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§1. INTRODUCTION

1.1, This paper deals with relations between certain eigenvalues of a vibrating
membrane and the surface area of the membrane in its position of equilibrium,
We represent the membrane in this position as a domain © of the complex
z = z -+ iy—plane bounded by a single analytic curve €. We are concerned with
the differential equation

6)) Viu 4+ K u =0,

where k is a constant and the function v = w(z, y) is defined in the domain D.
We deal with the following two, basically different, boundary conditions:

(2) u=0 on @
3) du/dn = 0 on C.

In both cases infinitely many eigenvalues k exist, h = 0. We denote them in the
case (2) by

4) MEXSENE -,
and in the case (3) by

(5) o

A
IIA
A

M2 M3

* This paper was prepared under the sponsorship of the Office of Naval Research, con-
tract N6ori-106, Task order 5 (NR-043-992), Stanford University, California.
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It is well-known that 0 < A\; < Ao Also g3 = 0 since v = 1 satisfies the equa-
tion V' % = 0 and condition (3).

1.2. In the special case when D is a circle of radius 1, we have* ([6], p. 3) \, =
J where j = 2.4048 is the least positive zero of the Bessel function Jo(r). This
eigenvalue )\ is simple and the corresponding eigenfunction is Jy(jr).

In the same special case we have yy = u; = p where p = 1.8412 is the least
positive zero of the Bessel function Jy'(r). This is a double eigenvalue and the
corresponding eigenfunctions are

(6) J1(pr) cos &, J1(pr) sin ¢.

In these cases r and ¢ denote polar coordinates with the center of the circle
as pole. In case of a circle of radius ¢ we have

M M o=j/a,  m = p = p/a.

1.3. Returning again to the case of an arbitrary domain $ we assume, for the
sake of simplicity, that its boundary € is an analytic curve. Let A = A(D) be
the area of ® and Ay = A\(D) the first (principal) eigenvalue of D corresponding
to the boundary condition (2). An interesting relation of \; to 4, conjectured by
Lord Rayleigh (6], p. 339), can be stated in terms of the following extremum
property:

For all domains D of given area A the circle yields the minimum value of \i.

Since the radius of the circle of area A is (4/x)}, this property can also be ex-
pressed in the form of the following inequality:

(8) Moz A/

with the sign = for any circle.

Lord Rayleigh supported this assertion by the following facts:

(a) Inequality (8) can be confirmed in a number of special cases ([6], p. 345);

(b) for a “nearly circular” domain (see §3) both quantities A, and 4 can be
evaluated up to infinitesimals of the second order, inclusive, and the difference
of the quantities appearing in (8) can be ascertained to be of constant sign,

A formal proof of (8) was given by G. Faber {1} and E. Krahn [3] in 1923. A
refinement of (8) was proved by G. Pélya & G. Szego ([B], p. 6) asserting that
M(D) is diminished (not increased) if the domain D is subjected to a so-called
Steiner symmetrization.

1.4. A counterpart of Rayleigh’s assertion was formulated recently by E. T.
Kornhauser & I. Stakgold [2]. Let D have the same meaning as before and let
uz = ux(®) be the second (first non-trivial) eigenvalue of D corresponding to
the boundary condition (3). Then:

* Numbers in square brackets refer to the bibliography at the end of the text.
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For all domains D of given area A, the circle yields the maximum value of ps.
This can be expressed in the form of the following inequality:

9) pe € p(d/m)

with the sign = for any circle.

The supporting facts in this case are as follows:

(a) This inequality can be confirmed in various special cases ([2], p. 47);

(b) no infinitesimal, area-preserving deformation of a circle can increase ps;

(¢) if D is not a circle, there exist infinitesimal, area-preserving deformations
of ® which do increase ..

As to (b) and (c) see ([2], pp. 47-53). In the proof of (¢) the authors men-
tioned have used the additional assumption that us is a simple eigenvalue.

1.5. Combining the inequalities (8) and (9) we can assert that for an arbitrary
domain D:

(10) ue/M = /g,

In particular we have ps < 1. A rigorous proof for the latter inequality (without
assuming (9)) has been offered by Professor G. Pélya [4]; he compares the quan-
tities A, Ay, and p, with the polar moment of inertia of the domain . His argu-
ment furnishes incidentally the inequality

(1) pe = 2(4/x)7

where the “true” constant is of course p = 1.8412 instead of 2.

1.6. Our principal purpose is to present a formal proof for the assertion of E.
T. Kornhauser & 1. Stakgold. In order to arrange the argument in a clear way,
it is advisable to deal first with some special cases characterized by certain sym-
metry conditions. Naturally it would be possible to discuss the general case
directly, omitting these preparations.

The proof of the assertion of E. T. Kornhauser & I. Stakgold to be given in
§2 forms the essential content of the report [7]. A further part of this report is
devoted to the study of “nearly circular” domains . For such domains the
second variation of the eigenvalues Ay, Az, Ns, g, p3 is computed and compared
with the area and other functionals of ©. In the present paper, in view of space
considerations, only the principal formulas for these eigenvalues of nearly circu-
lar domains are reproduced; concerning details of the proofs of these formulas
and some applications we refer to the report [7].



§2. Proor oF AN AssERTION OF E. T, KorNHAUSER & 1. STAKGOLD
2.1. Preliminaries. Let © be a domain in the complex z = x -+ 4y-plane

bounded by the analytic curve €. We consider in 9 the differential equation

€3] Vu+du=0

with the boundary condition du/dn = 0 on the curve €. Obviously g = u1 = 0

is a trivial eigenvalue with the trivial eigenfunction v = 1. The first non-trivial
(positive) eigenvalue u, can be characterized by the following minimum property:

f | grad u |* do
(2) .‘-‘22 = min D )

2
u” do

admitting in this problem all functions % defined in 9 which satisfy the side
condition

@) [L)udu ~ 0.

Here do is the area—element of ©. In the case of the unit circle, us is the least
positive zero p = 1.8412 of the Bessel function J,'(r) and the corresponding
eigenfunctions are

4) w = Ji(pr) cos ¢, up = Jy(pr) sin ¢

(r, ¢ are polar coordinates).
Our purpose is to prove the inequality:

(5) we < p(4/m)7

To this end we establish first a one-to-one correspondence z = f({) between the
given domain D of the z-plane and the unit circle | { | = 1 of the complex plane
¢ = re™. We then employ the minimum principle (2), (3), inserting for u one of
the functions w; and us, where these functions u; and u, have to be interpreted as
functions of z = 2 - 4y. The resulting “Rayleigh quotients’ appearing on the
right of (2) yield upper bounds for us’.

Tt is advisable to choose for z = f({) a conformal (schlicht) mapping. It is
known that such a mapping is possible in infinitely many ways, If f(¢) is one of

346



TONES OF A MEMBRANE 347

these mappings, the most general mapping can be represented in the form

- {+ a
® e=1(55)
where | ¢ | = 1 and | @ | < 1. Our purpose is to determine the free parameters

¢ and e in such a way that u; and us, as functions of z = = - 4y, satisfy the
side condition (3).

This method of “transplantation” of the solutions of the problem for the unit
circle to the general domain is a basic idea frequently used in the investigations
of {56]. However, in most of the cases dealt with in [5] the transplanted functions

possess circular symmetry, i.e., they depend only on r. This is different in the
present problem.

2.2. First special case. We assume first that the domain © is “symmetrical
of order m” with respect to the origin, 4.e., it remains invariant under the rota-
tion 2’ = 26", m a positive integer, m > 1. In this case the special mapping
leaving both the origin and the line-element there unchanged can be written as
follows:

o) z=1) =c{+ ema ™+ Compa A o0 a0 >0

We assume first that m = 3.

We insert in (2) one of the functions (4), say ui.. The side condition (3) is
satisfied since

8 ffs Ji(pr) cos ¢ do = [fm« Tipr) cos ¢ | f(5) [Pr dr d = O,

Indeed, f/(¢) contains only those powers of { = re*® which have exponents divis-
ible by m; hence, when we expand | f’(re™) | in a Fourier series in ¢ no terms of
the form ¢** will appear. (This is true even for m = 2, and naturally all this
holds also for u = us.)

Consequently, © = u; or uy,

py < ff;)lgrad ulzd(f:ff”uzda
9) = ffmél | grad u |*r dr d¢:fl;rl§1 @ @) Prdrde

= p* ffm;l wlr dr d¢:f/"”§1 5 Prdr do.

In the step from the first to the second line we make use of the invariance of
Dirichlet’s integral under conformal mapping. In the next step we take into
account the fact that the functions u; and u, are eigenfunctions of the unit circle.
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The last integral occurring in (9) involves cos’ ¢ = %(1 + cos 2¢) (or sin’ ¢ =

1(1 — cos 2¢)), and for m = 3 the expansion of | f'(re”) |* does not produce any
terms cos 26 (or sin 2¢). Hence

(10) ffmgl W) Prdrde = ,rfo Jipn)? g n® | cn [ 12 p i,

Here we have inserted
o) = ”Z_:l i, J@) = ;ncn il

and integrated with respect to ¢. (In fact the expansion of f(¢) has the special
form (7).) We can write (10) as follows:

[ \r@ trards = » Sinlen o,

where
1
(11) M, =n [o 2 (e 2 dr.
Thus we have
(12) ul = p2M1:ZIn|c,, lz-M,,.

From (11) we obtain by integrating by parts:
o J1 22»1__1 ‘d 2 2
13) S Y A a2

The first term on the right is independent of n. Since [Ji(pr)]® is an increasing
function of r, 0 < r =< 1, the derivative appearing in the integral is positive.
Hence the integral decreases with increasing n, consequently M, ds increasing
with increasing n. In particular M, = M,.

This yields in view of (12):

(14) w' S pi nlenl = ot (4/n),
i.e., the assertion.
2.8. Second special case. Let us assume now that m = 2. We use the same

argument as in §2.2, taking into account that both functions (4), as functions of
z = x + 1y, are eligible for our purpose. In both cases the side condition is satis-
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fied (see the remark in 2.2). Hence

(15) p' 29 ffl ulrdr d¢:ff w® [ f'Q) 'rdrde, =12
i1 HES!
Let a, b, a’, ' be positive numbers. The fraction

a+a _ bla/b) + b'(a'/b)
b+ b b+ b

is a mean value of the fractions a/b and a'/b’. Taking this trivial remark into
account we conclude from (15) that

10w [[ o+ udrards: [ G+ ud) i) Prrds

Now u)’ + ug’ = [J1(pr)] is independent of ¢, hence after we expand | f'(re*) I
and integrate with respect to ¢, only the terms independent of ¢ will survive.
This yields again (14).

2.4. Third special case. Let the domain D be symmetrical with respect to the
real axis, We now choose the mapping z = f(¢) of the unit circle | { | < 1 onto
the domain 9 in such a manner that ¢ = 0 is carried into a real point and f/(0) >
0. Thus the power series expansion of f({) around ¢ = 0 has real coefficients and
the real axis remains unchanged.

If z = f(¢) is a fixed mapping of this kind, the mapping

where « is real, —1 < a < 1, will serve the same purpose. We now transplant
the functions (4) into the z—-plane by means of the mapping (17) and seek to de-
termine the parameter « so as to satisfy the side condition (3), # = u, and © =
Usg.

This eondition appears in the following form:

1 [l (55)

sin ¢
Since f’ assumes conjugate complex values at ¢ = re™ and § = re”*, the condi-
tion involving sin ¢ is trivially satisfied for all real «. As to the condition involv-
ing cos ¢, we denote the integral appearing on the left hand side of (18) (with
cos ¢ as second factor in the integrand) by H (). Since, independently of «,

fj;ngi ! (f: 55‘)

2(1_a2)2
[14 af |*

rdrde = 0.

2 (1—a2)2
1+ of |

rdrd¢ = A
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(the area of the domain D), we find that

1 - [ ey ()|

|(11 + H“ rdr dg: -[frl<1 <1§-:—62'> e

This ratio can be considered as a special case of “singular integrals,” in the sense
of Lebesgue. We prove that

(19)

r dr d¢.

Indeed, let e be an arbitrary positive number and let us denote by A = A(e)
that neighborhood of ¢ = re”® = -1 in which

| Ji(pr) cos ¢ — Ji(p) | < e.

We observe that in | { | < 1 and outside of A

()|
14 af
where M = M {(e) is independent of @; we assume that —1 < « < 0. Decompos-

ing the first integral in (19) into two parts, one extended over A and the other
over the remaining part of the unit circle, we find by a familiar argument:

(1 - a2)2 < M(l _ a2)2’

l H(a) M - o)
A

— Ji(p) ] < et anne) X

The second term on the right is < ¢ provided « is sufficiently near to —1, and
this yields (20).

In a similar manner we can prove that H(e)/A tends to —J1(p) as a — +1.
Since J1(p) is different from zero (J1(p) = J1(1.8412) = 0.5819), H(a) assumes
values of opposite sign when « is sufficiently near to -1 and — 1, respectively;
thus there exists at least onevalueof @, @ = ay, — 1 < ap <1, for which H ()= 0

We choose for « that particular value and use the mapping (17) for the purpose
of transplanting the functions (4). The side conditions will be then satisfied and
we can repeat without change the argument of 2.3.

This establishes the assertion.

2.6. General Case. Finally we assume that D is an arbitrary domain bounded
by an analytic curve €. The only remaining difficulty is to choose the mapping
(6) in such a manner that the transplanted functions satisfy the side condition
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3), u = w3 and u = u,. We write e = 1. The condition in question can be form-
2 (1 _ I o IZ)Z

ulated now as follows:
(83
1+ af | 1+ & [4

This complex-valued function K(a) is defined and continuous in the whole unit
circle | a | < 1, a = pe”. We wish to prove the existence of a root « = ay, | ap | <
1, of the equation K(a) = 0.

The integrand in (21) is periodic in ¢, so that we can replace ¢ by ¢ + v. We
obtain this way

@) K = ff] e rdrde = 0.

K(a) = & ff Jl(pr)ew b (e'iv ¢+ P) 2 1 - p2)2 rdr dg = o Ki(a).
5151 LA pe/ 111+ et [
Let | @] = p — 1. We can prove by an argument quite similar to that used in
§2.4 that
. Kl(oz) -
}21_1,1211 T = J1(p).

Moreover, this relation holds uniformly in 4. Hence, if p is sufficiently near to 1
and « describes the circle | a | = p, the complex number Ki(a) describes a curve
arbitrarily close to —AJ1(p). .

If « describes the circle @ = pe'” in the positive direction, the quantity o’ =
K(a) describes in the complex plane an oriented, continuous, closed curve not
passing through the origin. (This curve will intersect itself in general.) In the
usual manner we can define the “index-number” of this curve with respect to
the origin o’ = 0. The index number of a product is the sum of the index num-
bers of the factors. Obviously, the index number of the circle described by e
is +1; the index number of the curve described by Ki(a) is zero provided p is
sufficiently near to 1, since J1(p) # 0. Hence the index number corresponding
to K(a) is +1.

If K(a) 18 a complex-valued, continuous function in | o | < 1 and for |a| = p
sufficiently near 1 the index number of the curve corresponding to the circle o = e’
is different from zero, the function K (o) must have at least one zero in | o | < 1.

This well-known lemma follows, of course, trivially by shrinking the circle
| «| = p continuously to @ = 0 and taking into account that the index number
of the image curves corresponding to the circles | a| = const. are all defined
provided K(a) = 0; these numbers being integers, they cannot change when p
decreases.

If we choose for o the value for which the side condition (21) is satisfied, the
rest of the argument remains the same as in the special case dealt with in §2.3.

This completes the proof of the assertion of E. T. Kornhauser & I. Stakgold.



§3. NEARLY CIRCULAR DOMAINS. PROBLEMS AND RESULTS

3.1. Problem. In ([B], p. 33) various inferesting quantities occurring in mathe-
matical physics were evaluated for “nearly circular’” domains. We define a do-
main of this kind in polar coordinates r, ¢ by the condition

6] r§1+p(¢)=1+ao+221(ancosn¢+bnsinn¢),

where the Fourier coefficients of the function p(¢) are considered as infinitesimals
of the first order. The purpose is to compute certain functionals of this domain
up to the second order, inclusive. It is often convenient to use the Fourier ex-
pansion of p(¢) in the complex form

@) p@) = 2 ™, co=a0, Cn=0Gn—ibn; € =10n n=123 .
Following the notation introduced in §1, we have no difficulty in computing A,
in this sense. The result is due to Lord Rayleigh ([6], p. 341; ¢f. [5], p. 30, (3))
and can be formulated as follows:

@3) 7\1=}%=1+Co~§<1+g‘f—}—%%72)|0n|2.

The left-hand expression X; has a simple meaning: it represents the radius of the
circle for which the principal frequency coincides with that of the given domain.

The next problem arising in a natural manner is the analogous evaluation of
the eigenvalues

(4:) >\2, Aa‘y M2, M3.

In the case of a circle we have A\ = A3 = k/a where k denotes the least positive
root of the equation Ji(r) = 0, k = 3.8317, and us = ps = p/a where p is the
least positive root of the equation Jy/'(r) = 0, p = 1.8412; ¢ is the radius of the
circle. Thus the eigenvalues for the circle are in both cases multiple, and the
method to be used for the evaluation of the quantities (4) for nearly circular
domains must be different from that employed in the case of A;.. The results
will have a different character also. The first order term in this case is not ¢ as
in (3) (and in all other cases enumerated in [B], p. 33; ¢f. p. 31, (3)) but involves
besides ¢, the Fourier coefficient ¢.. As to the second order terms, the character
of the result depends on whether ¢, vanishes or not. In both cases the second
order terms are not linear combinations of the squares | ¢, |* but are of a more
complicated character.

352
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The mean values 3(As + \;) and $(u2 + us) are much simpler; in structure they
are similar to the quantities treated in ([6], p. 33).

8.2. Results for A, A\; (boundary condition u = 0). The following formulas
hold for the eigenvalues A, A; and for the corresponding “radii” s = k/Ag, As =
k/\s; s and X; represent the radii of those circles for which the second and third
eigenvalues are the quantities A, and \;, respectively. We list also the mean
value (A2 + A;) and the corresponding ‘“‘radius.”

Let cs = 0, ¢, = |¢2] e, Then

o=k —kleo+ | e ) + kleo + [ ez ])°
(5) ,
s =k — ]C(Co—' ‘02[) +k(00—' lCzDz

(6) 2kJ ; 2
4 ( ) | earr — €7 Cacs [,
ntdl

1+co+|c2l—~ Z (

™

&
i

)lcn+1+e Cn [y

it

(8) A 1+Co*lcz|—*-2(

4 i

>|6n+1—6 Cn—1|,

© 10w+ 2 =k — ko + Kl + ) + ( 2’“"")lc,,.lr,
nfl Jﬂ,

1) Imtrm=lda-|al-z > <1+?ﬁ.’1>|cn_1|2.
zn:t:j:l Jn

In all these cases, as well as in (11)-(13), the arguments of J, and J, are equal
to k. In all summations n runs from — « to + « with the exception of the values
n = =1. The terms in (5)—(8) corresponding to » and —n are the same. In (9)
and (10) the quantity | c._i |° can be replaced by | ¢,41 |°. There is no difficulty
in rewriting these series in terms of a., b,. We note that (10) has the same form
as (3) or the other quantities in the table ([5], p. 33).

Let ¢; = 0. We assume now that the sum

(11) -3 (1 + 2’3" > Cosr Bns = Qe Q>0

nit4l
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does not vanish. The formulas (5)-(10) remain valid provided we replace v
(which has no meaning in this case) by 5. We note the alternate expressions

1
Ral b — keo + ke -1*1-E 2 (1 + 270']") | ena
Az 2 nftl Jn
(12 k 2k,
=+ é‘ n;kl <1 + Jn > cn+1 én——l y
Rl i 2! )
18) 1 2kd '
:F '2‘ ng;hl (1 + J«n > cn+1 E'n—l

where the upper signs correspond to A;, A; and the lower signs to A, 2. Formulas
(9) and (10) hold without change for ¢; = 0.

3.3. Results for u., u; (boundary condition du/dn = 0). The following formulas
hold for the eigenvalues us, uz and for the corresponding “radii” g = p/ue, fis =

D/ 3. )
Let cs & 0, ¢ = |co|e'”. Then

Zi} =p+pl—axBla)+pl-axblal) - 2—-——-———1()27)_—1)31) [e |

2 4
(14) P_ ¥ <2n F1— gty 20 = p) !1) L enst T € o [

+ 4(p? — 1) agiz D Ja!

- 1_)2 hnad 1 a4l Jn,,

2
Py n<1 +?£?L-;;.£2ﬁ>lcn_llz,

The upper signs yield us, the lower signs ;. Here 8 = (p° + 1)/(»* — 1). The
arguments of J, and J, are p. Moreover, in a similar arrangement

- 2
ZZ}=1+60$6[02[+2((—;'2£:—1)1—2|02|2
1 2, 20 = pY) Jn) o
1)~y B, (k- BB ) e e

1 2(77/"'292)(]71.) 2
A G DI
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Finally,
2
-%(u2+m>=p—pc°+p(c:+62|c2|2>—2—’%§;—”—_—1)—3—|212
(16 on — ) J,
__p g 2=
2@2—1)"21(2” L+r+— h)‘”"“"
SR 235 — 1) |
z(u2+ua)—1+60-—ﬁ|0|+w5?|cl

(17)

1 _ 2 2(n p)2 )
+ 5o g;:l(% 1+p +~——-p T | ¢ns |

Let ¢, = 0. We assume now that the expression

4
(18) -2 <2n +1—-p" + 200 = ) >6n+1 1 = Q¥, Q>0
nttl P J""

does not vanish. With this notation (14) and (15) remain valid provided we re-
place v by 8. Formulas (16) and (17) hold whether ¢; &= 0 or ¢; = 0. We note also
the alternate formulas (c; = 0):

M} = p — pco + pcoz

12
(19) _~£_2<2n_1+2+u )lc ’
2(p* — 1) wgin p P T n—1
E _ gy 20t = p) Ja )

D e PN G e P P
ﬂS - 1 _ 2 g_(_____j)_ J >
ﬁz}—l"l'c'o—l‘mn;:l(%’b 1+p + > b lcn—ll

* (' = p*) Ja
! . 2 n —p
* m n%bl <2n + 1 p an, > Cnt+l cn—l

For the proofs of these formulas and for their applications we refer to the
report {7).
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