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Abstract. Let L be a lattice and let U be an o-symmetric convex body in R n. The 
Minkowski functional I[ tlu of U, the polar body U ~ the dual lattice L*, the 
covering radius /x(L, U), and the successive minima Ai(L, U), i = 1 . . . . .  n, are 
defined in the usual way. Let Sen be the family of all lattices in R ". Given a pair U, 
V of convex bodies, we define 

m h ( U , V ) =  sup max A i ( L , U ) A n _ i + 1 ( L * , V )  , 
L ~  l<_i<_n 

lh(U, V) = sup ~ ( L ,  U ) A I ( L * , V ) ,  

and kh(U, V) is defined as the smallest positive number s for which, given arbitrary 
L ~.~,  and u ~ R" \ (L + U), some v ~ L* with IIvllv < s d(uv, Z )  can be found. 
Upper bounds for jh(U, U~ j = k, 1, m, belong to the so-called transference 
theorems in the geometry of numbers. The technique of Gaussian-like measures 
on lattices, developed in an earlier paper [4] for euclidean balls, is applied to obtain 
upper bounds for jh(U, V) in the case when U, V are n-dimensional ellipsoids, 

n rectangular parallelepipeds, or unit balls in lp, 1 < p < ~. The gaps between the 
upper bounds obtained and the known lower bounds are, roughly speaking, of 
order at most log n as n - ,  ~. It is also proved that if U is symmetric through each 
of the coordinate hyperplanes, then jh(U, U ~ are less than Cn log n for some 
numerical constant C. 

Introduction 

A lattice in R n is an additive subgroup of R n generated by n linearly independent 
vectors. The family of all lattices in R n is denoted by . ~ .  Given a lattice L ~ . ~ ,  we 
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define the dual lattice L* in the usual way: 

L * = { u ~ R n :  u v ~ Z f o r e a c h v ~ L } ,  

where uv is the canonical inner product in R". We have L** = L. 
A convex body in R ~ is a compact convex subset of R" containing interior points. 

The family of all convex bodies in R" which are symmetric with respect to zero is 
denoted by ~n" Given a convex body U ~ ~n, we define the polar body U ~ in the 
usual way: 

U ~ = {u ~ R~: luvl -< 1 for each v E U}. 

We have U ~176 = U. By ][ Hu we denote the norm on R" induced by U (the Minkowski 
functional of U). By d~z we denote the metric induced by I] ]]u. 

By span A we denote the linear subspace of  R" spanned over a subset A. Given 
a lattice L E 2~ and a convex body U ~ ~ , ,  we write 

t z ( L , U )  = max{du(u,  L):  u ~ R "} = min{r > 0: L + rU = Rn}, 

Ai(L,  U) = min{r > 0: dim span(L (q rU) > i} (i = 1 . . . . .  n). 

The quantities /z(L, U) and Ai(L, U) are called, respectively, the covering radius and 
the successive minima of L with respect to U. 

For each U ~ ~ let us consider the quantities 

d r ( u ,  L)llvl[v~ 
kh(U)  = sup sup inf 

L~,~ u~R~\C vEL* d(uv ,  Z)  ' 
uv~Z 

lh(U) = sup /~(L, U)A~(L*,U~ 
L~.~ 

m h ( U ) =  sup max A i ( L , U ) A  ~ i+l (L* ,U~ 
L~-.~ l<_i<n 

It is convenient to denote them by jh(U), j = k, 1, m; it is clear that they are affine 
invariants of U. Upper bounds for jh(U) belong to the so-called transference theorems 
in the geometry of numbers. For kh(U), see, e.g., Chapter XI, Section 3.3 of [8]; for 
lh(U) and mh(U), see, e.g., Section 5 of [10]. 

Denote by R3 and R~ the space R ~ with the norm IJ Hu and with the canonical 
euclidean norm, respectively. Let d(R3,  R'~) be the corresponding Banach-Mazur  
distance and let B~ be the closed unit ball in R~. It  is clear that 

jh(U) < j h ( B ~ ) d ( R ~ , R ~ ) ,  j = k , l ,m.  

Since d(R3,  R~) < n 1/2, it follows that jh(U) < n 1/2 jh(B~') for j = k, 1, m. 
Upper bounds for jh(U) were investigated in several papers; a detailed specifica- 

tion is given in the introduction to [4]. Let us only mention here the bounds 
kh(B~) < Cn 2, l h ( B ~ ) <  Cn 3/2, and mh(B~ ' )<  Cn 2 obtained in [11] and [13] by 
means of Korkin-Zolotarev bases. Here and below, C is some numerical constant 
which may vary from line to line. 
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Let U be a convex body in R n, symmetric or not, and let L ~.L~ n. The number 

wL(U) = min (max uv - min uv) 
I :~L* ~ u ~ U  u ~ U  

is called the L-width of U; its reciprocal is known as the first covering minimum 
/~I(U, L). Consider the quantity 

wh(U) = 

Investigating the so-called flatness 
wh(U) ~ Cn 2 (see (3.12) and (3.13) 
U ~- ~n; then wh(U) = 21h(U). 

sup wc(U)/~(L, U). 
L~_7, 

problem, Kannan and Lovfisz [12] proved that 
of [9]). It is clear that wL(U) = 2hi(L*, U ~ for 

Applying a probability argument based on gaussian-like measures on lattices, the 
author proved in [4] that jh(B~) < Cn; hence it follows that jh(U) < Cn 3/z. In this 
paper, by modifying the method of [4], we show that jh(U) _< Cn log n if U is 
symmetric through the coordinate hyperplanes (i.e., if R~ has a 1-unconditional 

n basis), and that jh(U) < Cn(log n)  1/2 if U is the unit ball in lp, 1 <_ p < ~. 
For lower bounds, there is the result of Conway and Thompson (see Chapter II, 

Theorem 9.5 of [14]), which implies that jh(B~') > C - i n .  A standard argument shows 
that jh(U) > C - i n  for any U E f~n; see (3.10) below. 

Recently, the author has shown that jh(U) _< Cn log n for any U ~ ~n- The proof, 
however, requires more sophisticated results of the local theory of Banach spaces 
and is given in [5]. 

The proofs of the upper bounds become more lucid if, instead of considering just 
one convex body U and the polar body U ~ a pair of independent convex bodies U, 
V ~ ~n are considered. For each such a pair, let us denote 

dr (u ,  L)llvllv 
kh(U,V)  = sup sup inf 

d(uv,  Z)  ' l ~ n  u~Rn\L t;EL* 
u v ~ Z  

lh(U, V) = sup /z (L ,U)AI(L* , V), 
L E.5~, 

m h(U ,V)  = sup m a x  A i ( L  , U ) A n _ i + I ( L * , V ) .  
L ~_.~an l <_ i ~ n 

The structure of  the paper is as follows. In Section 1 we introduce certain numbers 
a(U),  f l(U) ~ (0, 1) for U ~ ~n. Then we show that jh(U, V) are small provided that 
a(U),  a ( V )  and fl(U), f l (V)  are. In Section 2 we give upper bounds for a(U)  and 
fl(U) where U is a body of  the form 

{ ( X l , . . . , X n )  E R n :  [alXl[ p + "'" +[anXnl p <__ 1} (a 1 . . . . .  a n > 0;1 < p  < ~). 

(1) 

In Section 3 we apply the results of Sections 1 and 2 to obtain bounds for jh(U, V). 
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There is also another source of motivation for considering the quantities jh(U, V). 
Let D be an n-dimensional ellipsoid in R n with center at zero and principal 
semiaxes sol < ... < so,. The theory of additive subgroups of topological vector 
spaces presented in the monograph [2] is, in fact, based on the bounds 

kh(B~,D) < C ~ k~:~ -~, (2) 
k = l  

lh(B~', D)  _< C k2~:k 2 
k = l  

(3) 

(see the final remarks in Section 3 of  [2]). Inequality (2) is also the basic tool in [3], 
[6], and [7]. In this paper we show that 

jh(B~,D) _< C ~ ~:~-1, j = k,l,m. (4) 
k = l  

Inequality (4) with j = k implies that a nuclear operator  acting between Hilbert 
spaces has the property that inverse images of  closed additive subgroups are weakly 
closed (see Remark  1.9 of [1]). Bounds for kh(U, V), where U, V are of the form (1), 
yield similar information for diagonal operators  between spaces lp, 1 < p < oo. 

Another  set of  questions is connected with the possibility of extending continuous 
characters and unitary representations defined on additive subgroups of nuclear 
spaces, and with the generalization of the Minlos theorem on positive-definite 
functions to subgroups of nuclear spaces (see Chapter  4 of [2]). The problem of 
characterizing the corresponding classes of linear operators  acting between Banach 
spaces (in the case of the Minlos theorem, an analogue of radonifying operators) 
leads in a natural way to upper  bounds for lh(U, V). The quantity lh(U, V) itself is 
directly related to extending characters defined on discrete subgroups of Banach 
spaces (see p. 43 of [2]). 

1. Preliminaries 

The inner product of vectors x, y ~ R n is denoted by xy. We write x 2 instead of xr. 
It is convenient to denote 

o ( A )  = Y', e -'~x2 ( A  c Rn) .  
x E A  

Let L be a lattice in R n. By cr L we denote the probability measure on L given by 
the formula 

o ( A )  
trL(A) o ( L )  (A  c L) .  
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The Four ier  transform 6- c of tr L is given by the formula 

 L(u) = f e2=iuxd~L(x) = Y'~ cos27ruxtrL((x}) (u ~ R") .  
-~R n x ~ L  

By ~L we denote the function on R n defined by the formula 

o ( L  + u) ~L(u) (u ~ g"). 
o (L )  

We sometimes write L u instead of L + u for L ~ . c p  and u ~ R n. 

Lemma 1.1. One has 6" L = ~PL* for each L ~ . ~ .  

This is Corollary (1.2) of [4]. 

Corol lary 1.2. One has q~L(u) < qu for all L ~ and u ~ R ~. 

Proof. The function q~c is positive-definite being, due to (1.1), the Fourier  trans- 
form of the positive measure ~L*. []  

Let U be an o-symmetric convex body in R ". We denote 

o(L  \ U) 
a ( U )  = sup sup OL(L \ U) ,  

LE..~n o( L ) Le..% 

o(Lu \ U) 
/3(U) = sup sup 

L ~  ueR "  O(L) 

Lemma 1.3. Let L e.L:~, U ~ ~n, and u E RL I f  u q~ L + U, then ~%(u) <_ ~(U). 

Proof. If u r L + U, then L + u = (L  + u) \ U and, according to our definitions, 
we may write 

o (L  + u) o ( L .  \ U) 
~L(u) - <_ r []  

o (L )  o (L )  

Lemma 1.4. I f  U, V ~ ~ and 2f l (U)  + 3 a ( V )  _< 1, then kh(U, V) _< 6. 

Proof. Take arbitrary L ~.5~, u ~ R ~ \ L ,  and e >  0. We have to find some 
v E L*, with uv q~ Z, such that 

dr(u, L)IIvIIv 
< 6(1 + e) .  (5) 

d(uv, Z) 
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W e  may assume that  du(u , L )  = 1 + e,  o therwise  we would  replace u by tu and L 

by tL for a suitably chosen t > 0. T h e n  u ~ L + U, and L e m m a  1.3 implies  that 

~L(U) <_ ~(U).  D e n o t e  s = min~ ~ L* n v cos 2~'ux. T h e n  we may  write 

6-L,(U ) = ~ O'L*({X})COS2~'UX 
x~L* 

= ~ + ~ oL.({X}) COS 2~-UX > SO'L.(L* n V)  - ~rL.(L* \ V )  
x E L * ~ V  x E L * \ V  

= s - (1 + s)~rL,(L* \ V)  >_ s - (1 + s ) a ( V ) .  

L e m m a  1.1 says that  ~L,(U)= ~oL(U). Thus s [ 1 -  a ( V ) ]  < a ( V ) +  ~(U).  Since 
1 2 / 3 ( U ) + 3 a ( V ) _ <  1, it follows that  s < ~. So, there  is some L ' ~ L *  n V with 

1 cos 27ruv < �89 T h e n  [[vllv -< 1 and d(uv, Z)  > ~, which yields (5). [ ]  

L e m m a  1.5. I f  U, V ~  ~n and ~(U)  + 2 a ( V )  _< 1, then lh(U, V)  _< 1. 

Proof. Suppose  that  l h ( U , V ) >  1. T h e n  we can find a lattice L ~.ZP~ with 

/x(L, U)  > 1 and ),1(L*, V)  > 1. The  first condi t ion  means  that  there  is some u E 

R"  \ ( L  + U).  H e n c e  q~L(U) < f l(U) due  to L e m m a  1.3. On  the o the r  hand, the 

condi t ion  hi(L*,  V) > 1 implies  that L* n V = {0}, and then 

6"L, (U)= ~]  ~rL,({X})cosZTrux 
x~L* 

= ~] + ~ trL,({X)) eos27rux  > trL,(L* (~ V )  - O-L,(L* \ V )  
x~L*f3V x ~ L * \ V  

= 1 - 2trL,(L* \ V)  _> 1 - 2 u ( V ) .  

Thus,  by L e m m a  1.1, we have 1 - 2c~(V) < CrL,(U) = q~L,,(U) = ~L(U) > ~(U).  []  

L e m m a  1.6. Let B be the euclidean unit baU in R ~. l f  U, V ~ ~ and 2 a ( U )  + /3(V) 

< 1 - e -'~, then m h ( U , V  + B)  < 1. 

Proof. Suppose  that  mh(U,  V + B)  > 1. T h e n  we can find s o m e  L ~ - ~  and i = 

1 . . . . .  n with A i ( L , U ) >  1 and h n i + a ( L * , V + B ) >  1. D e n o t e  M = s p a n ( U n L )  

and N = s p a n ( ( V  + B)  N L*); then  d im M < i - 1 and dim N < n - i. So, denot-  

ing the o r thogona l  c o m p l e m e n t s  of  M and N in R n by M ~ and N i ,  respectively,  

we have d im M • + dim N • > n + 1. Consequent ly ,  the re  is some  u ~ M • (~ N • 
with u 2 = 1. T h e n  

x ~ L *  u x ~ L *  x ~ L * f ~ N  x ~ L * \ N  

= E e-~rX2e-Tru2+ E e-~X2 
xEL*f3N x~(L*XN)+u  

< e-~r E e-~rx2 + ~ e - ~ x 2  

x~L* x ~ L * \ V  
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:g 
because (L* \ N )  + u c L~ \ V. Hence  

o(L* + u) o (L*  \ V )  
q~L,(U) - < e - ~  + 

o (L*)  o (L*)  
< e - ~  + f l ( V ) .  

O n  the other  hand,  as u ~ M • and L \ M  c L \ U, we have 

6c(U ) = y '  ~rL({x})cos27rux 
x ~ L  

= Y'. + Y'. ~rL({X}) COS 27rux > ~rL(L C~ M )  - ~rL(L \ M )  
x c L f q M  x ~ L \ M  

= 1 - 2o-L(L \ M )  >_ 1 - 2~rc(L \ U) .  

(6) 

In view of (6)  and L e m m a  1.1, this implies that  1 - 2 a ( U )  < e - ~  + f l (V) .  [] 

2. Bounds  for cx(U) and I~(U). 

In this section n is a fixed positive integer. It is convenien t  to denote  the k th  
coordinate  of a vector  x ~ R" by x~, i.e., to write x = ( X l , . . . ,  x , ) .  Let us denote  

A = {a ~ R ' :  a ~ > 0 f o r k =  1 . . . . .  n}. 

~ ]akXk[ p _% 1) (1 _<p < oo), 
k = l  

U~ = {x  ~ R ' :  ]akx~l < 1 for k = 1 . . . . .  n}. 

Lemma  2.1. Let  L be a lattice and let u be an arbitrary vector in R ' .  Then 

E 2 - t x  2 ] xke < -  ~ e -tx2 ( t > 0 ; k =  1 . . . . .  n ) .  
x~Lu t x E L  

I f  u = O, the coefficient 1 / t  may be replaced by 1 /2 t .  

This is L e m m a  1.3 of [4]. 

Corol lary  2.2. For each a ~ A ,  one has: 

(i) a(U~) < a2/2"tr. 
(ii) fl(U~) < a2/Tr. 

For  each a ~ A,  we define 

Up = {x~R': 
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Let us take arbi trary L ~ ,  u ~ R n, and a ~ A. By L e m m a  2.1, we have 

o ( L ,  \ U~) = Y'. e ' ~  < ~, a~x~ e -  
x e L . \ U ~  x C L u \ U ~  k = l  

< 

a2 a 2 
a2 E ~2~-7rx2 rrx2 

~k~ < -  Y'. e -  = - - e ( L ) .  
k= 1 x e L  u 7r x E L  "rg 

1 This proves (ii). The  proof  of (i) differs in the factor ~-. []  

R e m a r k  2.3. A n  a rgument  similar to that used in the proof  of (1.4) in [4] allows it to 
be  shown that  

f 2~re e -  ~/a2, 
v 
f 

f-2-~ e ~ / a2 
fl(U~) <_ 2 w - - ~  e -  , 

provided that  a 2 < 27r; if a I . . . . .  an, see Lem m a  2.8 below. 

Lemma  2.4. Let L be a lattice and let u be an arbitrary vector in R n. Then 

Y'. e -~x2 < 2 e  -~?  ~ e -'~x2 (t>__O;k= 1 . . . . .  n ) .  
x e L  u x ~ L  

Ixkl>~t 

Proof. Fix arbi trary t > 0 and  k = 1 . . . . .  n. Let v ~ R n be the vector  given by 
xv = x k for x ~ R n. W e  may write 

Y'. e -  ~rxz c o s h  2"n-ix k ~ e ~rt2 

x ~ t  u [ x e L  u x e Z  u 

[ x ~ L  u - t v  x ~ L u + t v  

= e ~ t 2 o ( L  + u - t v )  + o ( L  + u + tv) 
< e~t~o(L ) 

due to (1.2). Deno te  Q = {x ~ Rn: Ixkl ~ t}. T h e n  

e-~X2cosh27rtxk > y" e-,~x2 cosh 27r tx ~ 
x ~ L  u x ~ Q N L  u 

> cosh 2"n't 2 Y'. e -  "x2 = o ( Q  c~ L , )  cosh 27rt 2. 
x ~ Q N L  u 
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Consequent ly ,  we derive 

o(Q N L , )  e ~rt: 
< < 2e -~r?. 

0 ( L )  cosh 27rt 2 
[] 

Corollary 2.5. For each a ~ A, one has 

fl(U a) <2 ~.. e '~/~. 
k = l  

Proof. 

D e n o t e  

Let  us take arbitrary L ~.5r u ~ R ", and a ~ A.  We  have to show that 

o(L" \ U~) < 2  ~. e ~/~ 
~ 9 ( L )  k = l  

Qk = { x ~ R ~ :  I x k l > a ~  ~} 

It follows f rom L e m m a  2.4 that 

(k  = 1 . . . . .  n) .  

W e  have 

Thus 

o(L ,  N Qk) < 20( L)e-~/a2 (k = 1 . . . . .  n). 

n 

L , \ U ~ = L ,  A ( Q 1 u ' " u Q , )  = U ( L ,  n Q k ) .  
k = l  

o(L.\U~) < ~ o(L. r <2Q(L) ~ e ~ / ~ .  
k = l  k = l  

[] 

Lemma 2.6. 

E 
x E L  u 

Let L be a lattice and let u be an arbitrary vector in R n. Then 

( P ) ~ L  e '~x2 Ixk[Pe-"x2 < P~-p/2I" 2 x ( P  > O; k = 1 . . . . .  n ) .  

Fo r  p = 2, see L e m m a  2.1. 

Proof. Choose  arbitrary p > 0 and k = 1 . . . .  , n. By vir tue of  L e m m a  2.4, we may  

write  

IxklPe -~x2 
x E L ~  x ~ L  u 

oe 

=Pfo t P - I Q ( { X  ~Lu:  

= pTr-p /2F( P ) x~L e-~X2. 

2fo  - Ixkl ~ t ) )  dt < 2p Y'~ e-  ~x t p le-=t2 dt 
x ~ L  

[] 
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Corollary 2.7. For arbitrary a ~ A and p ~ [1, oo), one has 

) 
k = l  

Proof. Let us take arbitrary L ~ 2 , ,  u ~ R ", a ~ A ,  and p ~ [1,~). We have to 
show that 

o(L) z ] k =  1 

By Lemma 2.6, we may write 

o(Lu \ U~) = E 

Let us denote 

< ~ a~' ~] [xk]Pe-~X2<plr-P/ZF(p)O(L) ~ a t .  [] 
k = l  x ~ L  u k = l  

B ~ = {  x ~ R n :  k=l~[XklP<~l} (1 < p  <oo), 

B~ = { x ~ R n :  [Xk[< l f o r k =  1 . . . . .  n}. 

Lemma 2.8. For reach r > fn-/2~-, one has 

[ 2rre ~n/2 
a(rB~) < ~---~-- ) rne -~rr2, 

This is Lemma 1.5 of [4]. 

Lemma 2.9. 

< rne - ~ r  a 

For arbitrary r > 0 and p ~ [1, oo), one has 

This is a direct consequence of Corollary 2.7. 

Lemma 2.10. For each r > O, one has 

~(rB2) < 2ne - '~: 

This is a direct consequence of Corollary 2.5. 
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3. Transference Theorems  

The results of Sections 1 and 2 allow upper bounds for jh(U, V), for various pairs 
U, V ~ ~'n, to be obtained. Here we confine ourselves to consideration of a few 
most important  cases. 

Theorem 3.1. Let D be an n-dimensional o-symmetric ellipsoid in R ~ with principal 
semiaxes d I . . . . .  d , .  Denote d = ( d {  1 + ... + d ~ l )  -1. Then: 

(i) kh(B~', D) < 21/~rd. 
(ii) lh(B~', D) < 2/Trd. 

(iii) mh(B~, D) < 3 / 2 d .  

Proof. We may assume that 

( 2) 
D = ( x  1 . . . .  Xn) ~ R n :  x2 xn 

, d - ~ - + ' " + ~ - ~ 2  < 1  �9 

Consider  the ellipsoid 

( 2) 
C :  ( X  1 . . . . .  x n ) ~ R n :  x2 + + xn < 1  

d 1 dn 

It is clear that kh(B~, D)  = kh(C, C) and lh(B~, D)  = lh(C, C). By Corollary 2.2, we 
have a(C)  < 1/27rd and /3(C) < l /Trd .  

If d >_ 7/27r ,  then 2/3(C) + 3 a ( C )  < 1, and Lemma 1.4 yields kh (C ,C)  < 6. 
Thus, if d > 7/27r ,  then kh(B~', D)  < 6; this proves (i). 

If d > 2/7r ,  then /3(C) + 2 a ( C )  < 1, and I .emma 1.5 implies that Ih(C,C)  < 1. 
So, if d > 2/7r ,  then lh(B~', D) < 1; this proves (ii). 

To prove (iii), assume that d = 3 2 3 7. Denote  U = ~C and W = 7C. Then mh(B~', D) 
= mh(U, W). The principal semiaxes of D are greater  than d. Consequently, those 
of C are greater  than d 1/2, so that B~ c d-1/2C.  Then 

U + B~ c + C c ~ C =  W. 

Thus mh(B~, D)  < mh(U, U + B~). By Corollary 2.2, we have a ( U )  < 3/4~r  and 
f l (U)  < 3/27r,  whence 2 a ( U )  + [3(U) < 3/~" < 1 - e -'~, and Lemma 1.6 implies 
that mh(U, U + B~') < 1. 

We have shown that if d = 3 ~-, then mh(B~', D)  < 1; this proves (iii). [ ]  

Theorem 3.2. Let  a l , . . .  , a n be arbitrary positive numbers. Denote 

P = { ( x  1 . . . . .  x n) E R n :  Ixkl < a k  f o r k  = 1 . . . . .  n}. 
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Let  tl, t2, t 3 be the roots of the equations 

107 6~ 
k = l  k = l  

respectively. Then 

Proof. 
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~ e  1 -- e '~ " g g ( ~  1/2) 2 

k=l 6 ' 

kh(Bg, P )  _< 6tl ,  lh(B2, P )  __< t2, mh(B2, P)  < t 3. 

Let us denote 

Qi = {(Xl . . . . .  x~) ~ Rn: Ixkl < ~ for k = 1 . . . . .  n} 

for i = 1, 2. It is clear that 

kh(B~, t iP)  = kh(Q1 , Q1), lh(B~, tzP) = lh(Q2 , Q2). 

From Corollary 2.5 and our definitions of t 1 and t 2 w e  get 

1 
o ~ ( Q 1 )  < fl(Q~) <_ t ,  a (Qz)  <- fl(Q2) <- 7. 

Now, from Lemma 1.4 we obtain kh(Qx, Q1) < 6, while Lemma 1.5 yields lh(Q2, Q2) 
< 1. Thus 

kh(B~, P )  = t 1 kh(B~, t iP)  = t I kh(Ql ,  Qa) < 6tl, 

lh(B~, P )  = t z lh(B~, t2P) = t 2 lh(Q2, Q2) < t2- 

Next, let us define 

V ~  3 1 , t 3 V ~  1 I u k =  a k +  7 2, wk = + z + ~- ( k =  1 , . . . , n ) ,  

U =  {(x 1 . . . . .  x , )  ~ R " :  [x~[ Nut, f o r k  = 1 . . . . .  n}, 

W : { ( X  1 . . . . .  Xn) ~ R": IXkl _< Wk for k = 1 . . . . .  n}. 

We have ukw k = t3p k for every k, therefore mh(B2, t 3P)=  mh(U, W). As w k = 
u k + 1, it follows "that U + B~' c U + B~ c W. From Corollary 2.5 and our defi- 
nition of t 3 we get a ( U ) <  f l (U)<  ( 1 -  e - ~ ) / 6 ,  and Immma 1.6 implies that 
mh(U, U + B~') _< 1. Thus 

mh(B~, P )  = t 3 mh(B2,  t3P)  = t 3 mh(U, W) < t 3 mh(U, U + B~') < t 3. [] 

For each pair U, V ~ g~n, let us denote 

nh(U, V) = max{jh(U, V): j = k , l ,m},  

ph(U, V) = max(nh(U, V),  nh(V, U)) .  
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Proposition 3.3. A numerical constant C exists such that 

ph(Bp, Bq) < C V ~ n  1/p+l/q (1 < p , q  < oo;n = 1,2 . . . .  ). 

This follows directly from Lemmas 1.4-1.6 and 2.9. 

Corollary 3.4. A numerical constant C exists such that 

ph(B; ' , (Bp)  ~ < C n  (1 < p  < • ; n =  1 2, .).  
p - 1  ' '" 

Proof. It is enough to observe that (Bp) e = Bq where q = p / ( p  - 1). []  

Proposition 3.5. A numerical constant C exists such that 

ph(Bp, Bn) < C f f i n l / P ( l o g n )  1/2 (1 < p  < oo;n = 1,2 . . . .  ). 

This is a direct consequence of Lemmas 1.4-1.6, 2.9, and 2.10. 

Proposition 3.6. A numerical constant C exists such that 

ph(B~, (Bp) ~ < Cn(log n) '/2 (1 _< p < ~; n = 1,2 . . . .  ). 

Proof. Take an arbitrary p ~ [1, o0] and let q = p / ( p  - 1). Then (Bp) ~ = Bq. We 
may assume that p _< 2 < q. Let r = n I / 2 - 1 / p  and s = n - 1 / q .  Then rB~ C B p  and 

n sO n C Bq. Due to Proposition 3.5, a numerical constant C exists such that 

ph(B~, Bn) < Cnl/Z(log n) 1/2 

for every n. Thus 

1 
ph(Bp, Bq) _< ph(rB~', sBn) = --ph(B~' ,  Bn) 

r s  

< Cn]/2(log n) l /2n 1/p- l / 2 n l / q  = Cn(log n) 1/2 [] 

Proposition 3.7. A numerical constant C exists such that 

ph(Bn, Bn) < C log n (n = 1,2 . . . .  ). 

This is a consequence of Theorem 3.2. 

Corollary 3.8. Let U be a convex body in R n symmetric with respect to the coordinate 
hyperplanes. Then 

ph(U, U ~ < Cn log n, 

where C is a numerical constant. 
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Proof. It  is a s tandard fact that a linear isomorphism T: R n ~ R n exists such that 
TU, (TU)  ~ ~ n-1/2B~. Thus by Proposit ion 3.7, we have 

ph(U, U ~ = ph(TU, (TU)  ~ < p h ( n - 1 / 2 B ~ , n  1/2B~) < Cn log n. [] 

Remark  3.9. To each U ~ ~n there corresponds a linear isomorphism T: R n ~ R" 
such that  

B :  c T ( U )  c n k6(R~,)B~, 

where k~(R~) is the so-called kS constant of R~, introduced and investigated in [15]. 
Then 

T ( U )  ~ D (n k6(R~j)B~) ~ = [n k 6 ( R ~ ) I - 1 B ~ ,  

and, by Proposit ion 3.7, we have 

ph(U, U ~ = p h ( T ( U ) ,  T ( U ~  <_ n k6(R~)  ph(B~,  B~') < Cn log n kd(R~) .  

Thus 

jh (U)  < Cn log n kd(R~) ,  j = k, 1, m. 

Remark  3.10. A standard argument based on Siegel's mean value theorem shows 
that to each pair U, V ~ ~ ,  there corresponds a lattice L ~ ~ such that 

AI(L , U)AI(L* , V )  > [voln(U)VOln(V)] - I / n ,  

where vol~ is the n-dimensional  Lebesgue measure on R ~ (the proof  is given in [5]). 
This yields lower bounds for jh(U, V) which are not  very far from the upper  bounds 
given in Theorems 3.1 and 3.2, Proposit ions 3.3 and 3.5-3.7, and Corollaries 3.4 and 
3.8. For  instance, under  the notat ion of Theorem 3.1, we obtain 

jh(B~,  D )  > Cn(d  I "" dn) -1/~. 
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