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ABSTRACT. We consider the averagesAn(f) = 1/(n − 1)
∑n−1

r=1 f(r/n) and Bn(f) =
1/(n + 1)

∑n
r=0 f(r/n). If f is convex, thenAn(f) increases withn andBn(f) decreases.

For the class of functions called superquadratic, a lower bound is given for the successive differ-
ences in these sequences, in the form of a convex combination of functional values, in all cases
at leastf(1/3n). Generalizations are formulated in whichr/n is replaced byar/an and1/n by
1/cn. Inequalities are derived involving the sum

∑n
r=1(2r − 1)p.
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1. I NTRODUCTION

For a functionf , define

(1.1) An(f) =
1

n− 1

n−1∑
r=1

f
( r

n

)
(n ≥ 2)
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and

(1.2) Bn(f) =
1

n + 1

n∑
r=0

f
( r

n

)
(n ≥ 1),

the averages of values at equally spaced points in[0, 1], respectively, excluding and including
the end points. In [2] it was shown that iff is convex, thenAn(f) increases withn, andBn(f)
decreases. A typical application, found by takingf(x) = − log x, is that (n!)1/n/(n + 1)
decreases withn (this strengthens the result of [6] that(n!)1/n/n is decreasing). Similar results
for averages including one end point can be derived, and have appeared independently in [5]
and [4].

In this article, we generalize the theorems of [2] in two ways. First, we present a class
of functions for which a non-zero lower bound can be given for the differencesAn+1(f) −
An(f) andBn−1(f)−Bn(f). Recall that a convex function satisfies

f(y)− f(x) ≥ C(x)(y − x)

for all x, y, whereC(x) = f ′(x) (or, if f is not differentiable atx, any number between the left
and right derivatives atx). In [1], the authors introduced the class ofsuperquadraticfunctions,
defined as follows. A functionf , defined on an intervalI = [0, a] or [0,∞), is “superquadratic"
if for eachx in I, there exists a real numberC(x) such that

(SQ) f(y)− f(x) ≥ f(|y − x|) + C(x)(y − x)

for all y ∈ I. For non-negative functions, this amounts to being “more than convex" in the sense
specified. The term is chosen becausexp is superquadratic exactly whenp ≥ 2, and equality
holds in the definition whenp = 2. In Section 2, we shall record some of the elementary
facts about superquadratic functions. In particular, they satisfy a refined version of Jensen’s
inequality for sums of the form

∑n
r=1 λrf(xr), with extra terms inserted.

For superquadratic functions, lower bounds for the differences stated are obtained in the form
of convex combinations of certain values off . By the refined Jensen inequality, they can be
rewritten in the formf(1/3n) + S, whereS is another convex combination. These estimates
preserve equality in the casef(x) = x2. By a further application of the inequality, we show
thatS is not less thanf(a/n) (for Bn(f)), or f(a/(n + 3)) (for An(f)), wherea = 16

81
= (2

3
)4.

This simplifies our estimates to the sum of just two functional values, but no longer preserving
equality in the case ofx2.

We then present generalized versions in whichf(r/n) is replaced byf(ar/an) and1/(n±1)
is replaced by1/cn±1. Under suitable conditions on the sequences(an) and (cn), we show
that the generalizedAn(f) andBn(f) are still monotonic for monotonic convex or concave
functions. These theorems generalize and unify results of the same sort in [4], which take one-
end-point averages as their starting point. At the same time, the previous lower-bound estimates
for superquadratic functions are generalized to this case.

There is a systematic duality between the results forAn(f) andBn(f) at every stage, but
enough difference in the detail for it to be necessary to present most of the proofs separately.

We finish with some applications of our results to sums and products involving odd numbers.
For example, ifSn(p) =

∑n
r=1(2r−1)p, thenSn(p)/(2n+1)(2n−1)p decreases withn for p ≥

1, andSn(p)/(n+1)(2n−1)p increases withn when0 < p ≤ 1. Also, if Qn = 1·3·· · ··(2n−1),
thenQ

1/(n−1)
n /(2n + 1) decreases withn.

2. SUPERQUADRATIC FUNCTIONS

The definition (SQ) of “superquadratic" was given in the introduction. We say thatf is
subquadraticif −f is superquadratic.
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INEQUALITIES FORAVERAGES 3

First, some immediate remarks. Forf(x) = x2, equality holds in (SQ), withC(x) = 2x.
Also, the definition, withy = x, forcesf(0) ≤ 0, from which it follows that one can always
takeC(0) to be 0. Iff is differentiable and satisfiesf(0) = f ′(0) = 0, then one sees easily that
theC(x) appearing in the definition is necessarilyf ′(x).

The definition allows some quite strange functions. For example, any function satisfying
−2 ≤ f(x) ≤ −1 is superquadratic. However, for present purposes, our real interest is in
non-negative superquadratic functions. The following lemma shows what these functions are
like.

Lemma 2.1. Suppose thatf is superquadratic and non-negative. Thenf is convex and increas-
ing. Also, ifC(x) is as in (SQ), thenC(x) ≥ 0.

Proof. Convexity is shown in [1, Lemma 2.2]. Together withf(0) = 0 andf(x) ≥ 0, this
implies thatf is increasing. As mentioned already, we can takeC(0) = 0. For x > 0 and
y < x, we can rewrite (SQ) as

C(x) ≥ f(x)− f(y) + f(x− y)

x− y
≥ 0.

�

The next lemma (essentially Lemma 3.2 of [1]) gives a simple sufficient condition. We
include a sketch of the proof for completeness.

Lemma 2.2. If f(0) = f ′(0) = 0 andf ′ is convex (resp. concave), thenf is superquadratic
(resp. subquadratic).

Proof. First, sincef ′ is convex andf ′(0) = 0, we havef ′(x) ≤ [x/(x + y)]f ′(x + y) for
x, y ≥ 0, and hencef ′(x)+ f ′(y) ≤ f ′(x+ y) (that is,f ′ is superadditive). Now lety > x ≥ 0.
Then

f(y)− f(x)− f(y − x)− (y − x)f ′(x) =

∫ y−x

0

[f ′(t + x)− f ′(t)− f ′(x)]dt ≥ 0.

Similarly for the casex > y ≥ 0. �

Hencexp is superquadratic forp ≥ 2 and subquadratic for1 < p ≤ 2. (It is also easily
seen thatxp is subquadratic for0 < p ≤ 1, with C(x) = 0). Other examples of superquadratic
functions arex2 log x, sinh x and

f(x) =

{
0 for 0 ≤ x ≤ a,
(x− a)2 for x > a.

The converse of Lemma 2.2 is not true. In [1], it is shown where superquadratic fits into the
“scale of convexity" introduced in [3].

The refined Jensen inequality is as follows. Letµ be a probability measure on a setE. Write
simply

∫
x for

∫
E

xdµ.

Lemma 2.3. Let x be non-negative andµ-integrable, and letf be superquadratic. Define the
(non-linear) operatorT by: (Tx)(s) =

∣∣x(s)−
∫

x
∣∣. Then∫

(f ◦ x) ≥ f

(∫
x

)
+

∫
[f ◦ (Tx)].

The opposite inequality holds iff is subquadratic.
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4 SHOSHANA ABRAMOVICH , GRAHAM JAMESON, AND GORD SINNAMON

Proof. Assumef is superquadratic. Write
∫

x = x. Then∫
(f ◦ x)− f(x) =

∫
[f(x(s))− f(x)]ds

≥
∫

f (|x(s)− x|) ds + C(x)

∫
(x(s)− x)ds

=

∫
(f ◦ Tx).

�

In fact, the converse holds: if the property stated in Lemma 2.3 holds for all two-point mea-
sure spaces, thenf is superquadratic [1, Theorem 2.3].

Note thatT is a sublinear operator. Iteration of Lemma 2.3 immediately gives:

Lemma 2.4. If x ≥ 0 andf is superquadratic, then for eachk ≥ 2,∫
(f ◦ x) ≥ f

(∫
x

)
+ f

(∫
Tx

)
+ · · ·+ f

(∫
T k−1x

)
+

∫
[f ◦ (T kx)].

and hence ∫
(f ◦ x) ≥

∞∑
k=0

f

(∫
T kx

)
.

In this paper, we will be using the discrete case of Lemma 2.3. It may be helpful to restate
this case in the style in which it will appear:Suppose thatf is superquadratic. Letxr ≥ 0
(1 ≤ r ≤ n) and letx =

∑n
r=1 λrxr, whereλr ≥ 0 and

∑n
r=1 λr = 1. Then

n∑
r=1

λrf(xr) ≥ f(x) +
n∑

r=1

λrf(|xr − x|).

Forx ∈ Rn, now writex(r) for therth component, and, as usual,‖x‖∞ = max1≤r≤n |x(r)|.
In this discrete situation, for theT defined above, it is easy to show that‖T kx‖∞ converges to
zero geometrically.

Lemma 2.5.Letλ = min1≤r≤n λr and letx ≥ 0. Then‖Tx‖∞ ≤ (1−λ)‖x‖∞, hence‖T kx‖∞ ≤
(1− λ)k‖x‖∞.

Proof. Note that|x(r)− x(s)| ≤ ‖x‖∞ for all r, s. So, for eachr,

(Tx)(r) =

∣∣∣∣∣
n∑

s=1

λs[x(r)− x(s)]

∣∣∣∣∣
≤

∑
s 6=r

λs|x(r)− x(s)|

≤ (1− λr)‖x‖∞.

�

It now follows easily that the second inequality in Lemma 2.4 reverses for subquadratic func-
tions satisfying a conditionf(t) ≤ ctp for somep > 0. Hence equality holds forf(x) = x2.
Note. It is not necessarily true that

∫
Tx ≤

∫
x, and hence‖ · ‖∞ cannot be replaced by‖ · ‖1 in

Lemma 2.5. Takeλr = 1/n for eachr, and letx = (1, 0, . . . , 0). ThenTx =
(
1− 1

n
, 1

n
, . . . , 1

n

)
,

giving
∫

Tx = 2(n− 1)/n2.
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3. THE BASIC THEOREMS

Throughout the following, the quantitiesAn(f) andBn(f) continue to be defined by (1.1)
and (1.2).

Theorem 3.1. If f is superquadratic on[0, 1], then forn ≥ 2,

(3.1) An+1(f)− An(f) ≥
n−1∑
r=1

λrf(xr),

where

λr =
2r

n(n− 1)
, xr =

n− r

n(n + 1)
.

Further,

(3.2) An+1(f)− An(f) ≥ f

(
1

3n

)
+

n−1∑
r=1

λrf(yr),

where

yr =
|2n− 1− 3r|

3n(n + 1)
.

The opposite inequalities hold iff is subquadratic.

Proof. Write ∆n = (n− 1)[An+1(f)− An(f)]. Then

∆n =
n− 1

n

n∑
r=1

f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n∑
r=1

(
r − 1

n
+

n− r

n

)
f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n−1∑
r=0

r

n
f

(
r + 1

n + 1

)
+

n−1∑
r=1

n− r

n
f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n−1∑
r=1

r

n

[
f

(
r + 1

n + 1

)
− f

( r

n

)]
+

n−1∑
r=1

n− r

n

[
f

(
r

n + 1

)
− f

( r

n

)]
.

We apply the definition of superquadratic to both the differences appearing in the last line,
noting that

r + 1

n + 1
− r

n
=

n− r

n(n + 1)
.

We obtain

∆n ≥
n−1∑
r=1

r

n
f

(
n− r

n(n + 1)

)
+

n−1∑
r=1

n− r

n
f

(
r

n(n + 1)

)
+

n−1∑
r=1

hrC
( r

n

)
,

where

hr =
r

n
· r + 1

n + 1
+

n− r

n
· r

n + 1
− r

n
= 0,

hence

∆n ≥ 2
n−1∑
r=1

r

n
f

(
n− r

n(n + 1)

)
,

which is equivalent to (3.1).
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6 SHOSHANA ABRAMOVICH , GRAHAM JAMESON, AND GORD SINNAMON

We now apply Lemma 2.3. Note that

n−1∑
r=1

r(n− r) =
1

2
(n− 1)n2 − 1

6
(n− 1)n(2n− 1)

=
1

6
(n− 1)n(n + 1),

hence
∑n−1

r=1 λrxr = 1/3n (denote this byx). So

xr − x =
n− r

n(n + 1)
− 1

3n
=

2n− 3r − 1

3n(n + 1)
,

and inequality (3.2) follows. �

The proof of the dual result forBn(f) follows similar lines, but since the algebraic details
are critical, we set them out in full.

Theorem 3.2. If f is superquadratic on[0, 1], then forn ≥ 2,

(3.3) Bn−1(f)−Bn(f) ≥
n∑

r=1

λrf(xr),

where

λr =
2r

n(n + 1)
, xr =

n− r

n(n− 1)
.

Further,

(3.4) Bn−1(f)−Bn(f) ≥ f

(
1

3n

)
+

n∑
r=1

λrf(yr),

where

yr =
|2n + 1− 3r|

3n(n− 1)
.

The opposite inequalities hold iff is subquadratic.

Proof. Let ∆n = (n + 1)[Bn−1(f)−Bn(f)]. Then

∆n =
n + 1

n

n−1∑
r=0

f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n−1∑
r=0

(
r + 1

n
+

n− r

n

)
f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n∑
r=1

r

n
f

(
r − 1

n− 1

)
+

n−1∑
r=0

n− r

n
f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n∑
r=1

r

n

[
f

(
r − 1

n− 1

)
− f

( r

n

)]
+

n−1∑
r=0

n− r

n

[
f

(
r

n− 1

)
− f

( r

n

)]
.

Apply the definition of superquadratic, noting that∣∣∣∣ r − 1

n− 1
− r

n

∣∣∣∣ =
n− r

n(n− 1)
.
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We obtain

∆n ≥
n∑

r=1

r

n
f

(
n− r

n(n− 1)

)
+

n−1∑
r=0

n− r

n
f

(
r

n(n− 1)

)
+

n∑
r=0

krC
( r

n

)
,

where

kr =
r

n
· r − 1

n− 1
+

n− r

n
· r

n− 1
− r

n
= 0,

hence

∆n ≥ 2
n∑

r=1

r

n
f

(
n− r

n(n− 1)

)
,

which is equivalent to (3.3). Exactly as in Theorem 3.1, we see that
∑n

r=1 λrxr = 1/3n, and
(3.4) follows. �

Remark 3.3. These proofs, simplified by not introducing the functional values off on the
right-hand side, reproduce Theorems 1 and 2 of [2] for convex functions.

Remark 3.4. Since these inequalities reverse for subquadratic functions, they become equalities
for f(x) = x2, which is both superquadratic and subquadratic. In this sense, they are optimal
for the hypotheses: nothing has been lost. However, this is at the cost of fairly complicated
expressions. Clearly, iff is also non-negative, then we have the simple lower estimatef(1/3n).
in both results. In the casef(x) = x2, it is easily seen that

An(f) =
1

3
− 1

6n
, Bn(f) =

1

3
+

1

6n
,

hence

An+1(f)− An(f) =
1

6n(n + 1)
, Bn−1(f)−Bn(f) =

1

6n(n− 1)
,

so the termf(1/3n) = 1/9n2 gives about two thirds of the true value.

Averages including one end-point. Let

Dn(f) =
1

n

n−1∑
r=0

f
( r

n

)
, En(f) =

1

n

n∑
r=1

f
( r

n

)
.

If f(0) = 0, then

Dn(f) =
n− 1

n
An(f), En(f) =

n + 1

n
Bn(f).

For an increasing, convex functionf , we can add a constant to ensure thatf(0) = 0, and it
follows thatDn(f) is increasing andEn(f) is decreasing ([2, Theorem 3A]; also, with direct
proof, [5] and [4]). Further, we have

Dn+1(f)−Dn(f) =
n

n + 1
[An+1(f)− An(f)] +

1

n(n + 1)
An(f)

and

En−1(f)− En(f) =
n

n− 1
[Bn−1(f)−Bn(f)] +

1

n(n− 1)
Bn(f).

For non-negative, superquadraticf , we automatically havef(0) = 0, so we can read off lower
bounds for these differences from the corresponding ones forAn(f) andBn(f). With regard to
the second term, note that for convex functions, we always haveAn(f) ≥ A2(f) = f(1

2
) and

Bn(f) ≥
∫ 1

0
f .
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4. ESTIMATES IN TERMS OF TWO FUNCTIONAL VALUES

For non-negative superquadratic functions, we now give lower estimates for the second term
in (3.2) and (3.4) in the form of the value at one point, at the cost of losing exactness for the
functionf(x) = x2. We shall prove:

Theorem 4.1. If f is superquadratic and non-negative, then forn ≥ 3,

An+1(f)− An(f) ≥ f

(
1

3n

)
+ f

(
16

81(n + 3)

)
.

Theorem 4.2. If f is superquadratic and non-negative, then for alln ≥ 2,

Bn−1(f)−Bn(f) ≥ f

(
1

3n

)
+ f

(
16

81n

)
.

The factor16
81

seems a little less strange if regarded as(2
3
)4.

We give the proof forBn(f) first, since there are some extra complications in the case of
An(f). Let λr andyr be as in Theorem 3.2. By Lemma 2.3, discarding the extra terms arising
from the definition of superquadratic, we have

∑n
r=1 λrf(yr) ≥ f(y), wherey = y(n) =∑n

r=1 λryr. We give a lower bound fory(n).

Lemma 4.3.LetS =
∑n

r=1 r|2n+1−3r|. Letm be the greatest integer such that3m ≤ 2n+1.
Then

S = 2m(m + 1)(n−m).

Proof. For anym,
m∑

r=1

r(2n + 1− 3r) =
1

2
m(m + 1)(2n + 1)− 1

2
m(m + 1)(2m + 1)

= m(m + 1)(n−m).

In particular,
∑n

r=1 r(2n + 1− 3r) = 0. With m now as stated, it follows that

S =
m∑

r=1

r(2n + 1− 3r) +
n∑

r=m+1

r(3r − 2n− 1)

= 2
m∑

r=1

r(2n + 1− 3r)

= 2m(m + 1)(n−m).

�

Conclusion of the proof of Theorem 4.2.With this notation, we have

y(n) =
2S

3n2(n + 1)(n− 1)
.

If we insert3m ≤ 2n + 1 andn−m ≤ 1
3
(n + 1), we obtainy(n) ≥ (2− 1

n
)(8/81n), not quite

the stated result. However,3m is actually one of2n− 1, 2n, 2n + 1. The exact expressions for
y(n) in the three cases, are, respectively:

8

81n
· (2n− 1)(n + 1)

(n− 1)n
,

8

81
· 2n + 3

n2 − 1
,

8

81n
· (2n + 1)(n + 2))

n(n + 1)
.

In each case, it is clear thaty(n) ≥ 16/81n. �

We now return to Theorem 4.1. Letλr andyr be as defined in Theorem 3.1.

J. Inequal. Pure and Appl. Math., 5(4) Art. 91, 2004 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


INEQUALITIES FORAVERAGES 9

Lemma 4.4. LetS =
∑n−1

r=1 r|2n− 1− 3r|, and letm be the smallest integer such that3m ≥
2n− 1. Then

S = 2(m− 1)m(n−m).

Proof. Similar to Lemma 4.3, using the fact that (for anym):

m−1∑
r=1

r(2n− 1− 3r) = (m− 1)m(n−m).

�

Conclusion of the proof of Theorem 4.1.
Case 3m = 2n− 1 (so thatn = 2, 5, . . .). Then

y(n) =
8

81
· (n− 2)(2n− 1)

n2(n− 1)
.

The statementy(n) ≥ 16/[81(n + 3)] is equivalent to3n2 − 13n + 6 ≥ 0, which occurs for all
n ≥ 4.
Case3m = 2n (son = 3, 6, . . .). Then

y(n) =
8

81
· (2n− 3)

(n + 1)(n− 1)
,

which is not less than16/[81(n + 3)] when3n ≥ 7.
Case3m = 2n + 1 (son = 4, 7, . . .). Then

y(n) =
8

81

(n− 1)(2n + 1)

n2(n + 1)
.

This time we note thaty(n) ≥ 16/[81(n + 2)] is equivalent ton2 − 3n − 2 ≥ 0, which occurs
for all n ≥ 4. �

Note. More precisely, the proof shows thaty(2) = 0, y(3) = 1
27

andy(5) = 2
75

, while in all
other casesy(n) ≥ 16/[81(n + 2)].

In principle, the process can be iterated, as in Lemma 2.4. After complicated evaluations,
one finds that the next term is of the order off(1/30n).

5. GENERALIZED VERSIONS

We now formulate generalized versions of the earlier results in whichf(r/n) is replaced
by f(ar/an) and1/(n ± 1) is replaced by1/cn±1, under suitable conditions on the sequences
(an) and(cn). For increasing convex functions, we show that the generalizedAn(f) andBn(f)
are still monotonic. There are companion results for decreasing or concave functions, with
some of the hypotheses reversed. The results of [4] follow as special cases. For superquadratic
functions, we obtain suitable generalizations of the lower bounds given in (3.1) and (3.3).

Theorem 5.1.

(i) Let (an)n≥1 and(cn)n≥0 be sequences such thatan > 0 andcn > 0 for n ≥ 1 and:
(A1) c0 = 0 andcn is increasing,
(A2) cn+1 − cn is decreasing forn ≥ 0,
(A3) cn(an+1/an − 1) is decreasing forn ≥ 1.
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Given a functionf , let

An[f, (an), (cn)] = An(f) =
1

cn−1

n−1∑
r=1

f

(
ar

an

)
for n ≥ 2. Suppose thatf is convex, non-negative, increasing and differentiable on an
intervalJ including all the pointsar/an for r < n. ThenAn(f) increases withn.

(ii) Suppose thatf is decreasing onJ and that (A3) is reversed, with the other hypotheses
unchanged. ThenAn(f) increases withn.

(iii) Suppose thatf is concave, non-negative and increasing onJ , and that (A2) and (A3)
are both reversed, with the other hypotheses unchanged. ThenAn(f) decreases withn.

Proof. First, consider case (i). Let

∆n = cn−1[An+1(f)− An(f)] =
cn−1

cn

n∑
r=1

f

(
ar

an+1

)
−

n−1∑
r=1

f

(
ar

an

)
.

We follow the proof of Theorem 3.1, with appropriate substitutions. At the first step, where we
previously expressedn−1 as(r−1)+(n−r), we now use (A2): we havecr−cr−1 ≥ cn−cn−1,
hence

cn−1 ≥ cr−1 + (cn − cr)

for r < n. Using only the fact thatf is non-negative, the previous steps then lead to

(5.1) ∆n ≥
n−1∑
r=1

cr

cn

[
f

(
ar+1

an+1

)
− f

(
ar

an

)]
+

n−1∑
r=1

cn − cr

cn

[
f

(
ar

an+1

)
− f

(
ar

an

)]
.

(The conditionc0 = 0 is needed at the last step).
Forx, y ∈ J , we havef(y)− f(x) ≥ C(x)(y − x), whereC(x) = f ′(x) ≥ 0. So

∆n ≥
n−1∑
r=1

hrC

(
ar

an

)
,

where, by (A3),

hr =
cr

cn

· ar+1

an+1

+
cn − cr

cn

· ar

an+1

− ar

an

=
ar

cnan+1

(
cr

ar+1

ar

+ cn − cr − cn
an+1

an

)
≥ 0.

In case (ii), we haveC(x) ≤ 0, and by reversing (A3), we ensure thathr ≤ 0.
In case (iii), the reversal of (A2) has the effect of reversing the inequality in (5.1). We

now havef(y) − f(x) ≤ C(x)(y − x), with C(x) ≥ 0, and the reversal of (A3) again gives
hr ≤ 0. �

The theorem simplifies pleasantly whencn = an, because condition (A3) now says the same
as (A2).

Corollary 5.2. Let (an)n≥0 be an increasing sequence witha0 = 0 and a1 > 0. Let f be
increasing and non-negative onJ . Let An(f) be as above, withcn = an. If an+1 − an is
decreasing andf is convex, thenAn(f) increases withn. If an+1 − an is increasing andf is
concave, thenAn(f) decreases withn.
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We note that the termc0 does not appear in the definition ofAn(f). Its role is only to ensure
thatc2 − c1 ≤ c1. Also, the differentiability condition is only to avoid infinite gradient at any
pointar/an that coincides with an end point ofJ .

Simply inserting the definition of superquadratic, we obtain:

Theorem 5.3.Let(an), (cn) andAn(f) be as in Theorem 5.1(i). Suppose thatf is superquadratic
and non-negative onJ . Then

An+1(f)− An(f) ≥ 1

cncn−1

n−1∑
r=1

crf

(∣∣∣∣ar+1

an+1

− ar

an

∣∣∣∣)

+
1

cncn−1

n−1∑
r=1

(cn − cr)f

(∣∣∣∣ar

an

− ar

an+1

∣∣∣∣) .

Note that if(an) is increasing, then there is clearly no need for the second modulus sign in
Theorem 5.3. Furthermore, it is easily checked that, with the other hypotheses, this implies that
an+1/an is decreasing, so that the first modulus sign is redundant as well.

We now formulate the dual results forBn(f). We need an extra hypothesis, (B4).

Theorem 5.4.

(i) Let (an)n≥0 and(cn)n≥0 be sequences such thatan > 0 andcn > 0 for n ≥ 1 and:
(B1) c0 = 0 andcn is increasing,
(B2) cn − cn−1 is increasing forn ≥ 1,
(B3) cn(1− an−1/an) is increasing forn ≥ 1,
(B4) eithera0 = 0 or (an) is increasing.

Given a functionf , let

Bn[f, (an), (cn)] = Bn(f) =
1

cn+1

n∑
r=0

f

(
ar

an

)
.

for n ≥ 1. Suppose thatf is convex, non-negative, increasing and differentiable on an
intervalJ including all the pointsar/an for 1 ≤ r ≤ n. ThenBn(f) decreases withn.

(ii) Suppose thatf is decreasing onJ and that (B3) and (B4) are both reversed, with the
other hypotheses unchanged. ThenBn(f) decreases withn.

(iii) Suppose thatf is concave, non-negative and increasing onJ , and that (B2), (B3), (B4)
are all reversed, with the other hypotheses unchanged. ThenBn(f) increases withn.

Proof. We adapt the proof of Theorem 3.2. Forn ≥ 2, let

∆n = cn+1[Bn−1(f)−Bn(f)] =
cn+1

cn

n−1∑
r=0

f

(
ar

an−1

)
−

n∑
r=0

f

(
ar

an

)
.

Using (B2) in the formcn+1 ≥ cr+1 +(cn−cr), together with the non-negativity off , we obtain

(5.2) ∆n ≥
n−1∑
r=1

cr

cn

[
f

(
ar−1

an−1

)
− f

(
ar

an

)]
+

n−1∑
r=0

cn − cr

cn

[
f

(
ar

an−1

)
− f

(
ar

an

)]
.

Separating out the termr = 0, we now have in case (i)

∆n ≥
n−1∑
r=1

krC

(
ar

an

)
+ δn,
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whereδn = f(a0/an−1) − f(a0/an). Condition (B4) ensures thatδn ≥ 0 (note that we do not
need differentiability at the pointa0/an), and (B3) gives

kr =
cr

cn

· ar−1

an−1

+
cn − cr

cn

· ar

an−1

− ar

an

=
ar

cnan−1

(
cr

ar−1

ar

+ cn − cr − cn
an−1

an

)
≥ 0.

In case (ii), the reversed hypotheses giveC(x) ≤ 0, kr ≤ 0 andδn ≥ 0.
In case (iii), the inequality in (5.2) is reversed, andC(x) ≥ 0, kr ≤ 0 andδn ≤ 0. �

Corollary 5.5. Let (an)n≥0 be an increasing sequence witha0 = 0 and a1 > 0. Let f be
increasing and non-negative onJ . Let Bn(f) be as above, withcn = an. If an − an−1 is
increasing andf is convex, thenBn(f) decreases withn. If an − an−1 is decreasing andf is
concave, thenBn(f) increases withn.

Theorem 5.6.Let(an), (cn) andBn(f) be as in Theorem 5.4(i). Suppose thatf is superquadratic
and non-negative onJ . Then

Bn−1(f)−Bn(f) ≥ 1

cncn+1

n−1∑
r=1

crf

(∣∣∣∣ar

an

− ar−1

an−1

∣∣∣∣)

+
1

cncn+1

n−1∑
r=0

(cn − cr)f

(∣∣∣∣ ar

an−1

− ar

an

∣∣∣∣) .

Relation to the theorems of[4]. The theorems of [4] (in some cases, slightly strengthened) are
cases of our Theorems 5.1 and 5.4. More exactly, by takingcn = n in Theorem 5.1, we obtain
Theorem 2 of [4], strengthened by replacing1/n by 1/(n−1). By takingcn = an+1 in Theorem
5.1, we obtain Theorem 3 of [4]; of course, the hypothesis fails to simplify as in Corollary 5.2.
Theorems A and B of [4] bear a similar relationship to our Theorem 5.4. In the way seen in
Section 3, results for one-end-point averages (or their generalized forms) can usually be derived
from those forAn(f) andBn(f). Also, one-end-point averages lead to more complication in
the proofs: ultimately, this can be traced to the fact that the analogues of the originalhr andkr

no longer cancel to zero. All these facts indicate thatAn(f) andBn(f) are the natural averages
for this study.

At this level of generality, it is hardly worth formulating generalizations of the original (3.2)
and (3.4) for superquadratic functions. However, in some particular cases one can easily calcu-
late the term corresponding to the previousf(1/3n). For example, in Theorem 5.3, withcn = n
andan = 2n− 1, we obtain the lower estimatef(xn), where

xn =
4n + 1

3(4n2 − 1)
.

Remark 5.7. Our proofs extend without change to three sequences: let

An(f) =
1

cn−1

n−1∑
r=1

f

(
ar

bn

)
, Bn(f) =

1

cn+1

n∑
r=0

f

(
ar

bn

)
.

Conditions (A3) and (B3) become, respectively,

cr(ar+1/ar − 1) ≥ cn(bn+1/bn − 1) for r < n,

cn(1− bn−1/bn) ≥ cr(1− ar−1/ar) for r ≤ n.

Condition (B4) becomes: eithera0 = 0 or (bn) is increasing.
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6. APPLICATIONS TO SUMS AND PRODUCTS I NVOLVING ODD NUMBERS

Let

Sn(p) =
n∑

r=1

(2r − 1)p.

Note thatSn(1) = n2. We write alsoS∗n(p) = Sn(p) − 1. It is shown in [2, Proposition 12]
thatSn(p)/np+1 increases withn if p ≥ 1 or p < 0, and decreases withn if 0 ≤ p ≤ 1. (This
result is derived from a theorem on mid-point averages1

n

∑n
r=1 f [(2r−1)/2n] requiring bothf

and its derivative to be convex or concave; note however that it is trivial forp ≤ −1.) We shall
apply our theorems to derive some companion results forSn(p) andS∗n(p).

Note first that ifcn = n andan = 2n + 1, then

cn

(
an+1

an

− 1

)
= cn

(
1− an−1

an

)
=

2n

2n + 1
,

which increases withn. If cn = n andan = 2n− 1, then

cn

(
an+1

an

− 1

)
= cn

(
1− an−1

an

)
=

2n

2n− 1
,

which decreases withn.

Proposition 6.1. If p ≥ 1, then

Sn(p)

(2n + 1)(2n− 1)p
decreases with n,

S∗n(p)

(2n− 1)(2n + 1)p
increases with n.

Proof. Let f(x) be the convex functionxp. The first statement is given by Corollary 5.5, with
a0 = 0 andan = 2n− 1 for n ≥ 1. The second one is given by Corollary 5.2, witha0 = 0 and
an = 2n + 1 for n ≥ 1. �

The casep = 1 shows that we cannot replaceS∗n(p) by Sn(p) in the second statement. Also,
this statement does not follow in any easy way from the theorem of [2].

The sense in which reversal occurs atp = 1 is seen in the next result. Also, we can formulate
two companion statements (corresponding ones were not included in Proposition 6.1, because
they would be weaker than the given statements).

Proposition 6.2. If 0 < p ≤ 1, then

Sn(p)

(2n− 1)(2n + 1)p
and

S∗n(p)

(n− 1)(2n + 1)p
decrease with n,

and
S∗n(p)

(2n + 1)(2n− 1)p
and

Sn(p)

(n + 1)(2n− 1)p
increase with n.

Proof. The functionf(x) = xp is now concave. The first decreasing expression is given by
Corollary 5.2 witha0 = 0 andan = 2n − 1 for n ≥ 1. The second one is given by Theorem
5.1(iii) with cn = n andan = 2n + 1.

The first increasing expression is given by Corollary 5.5 witha0 = 0 andan = 2n + 1 for
n ≥ 1. The second one is given by Theorem 5.4(iii) withcn = n anda0 = 0, an = 2n − 1 for
n ≥ 1. Recall that differentiability at0 is not required. �
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Proposition 6.3. If p > 0, then
(2n + 1)p

n− 1
S∗n(−p)

increases withn.

Proof. Apply Theorem 5.1(ii) to the decreasing convex functionf(x) = x−p, with cn = n and
an = 2n + 1. �

We remark that, unlike [2, Proposition 12], this statement is not trivial whenp = 1. Again,
we cannot replaceS∗n(p) by Sn(p).

Finally, we derive a result for the productQn = 1·3·· · ··(2n−1). It follows from [2, Theorem
4] thatQ1/n

n /n decreases withn (though this is not stated explicitly in [2]). Our variant is less
neat to state than the theorem of [2], but not a consequence of it.

Proposition 6.4. The quantity 1
2n+1

Q
1/(n−1)
n decreases withn.

Proof. Takef(x) = − log x, which is decreasing, convex and non-negative on(0, 1). Again
apply Theorem 5.1(ii) withcn = n andan = 2n + 1. (Alternatively, we can apply Theorem
5.1(iii) to f(x) = log x + K, whereK is chosen so thatlog(1/2n) + K > 0.) �
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