,if, respectively, excluding and including
the end points. I ]2] it was shown thatfifis convex, them,, (f) increases with, andB,,(f)
decreases. A typical application, found by takifigr) = —log, is that(n!)'/"/(n + 1)
decreases with (this strengthens the result 61 [6] that!)'/" /n is decreasing). Similar results
for averages including one end point can be derived, and have appeared independehtly in [5]
and [4].

In this article, we generalize the theorems [of [2] in two ways. First, we present a class
of functions for which a non-zero lower bound can be given for the differerces(f) —
A,(f)andB,_i(f) — B,(f). Recall that a convex function satisfies

fy) = @) = Cz)(y — x)
for all z, y, whereC'(z) = f'(x) (or, if f is not differentiable at:, any number between the left
and right derivatives at). In [1], the authors introduced the classsoiperquadratidunctions,
defined as follows. A functiorf, defined on an intervdl = [0, a] or [0, c0), is “superquadratic”
if for eachz in I, there exists a real numbél(x) such that

(SQ) fy) = fl2) = fly —z]) + Cl)(y — x)

forall y € I. For non-negative functions, this amounts to being “more than convex" in the sense
specified. The term is chosen becaus8es superquadratic exactly when> 2, and equality

holds in the definition whep = 2. In Section 2, we shall record some of the elementary
facts about superquadratic functions. In particular, they satisfy a refined version of Jensen’s
inequality for sums of the formy_"_, A, f(z,), with extra terms inserted.

For superquadratic functions, lower bounds for the differences stated are obtained in the form
of convex combinations of certain values fof By the refined Jensen inequality, they can be
rewritten in the formf(1/3n) + S, whereS is another convex combination. These estimates
preserve equality in the cagér) = z2. By a further application of the inequality, we show
thatS is not less tharf (a/n) (for B,(f)), or f(a/(n + 3)) (for A,(f)), wherea = £ = (2).

This simplifies our estimates to the sum of just two functional values, but no longer preserving
equality in the case of?.

We then present generalized versions in which/n) is replaced byf (a,/a,) andl/(n+1)
is replaced byl /c,+;. Under suitable conditions on the sequenges and (c,), we show
that the generalized\,,,(f) and B, (f) are still monotonic for monotonic convex or concave
functions. These theorems generalize and unify results of the same s$ort in [4], which take one-
end-point averages as their starting point. At the same time, the previous lower-bound estimates
for superquadratic functions are generalized to this case.

There is a systematic duality between the results4pff) and B,,(f) at every stage, but
enough difference in the detail for it to be necessary to present most of the proofs separately.

We finish with some applications of our results to sums and products involving odd numbers.
For example, ifS,,(p) = > _,(2r—1)?, thenS,,(p)/(2n+1)(2n—1)? decreases with for p >
1,ands, (p)/(n+1)(2n—1)? increases witlh when0 < p < 1. Also, if @, = 1-3-----(2n—1),
then@/ "V /(2n + 1) decreases with.

2. SUPERQUADRATIC FUNCTIONS

The definition [[SQ) of “superquadratic" was given in the introduction. We say fthat
subquadratidf — f is superquadratic.
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First, some immediate remarks. Fpfz) = 22, equality holds in[(SR), witlC(z) = 2.

Also, the definition, withy = x, forcesf(0) < 0, from which it follows that one can always
takeC'(0) to be 0. If f is differentiable and satisfieg0) = f'(0) = 0, then one sees easily that
the C'(x) appearing in the definition is necessarflyz).

The definition allows some quite strange functions. For example, any function satisfying
—2 < f(z) < —1 is superquadratic. However, for present purposes, our real interest is in
non-negative superquadratic functions. The following lemma shows what these functions are
like.

Lemma 2.1. Suppose thaf is superquadratic and non-negative. Theis convex and increas-
ing. Also, ifC(z) is as in [SQ), thed(z) > 0.

Proof. Convexity is shown in[[1, Lemma 2.2]. Together wifti0) = 0 and f(z) > 0, this
implies thatf is increasing. As mentioned already, we can tek@) = 0. Forz > 0 and
y < x, we can rewrite] (SQ) as

f(@) = fly) + flxz —y)
-y

C(x) > > 0.

O

The next lemma (essentially Lemma 3.2 of [1]) gives a simple sufficient condition. We
include a sketch of the proof for completeness.

Lemma 2.2.If f(0) = f/(0) = 0 and f’ is convex (resp. concave), thens superquadratic
(resp. subquadratic).

Proof. First, sincef’ is convex andf’(0) = 0, we havef’'(z) < [z/(x + y)|f'(x + y) for
x,y > 0,and hencg’(z) + f'(y) < f'(x+vy) (thatis,f’ is superadditive). Now lef > = > 0.
Then

f) = f@) = fly—2) =y —2a)f'(z) = /Ow[f’(t +a) = fi(t) = fi(x))dt = 0.
Similarly for the case: > y > 0. 0J

Hencez? is superquadratic fop > 2 and subquadratic for < p < 2. (It is also easily
seen that? is subquadratic fob < p < 1, with C'(z) = 0). Other examples of superquadratic
functions arer? log z, sinh « and

fz) = 0 for0 < ax <a,
7 (r—a)? forz>a

The converse of Lemnja 2.2 is not true. [In [1], it is shown where superquadratic fits into the
“scale of convexity" introduced in [3].
The refined Jensen inequality is as follows. Ldie a probability measure on a get Write

simply [« for [, zdpu.

Lemma 2.3. Let z be non-negative and-integrable, and letf be superquadratic. Define the
(non-linear) operatofl’ by: (T'z)(s) = |z(s) — [ z|. Then

/(fox)zf(/x>+/[fO(T$)]-

The opposite inequality holds ffis subquadratic.
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Proof. Assumef is superquadratic. Writ¢ = z. Then
[(ron) = 1@ = [1ftats) - Fais
> /f (|z(s) —Z|) ds + C(T) /(x(s) —T)ds

:/(foTx).

In fact, the converse holds: if the property stated in Lenmja 2.3 holds for all two-point mea-
sure spaces, thefiis superquadrati¢ [1, Theorem 2.3].
Note that!" is a sublinear operator. Iteration of Lemmal 2.3 immediately gives:

O

Lemma 2.4.If z > 0 and f is superquadratic, then for ea¢h> 2,

andher{ifox)>f(/x>*f(/”)*”'”(/w1x>+/[fo<Tkx>1.
/fO:c Zf(/ )

In this paper, we will be using the discrete case of Leimp 2.3. It may be helpful to restate
this case in the style in which it will appeaBuppose thaf is superquadratic. Let, > 0
(1<r<n)andletz =>"  \x,, where\, >0and) " A\, =1. Then

Z)\fxr > f(T +Z)\f|xT—:B|

Forz € R, now writez(r) for therth component, and, as usug;|| . = max;<,<, |z(r)|.
In this discrete situation, for tHe defined above, it is easy to show thidt z|| ., converges to
zero geometrically.

Lemma2.5.Let\ = min;<,<, A, and letz > 0. Then|| Tz« < (1= ||z, hence| T z|| o <
(1= V*]loe.

Proof. Note that|z(r) — z(s)| < ||z]| for all r, s. So, for eachr,

s)]
s=1

< Z)\s|x(r) - {E(S)|

S#ET
< (1= Al

O

It now follows easily that the second inequality in Lemmg 2.4 reverses for subquadratic func-
tions satisfying a conditiorfi(¢) < ct? for somep > 0. Hence equality holds fof (z) = 2.
Note Itis not necessarily true thdt7z < [ z, and hencd - ||, cannot be replaced - ||; in
Lemmg 2.5. Take, = 1/n foreachr, andletr = (1,0,...,0). ThenTz = (1 -1 1 1)
giving [ Tz = 2(n — 1)/n?.
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3. THE BAsIC THEOREMS

Throughout the following, the quantitie$,(f) and B,,(f) continue to be defined by (1.1)
and [1.2).

Theorem 3.1.If f is superquadratic of0, 1], then forn > 2,

n—1
(3.1) Ania () = An(£) 2 D N f (),

r=1
where

- 2r _oon-=r
" onn—1) Ir_n(n—i—l)'
Further,
n—1
32 A = 40 2 5 () + S M0
where
|2n — 1 — 3r|

or= 3n(n+1)
The opposite inequalities hold ffis subquadratic.

Proof. Write A,, = (n — 1)[A,.1(f) — A (f)] Then

5 f(:;:)fz”? (nil) ’jzif()
:’jz}zb(z:) IO () - @)

We apply the definition of superquadratic to both the differences appearing in the last line,
noting that

r+1 r  n-—r
n+1 n nn+1)
We obtain
A >n_1r n—r o r X 1hC r
n_Tzlﬁf<n(n+1))+T:1 n f(n(n+1))+; " <E)’
where
21'7“4’1 n—r v _120
" n n+1 n n+l n ’
hence

A, >2Z f( n—i—l))

which is equivalent tq (3]1).

J. Inequal. Pure and Appl. Mathb(4) Art. 91, 2004 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 SHOSHANA ABRAMOVICH, GRAHAM JAMESON, AND GORD SINNAMON

We now apply Lemmp 2| 3. Note that

r(n—r)= %(n —1)n? - é(n —1)n(2n —1)

T

1
= é(n — 1)n(n+1),
hence}"""| \,x, = 1/3n (denote this byf). So
- n—r 1 2n—3r—1
Ty —T=—F——v——— = ——————,
n(n+1) 3n 3n(n+1)
and inequality[(3.2) follows. O

The proof of the dual result foB,,(f) follows similar lines, but since the algebraic details
are critical, we set them out in full.

Theorem 3.2.1f f is superquadratic of0, 1], then forn > 2,

(33) anl(f) - Bn(f) 2 Z )\rf(xr)>
r=1
where
B 2r . on—r
" on(n+1) JErin(n—l)'
Further,
(3.4) Bur(f) — Bulf) > (%) I
where
~ [2n+1-3r|

o= 3n(n—1)
The opposite inequalities hold ffis subquadratic.

orof Lot . — (1 (5 1) 5,1, Then
=TS () -3 ()

S () () - ()

() () - ()

(=) @) 2 () - ()

r=1

Apply the definition of superquadratic, noting that
r—1 _rj_ n-=r

n(n—1)

n—1 n
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We obtain
n n—1 n
T n—r n—r r r
A, >SS L kro(—),
- nf <n(n—1)>+Z n f(n(n—1)>+Z n
r=1 r=0 r=0
where
kr_z r—1 n-—r T _z:(),
n n—1 n n—1 n
hence

- T n—r
A, > 2 —f| —
=22 (=)
which is equivalent to (3]3). Exactly as in Theorem| 3.1, we seeXffat, Az, = 1/3n, and
(3.4) follows. O

Remark 3.3. These proofs, simplified by not introducing the functional valueg @n the
right-hand side, reproduce Theorems 1 and 2 of [2] for convex functions.

Remark 3.4. Since these inequalities reverse for subquadratic functions, they become equalities
for f(x) = z?, which is both superquadratic and subquadratic. In this sense, they are optimal
for the hypotheses: nothing has been lost. However, this is at the cost of fairly complicated
expressions. Clearly, if is also non-negative, then we have the simple lower estirfdtsn).

in both results. In the casgz) = 22, it is easily seen that

An(f):%—6in, Bn(f>=%+6ina
hence 1 1
Aa(f) =Ml = oy BanalD) = Bull) = gr—y:

so the termf(1/3n) = 1/9n? gives about two thirds of the true value.

Averages including one end-pairhtet

D=1 s(E). BN-130().
If £(0) =0, then ) :

DA =", B = "B,

n
For an increasing, convex functigfy we can add a constant to ensure tfieit) = 0, and it
follows that D,,(f) is increasing andv,(f) is decreasing (|2, Theorem 3A]; also, with direct
proof, [5] and [4]). Further, we have

Dois(F) = D) = 57 lAuis () = A1)+ s ()
and )
Bua(f) = Blf) = 2 Bu() = Bul )] + o5 Bal)

For non-negative, superquadraficwe automatically haveg(0) = 0, so we can read off lower
bounds for these differences from the corresponding ones,fof) andB,,(f). With regard to
the second term, note that for convex functions, we always Hav¢) > A,(f) = f(3) and

B.(f) > [ f.
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4. ESTIMATES IN TERMS OF TWO FUNCTIONAL VALUES

For non-negative superquadratic functions, we now give lower estimates for the second term
in (3.2) and[(3.}4) in the form of the value at one point, at the cost of losing exactness for the
function f(z) = 2%. We shall prove:

Theorem 4.1.1f f is superquadratic and non-negative, then fop 3,

Aver(F) = Au(f) = f (%) i (ﬁ) .

Theorem 4.2.1f f is superquadratic and non-negative, then foralk 2,

1 16
Bl = 5ul0) = £ () + £ (1)

The factorg seems a little less strange if regardec@)é.

We give the proof forB,,(f) first, since there are some extra complications in the case of
A,(f). Let\, andy, be as in Theorein 3.2. By Lemrpa .3, discarding the extra terms arising
from the definition of superquadratic, we hay€'_, A\, f(y.) > f(y), wherey = y(n) =
S Ay We give a lower bound fag(n).

r=1

Lemma4.3.LetS = >""_, r|2n+1—3r|. Letm be the greatest integer such tidat < 2n+1.
Then

S =2m(m+1)(n —m).

Proof. Foranym,

ir(Qn +1—3r) = %m(m +1)(2n+1) - %m(m +1)(2m+1)

<

=m(m+1)(n —m).
In particular,>”"_, r(2n + 1 — 3r) = 0. With m now as stated, it follows that

n

S rn+1-3r)+ Y r(3r—2n-1)

I
NE

r

1 r=m-+1
227"(271—1— 1—3r)
r=1

2m(m + 1)(n —m).

Conclusion of the proof of Theorg¢m ¥ Wiith this notation, we have
(n) = 28
= 832+ Din—1)

If we insert3m < 2n + 1 andn —m < 3(n+ 1), we obtainy(n) > (2 — +)(8/81n), not quite
the stated result. Howeveryn is actually one oPn — 1, 2n, 2n 4 1. The exact expressions for
y(n) in the three cases, are, respectively:

8 (2n—1)(n+1) 8 2n+3 8 (2n+1)(n+2)
81n (n—1n 81 n2—1 81n n(n+1)
In each case, it is clear thatn) > 16/81n. O

We now return to Theorefn 4.1. L&t andy, be as defined in Theorgm B.1.
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Lemma 4.4.LetS =S "1 r[2n — 1 — 3r

—1 , and letm be the smallest integer such tttat >
2n — 1. Then

S =2(m—1)m(n —m).
Proof. Similar to Lemma 4.3, using the fact that (for amy:

Z_T’(QTL —1=3r)=(m—1)m(n —m).

r=1

Conclusion of the proof of Theorém}4.1.
Case 3m =2n — 1 (sothatn = 2,5,...). Then

8 (n—2)2n—1)
y(n) = 81 n2(n—1)

The statemeng(n) > 16/[81(n + 3)] is equivalent tdn? — 13n + 6 > 0, which occurs for all
n > 4.

Case3m = 2n (son = 3,6,...). Then

_ 8  (2n-3)

81 (n+1)(n—1)

which is not less tham6/[81(n + 3)] when3n > 7.

Case3m =2n+1(son =4,7,...). Then

8 (n—1)(2n+1)

y(n)

y(n) =

81 n2(n+1)
This time we note thag(n) > 16/[81(n + 2)] is equivalent to? — 3n — 2 > 0, which occurs
forall n > 4. O
Note More precisely, the proof shows that2) = 0, y(3) = 5= andy(5) = =, while in all

other caseg(n) > 16/[81(n + 2)].
In principle, the process can be iterated, as in Lerhmp 2.4. After complicated evaluations,
one finds that the next term is of the orderfdl /30n).

5. GENERALIZED VERSIONS

We now formulate generalized versions of the earlier results in wfiichin) is replaced
by f(a,/a,) and1/(n + 1) is replaced by /c,+1, under suitable conditions on the sequences
(a,) and(c,). For increasing convex functions, we show that the generalizéd) andB,,( f)
are still monotonic. There are companion results for decreasing or concave functions, with
some of the hypotheses reversed. The resulis of [4] follow as special cases. For superquadratic
functions, we obtain suitable generalizations of the lower bounds givén in (3.1) ahd (3.3).

Theorem 5.1.

(i) Let(a,)n>1 and(c,).>o0 be sequences such that > 0 andc, > 0 forn > 1 and:
(Al) ¢p = 0 andc, is increasing,
(A2) ¢,11 — ¢, Is decreasing forn > 0,
(A3) cp(ans1/a, — 1) is decreasing fon > 1.
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Given a functionf, let

Al (@), (e)] = Au(f) = — / (‘)

Cn—1 r Qp,

for n > 2. Suppose thaf is convex, non-negative, increasing and differentiable on an
interval J including all the pointss,. /a,, for r < n. ThenA, (f) increases with.

(i) Suppose that is decreasing oy and that (A3) is reversed, with the other hypotheses
unchanged. TheA,, (f) increases withu.

(i) Suppose thaf is concave, non-negative and increasing.Grand that (A2) and (A3)
are both reversed, with the other hypotheses unchanged. Ahgf) decreases with.

Proof. First, consider case (i). Let

B = cxlAan(9) = A = 2255 () - Zf (&),

a
r=1 ntl

We follow the proof of Theorerin 3.1, with appropriate substitutions. At the first step, where we
previously expressed—1 as(r— 1)+ (n—r), we now use (A2): we have —c, 1 > ¢, —c¢,_1,
hence

Cn—1 Z Cr—1+ (Cn - CT‘)
for r < n. Using only the fact thaf is non-negative, the previous steps then lead to

— Cr Qr41 Qr — Cn — Cr Qr Qp
o0 s=3olr(Gn) Gl R @) @)

r=1

(The conditioncy = 0 is needed at the last step).
Forz,y € J, we havef(y) — f(z) > C(z)(y — x), whereC(z) = f'(x) > 0. So

n—1
A, > 2; hC(Z—) ,

where, by (A3),

Cr  Qrpa Cn — Gy Gy Qy
h, = —- + . - —
Cpn  Qpt1 Cn an+1 Ap
Qy Ar 1 An1
= <CT‘ +cn—C —Cp
CnQn41 Qr an
> 0.

In case (ii), we hav€’(z) < 0, and by reversing (A3), we ensure that< 0.

In case (iii), the reversal of (A2) has the effect of reversing the inequality in (5.1). We
now havef(y) — f(z) < C(z)(y — x), with C(z) > 0, and the reversal of (A3) again gives
h, <0. O

The theorem simplifies pleasantly when= a,,, because condition (A3) now says the same
as (A2).

Corollary 5.2. Let (a,),>0 be an increasing sequence with = 0 anda; > 0. Let f be
increasing and non-negative oh Let A,(f) be as above, witl, = a,. If a,4.1 — a, IS
decreasing and is convex, them, (f) increases witm. If a,,,; — a, is increasing andf is
concave, theml,,(f) decreases with.
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We note that the termy, does not appear in the definition @f,( f). Its role is only to ensure
thatc, — ¢; < ;. Also, the differentiability condition is only to avoid infinite gradient at any
pointa, /a, that coincides with an end point gt

Simply inserting the definition of superquadratic, we obtain:

Theorem 5.3.Let(a,), (¢,) andA,(f) be asin Theorein §.1(i). Suppose tlias superquadratic
and non-negative od. Then

Qr41 Qy

Aer () = An(f) > — Zw‘(

CnCp—1 r—1

Qp41 Qp,

S

CnCn—1 r=1

ay ay

Qn, Apt1

)

Note that if(a,,) is increasing, then there is clearly no need for the second modulus sign in
Theorenj 5.3. Furthermore, it is easily checked that, with the other hypotheses, this implies that
an+1/a, is decreasing, so that the first modulus sign is redundant as well.

We now formulate the dual results fé, (/). We need an extra hypothesis, (B4).

Theorem 5.4.

(i) Let(an)n>0 and(c,)n>o0 be sequences such that > 0 andc,, > 0 for n > 1 and:
(B1) ¢y = 0 andc, is increasing,
(B2) ¢, — ¢, is increasing fom > 1,
(B3) ¢,(1 — a,_1/a,) is increasing fom > 1,
(B4) eitheray = 0 or (a,) is increasing.
Given a functionf, let

BTG (o) = B = =307 (),

Cn+1 r—0 Qp

for n > 1. Suppose thaf is convex, non-negative, increasing and differentiable on an
interval J including all the points:, /a,, for 1 <r < n. ThenB,(f) decreases with.

(i) Suppose that is decreasing o/ and that (B3) and (B4) are both reversed, with the
other hypotheses unchanged. Th&y( /) decreases with.

(iif) Suppose thaf is concave, non-negative and increasing.frand that (B2), (B3), (B4)
are all reversed, with the other hypotheses unchanged. B)éfi) increases withu.

Proof. We adapt the proof of Theorgm B.2. Foe> 2, let

A= cant[Bua(f) = Bo(f)] = 22 Zf ( . ) -3 (_) |

an-1 r=0

Using (B2) in the fornv,,. ;1 > ¢, 1+ (¢, —¢,), together with the non-negativity gf we obtain

o2 ey 2 (i) Rt b i) - ()

r=1

Separating out the term= 0, we now have in case (i)
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whered,, = f(ap/an—1) — f(ao/ay,). Condition (B4) ensures thaf, > 0 (note that we do not
need differentiability at the point,/a,), and (B3) gives

Cr  Qr—1 Cn — Cr Qr Qr

k, = . + . - —

Cn  Qp-1 Cn Ap—1 Qn
Gy Ar—1 Ap—1
= Cr +c, —Cc —Cp
Cnln—1
> 0.

In case (i), the reversed hypotheses diter) < 0, k. < 0 andd,, > 0.
In case (iii), the inequality i (5]2) is reversed, afitkc) > 0, k, < 0 andd,, < 0. O

Corollary 5.5. Let (a,),>0 be an increasing sequence with = 0 anda; > 0. Let f be
increasing and non-negative oh Let B,(f) be as above, witlk, = a,. If a, — a,_; is
increasing andf is convex, therB, (f) decreases with. If a,, — a,,_; is decreasing and is
concave, themB, (f) increases with.

Theorem 5.6.Let(a,), (¢,) andB,(f) be as in Theorefn 5.4(i). Suppose tlfias superquadratic
and non-negative od. Then

n—1
1 a, Ar_1
«Bn— _WBn > T -
DB 2 o e ( b el )
1 = a a
* CnCn+1 ;<0n - CT)f ( An—1 B E ) .

Relation to the theorems {4]. The theorems of |4] (in some cases, slightly strengthened) are
cases of our Theoremis 5.1 dnd|5.4. More exactly, by taking n in Theorenj 5.1, we obtain
Theorem 2 ofi[4], strengthened by replacinyg by 1/(n—1). By takingc,, = a,+1 in Theorem

(5.7, we obtain Theorem 3 cfl[4]; of course, the hypothesis fails to simplify as in Corplldry 5.2.
Theorems A and B of [4] bear a similar relationship to our Thedrern 5.4. In the way seen in
Sectiorj B, results for one-end-point averages (or their generalized forms) can usually be derived
from those forA, (f) and B, (f). Also, one-end-point averages lead to more complication in
the proofs: ultimately, this can be traced to the fact that the analogues of the ohiganad &,

no longer cancel to zero. All these facts indicate thatf) and B, (f) are the natural averages

for this study.

At this level of generality, it is hardly worth formulating generalizations of the original (3.2)
and (3.4) for superquadratic functions. However, in some particular cases one can easily calcu-
late the term corresponding to the previgi{$/3n). For example, in Theoren 5.3, with = n
anda, = 2n — 1, we obtain the lower estimatg,,), where

dn+1
3(4n? — 1)
Remark 5.7. Our proofs extend without change to three sequences: let
n—1 n
1 a 1 a
-An = — s B, = — .
<f) Cn—1 ;f (bn) (f) Cn+1 ;f (bn)

Conditions (A3) and (B3) become, respectively,

Tp =

cr(argr/ar — 1) > cp(bpi1 /b, — 1) forr <mn,
cn(1=0b,-1/by) > ¢, (1 —a,_1/a,) forr <n.
Condition (B4) becomes: eithep = 0 or (b,,) is increasing.
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6. APPLICATIONS TO SUMS AND PRODUCTS INVOLVING ODD NUMBERS
Let

Sulp) = (2r —1)".
r=1
Note thatS, (1) = n?. We write alsoS}(p) = S,(p) — 1. Itis shown in [2, Proposition 12]
that S, (p)/n?*! increases with if p > 1 or p < 0, and decreases withif 0 < p < 1. (This
result is derived from a theorem on mid-point averagés’_, f[(2r — 1)/2n] requiring bothf
and its derivative to be convex or concave; note however that it is trivial for—1.) We shall
apply our theorems to derive some companion results for) andS’: (p).
Note first that ifc,, = n anda,, = 2n + 1, then

Apy1 Ap—1 2n
Cn —1)=c,|1~— = ,
ap, Qy, 2n+1

which increases with. If ¢, = n anda,, = 2n — 1, then

n n— 2
Cn, nit =cp Q) ,
anp, an, 2n —1

which decreases with.

Proposition 6.1. If p > 1, then

Sn(p)
(2n+1)(2n —1)P
Sn(P)
(2n — 1)(2n + L)
Proof. Let f(z) be the convex function”. The first statement is given by Corollary 6.5, with

ap = 0 anda,, = 2n — 1 for n > 1. The second one is given by Corollary]5.2, with= 0 and
a, =2n+ 1forn > 1. O

decreases with,n

increases with n

The case = 1 shows that we cannot replasé(p) by S,,(p) in the second statement. Also,
this statement does not follow in any easy way from the theoreim of [2].

The sense in which reversal occurgat 1 is seen in the next result. Also, we can formulate
two companion statements (corresponding ones were not included in Propjosition 6.1, because
they would be weaker than the given statements).

Proposition 6.2.1f 0 < p < 1, then

Sn(p) Sk(p) i
@n —D2n i 1y and = D)@En 1) decrease with n
and
5u(p) and 5n(p) increase with n

Cnt)Ea—1p M GrDea-1p

Proof. The functionf(z) = P is now concave. The first decreasing expression is given by
Corollary[5.2 withay = 0 anda,, = 2n — 1 for n > 1. The second one is given by Theorem
[5.7(iii) with ¢,, = n anda,, = 2n + 1.

The first increasing expression is given by Corolfary 5.5 with= 0 anda,, = 2n + 1 for
n > 1. The second one is given by Theorem| 5.4¢(iii) with= n anday = 0, a,, = 2n — 1 for
n > 1. Recall that differentiability af is not required. O
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Proposition 6.3. If p > 0, then
(2n+ 1)
M) g
increases with.

Proof. Apply Theorenj 5.](ii) to the decreasing convex functjgn) = =7, with ¢, = n and
a, = 2n + 1. O

We remark that, unlike |2, Proposition 12], this statement is not trivial whenl. Again,
we cannot replacs’(p) by S, (p).
Finally, we derive a result for the produg@f, = 1-3-- - --(2n—1). It follows from [2, Theorem

4] thatQy/™ /n decreases with (though this is not stated explicitly inl[2]). Our variant is less
neat to state than the theorem|of [2], but not a consequence of it.

.. . 1/(n—1) .
Proposition 6.4. The quantltyﬁQn decreases with.

Proof. Take f(x) = —logx, which is decreasing, convex and non-negativg@n). Again
apply Theorenp 5]1(ii) withe,, = n anda,, = 2n + 1. (Alternatively, we can apply Theorem
[5.4(iii) to f(z) = logz + K, whereK is chosen so thdbg(1/2n) + K > 0.) O
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