Inequalities for Convex Bodies and Polar Reciprocal Lattices in $\boldsymbol{R}^{\boldsymbol{n}}$ II: Application of \boldsymbol{K}-Convexity ${ }^{*}$

W. Banaszczyk
Institute of Mathematics, Lódź University, 90-238 Łod́ź, Poland
wbanasz@krysia.uni.lodz.pl

Abstract

The paper is a supplement to [2]. Let L be a lattice and U an o-symmetric convex body in \boldsymbol{R}^{n}. The Minkowski functional $\left\|\|_{U}\right.$ of U, the polar body U^{0}, the dual lattice L^{*}, the covering radius $\mu(L, U)$, and the successive minima $\lambda_{i}(L, U), i=1, \ldots, n$, are defined in the usual way. Let \mathcal{L}_{n} be the family of all lattices in \boldsymbol{R}^{n}. Given a convex body U, we define

$$
\begin{aligned}
\operatorname{mh}(U) & =\sup _{L \in \mathcal{L}_{n}} \max _{1 \leq i \leq n} \lambda_{i}(L, U) \lambda_{n-i+1}\left(L^{*}, U^{0}\right) \\
\operatorname{lh}(U) & =\sup _{L \in \mathcal{L}_{n}} \lambda_{1}(L, U) \cdot \mu\left(L^{*}, U^{0}\right)
\end{aligned}
$$

and $\operatorname{kh}(U)$ is defined as the smallest positive number s for which, given arbitrary $L \in \mathcal{L}_{n}$ and $x \in \boldsymbol{R}^{\boldsymbol{n}} \backslash(L+U)$, some $y \in L^{*}$ with $\|y\|_{U^{0}} \leq s d(x y, Z)$ can be found. It is proved that

$$
C_{1} n \leq \mathrm{jh}(U) \leq C_{2} n K\left(R_{U}^{n}\right) \leq C_{3} n(1+\log n)
$$

for $\mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$, where C_{1}, C_{2}, C_{3} are some numerical constants and $K\left(\boldsymbol{R}_{U}^{n}\right)$ is the K convexity constant of the normed space $\left(\boldsymbol{R}^{n},\| \|_{U}\right)$. This is an essential strengthening of the bounds obtained in [2]. The bounds for $\operatorname{lh}(U)$ are then applied to improve the results of Kannan and Lovász [5] estimating the lattice width of a convex body U by the number of lattice points in U.

This paper is a supplement to the earlier paper [2]. We recall briefly the notation introduced there. By \mathcal{L}_{n} and \mathcal{C}_{n} we denote, respectively, the family of all n-dimensional lattices and the family of all symmetric convex bodies in \boldsymbol{R}^{n}. Let $L \in \mathcal{L}_{n}$ and $U \in \mathcal{C}_{n}$. By L^{*} and U^{0} we denote, respectively, the dual lattice and the polar body, defined in

[^0]the usual way. By $\mu(L, U)$ and $\lambda_{i}(L, U), i=1, \ldots, n$, we denote, respectively, the covering radius and the successive minima of L with respect to U.

Consider a pair of convex bodies $U, V \in \mathcal{C}_{n}$. Let d_{U} be the metric on \boldsymbol{R}^{n} induced by U and let $\left\|\|_{V}\right.$ be the norm on R^{n} induced by V. Let $x y$ be the euclidean inner product of vectors $x, y \in \boldsymbol{R}^{n}$ and let $d(x y, Z)$ be the usual one-dimensional distance of $x y$ to \boldsymbol{Z}. In [2] we obtained upper bounds for the following quantities:

$$
\begin{aligned}
& \operatorname{kh}(U, V)=\sup _{L \in \mathcal{L}_{n}} \sup _{\substack{x \in \mathbb{R}^{n} \\
x \neq L}} \inf _{\substack{y \in E^{*} \\
x y \neq \mathbb{Z}}} \frac{d_{U}(x, L) \cdot\|y\|_{V}}{d(x y, \mathbb{Z})}, \\
& \operatorname{lh}(U, V)=\sup _{L \in \mathcal{L}_{n}} \lambda_{1}(L, U) \cdot \mu\left(L^{*}, V\right), \\
& \operatorname{mh}(U, V)=\sup _{L \in \mathcal{L}_{n}} \max _{1 \leq i \leq n} \lambda_{i}(L, U) \cdot \lambda_{n-i+1}\left(L^{*}, V\right) .
\end{aligned}
$$

It is convenient to denote them by $\mathrm{jh}(U, V), \mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$. In this paper, applying the notion of K-convexity, we derive upper bounds for $\mathrm{jh}(U, V)$ which are essentially stronger than those obtained in [2]. We are interested mainly in the case $V=U^{0}$. Thus, we denote $\mathrm{jh}(U)=\mathrm{jh}\left(U, U^{0}\right)$ for $\mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$ and $U \in \mathcal{C}_{n}$. Naturally, $\mathrm{jh}(U)$ are affine invariants of U. Upper bounds for $\mathrm{jh}(U)$ belong to the so-called transference theorems in the geometry of numbers; for motivations and earlier results we refer the reader to [2].

Let B_{p}^{n} denote the unit ball of the normed space $l_{p}^{n}, 1 \leq p \leq \infty$ (we identify vector spaces l_{p}^{n} and \boldsymbol{R}^{n}). It was proved in [1] that

$$
\begin{equation*}
\mathrm{jh}\left(B_{2}^{n}\right) \leq C n . \tag{1}
\end{equation*}
$$

Here and below, C is some numerical constant which may vary from line to line. Next, it was proved in [2] that

$$
\begin{equation*}
\mathrm{jh}\left(B_{p}^{n}\right) \leq C_{p} n, \quad 1<p<\infty, \tag{2}
\end{equation*}
$$

where C_{p} depends on p only, that

$$
\operatorname{jh}\left(B_{p}^{n}\right) \leq \operatorname{Cn}(1+\log n)^{1 / 2}, \quad 1 \leq p \leq \infty
$$

and that $\mathrm{jh}(U) \leq C n(1+\log n)$ provided that U is symmetric with respect to the coordinate hyperplanes. In this paper we prove that

$$
\begin{equation*}
C^{-1} n \leq \operatorname{jh}(U) \leq C n(1+\log n) \tag{3}
\end{equation*}
$$

for any $U \in \mathcal{C}_{n}$. Then we apply upper bounds for $\operatorname{lh}(U)$ to improve the results of Kannan and Lovász [5] estimating the width of a convex body U by the number of lattice points in U.

The inequality on the left in (3) was announced in [1]; for $U=B_{2}^{n}$, it had been known earlier (see Chapter II, Theorem 9.5, of [8]). It is a direct consequence of Siegel's mean value theorem. The proof of the inequality on the right makes use of some results of [2], of dual properties of ℓ-norm, and of the theorem of M . Talagrand on majorizing measure.

Let A be a discrete subset of R^{n}. It is convenient to write $\varrho(A)=\sum_{x \in A} e^{-\pi x^{2}}$. For $U \in \mathcal{C}_{n}$, we define

$$
\beta(U)=\sup _{L \in \mathbb{R}^{n}} \sup _{a \in \mathbb{R}^{n}} \frac{\varrho((L+a) \backslash U)}{\varrho(L)} .
$$

The following fact is a direct consequence of Lemmas 1.4, 1.5, and 1.6 of [2]:
Lemma 1. There exists a numerical constant C_{1} such that if $U, V \in \mathcal{C}_{n}$ and $\beta(U)$, $\beta(V) \leq C_{1}^{-1}$, then $\mathrm{jh}(U, V) \leq C_{1}$ for $\mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$.

For $U \in \mathcal{C}_{n}$, by \boldsymbol{R}_{U}^{n} we denote the space \boldsymbol{R}^{n} endowed with the norm $\left\|\|_{U}\right.$. Endowed with the euclidean norm, \boldsymbol{R}^{n} is denoted by \boldsymbol{R}_{2}^{n}. By T_{U} we denote the identity operator from \boldsymbol{R}_{2}^{n} to \boldsymbol{R}_{U}^{n}, and $\ell\left(T_{U}\right)$ is the ℓ-norm of T_{U} (see Section 2 of [3], Chapter 3 of [10], (12.2) of [12], or (2.3.16) and (2.3.17) of [6]).

Lemma 2. To each $\varepsilon>0$ there corresponds some $\delta>0$ such that if $U \in \mathcal{C}_{n}$ and $\ell\left(T_{U}\right)<\delta$, then $\beta(U)<\varepsilon$.

Proof. Fix δ and take any $U \in \mathcal{C}_{n}$ with $\ell\left(T_{U}\right)<\delta$. The result of Talagrand [11] on majorizing measure implies that there is a sequence $x_{k}^{*} \in\left(\boldsymbol{R}_{2}^{n}\right)^{*}$ such that

$$
\left\|x_{k}^{*}\right\| \leq C \ell\left(T_{U}\right)(1+\log k)^{-1 / 2}, \quad k=1,2, \ldots,
$$

and, denoting

$$
W_{k}=\left\{x \in \boldsymbol{R}^{n}:\left|\left\langle x, x_{k}^{*}\right\rangle\right| \leq 1\right\}, \quad k=1,2, \ldots,
$$

we have $W=\bigcap_{k=1}^{\infty} W_{k} \subset U$ (see pp. 128-129 of [11] and p. 85 of [10]). Here C is some numerical constant. Choose any $L \in \mathcal{L}_{n}$ and $a \in \boldsymbol{R}^{n}$. It is convenient to write L_{a} instead of $L+a$. Lemma 2.4 of [2] says that

$$
\varrho\left(\left\{x \in L_{a}:\left|\left\langle x, x^{*}\right\rangle\right| \geq r\left\|x^{*}\right\|\right\}\right)<2 e^{-\pi r^{2}} \varrho(L), \quad r>0, \quad x^{*} \in\left(\boldsymbol{R}_{2}^{n}\right)^{*} .
$$

Hence

$$
\varrho\left(L_{a} \backslash W_{k}\right)<2 e^{-\pi\left\|x_{k}^{*}\right\|^{-2}} \varrho(L) \leq 2 \varrho(L) \cdot(k e)^{-\pi C^{-2} \delta^{-2}}
$$

for $k=1,2, \ldots$, which implies that

$$
\begin{aligned}
\varrho\left(L_{a} \backslash U\right) & \leq \varrho\left(L_{a} \backslash W\right)=\varrho\left(L_{a} \backslash \bigcap_{k=1}^{\infty} W_{k}\right)=\varrho\left(\bigcup_{k=1}^{\infty}\left(L_{a} \backslash W_{k}\right)\right) \\
& \leq \sum_{k=1}^{\infty} \varrho\left(L_{a} \backslash W_{k}\right) \leq 2 \varrho(L) \cdot \sum_{k=1}^{\infty}(k e)^{-\pi C^{-2} \delta^{-2}}=2 \varrho(L) \cdot f(\delta) .
\end{aligned}
$$

As $L \in \mathcal{L}_{n}$ and $a \in \boldsymbol{R}^{n}$ were arbitrary, it follows that $\beta(U) \leq 2 f(\delta)$. Now it remains to observe that $f(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

Lemma 3. There exists a universal constant C such that

$$
\mathrm{jh}(U, V) \leq C \ell\left(T_{U}\right) \cdot \ell\left(T_{V}\right)
$$

for all $U, V \in \mathcal{C}_{n}$ and $\mathrm{j}=\mathrm{k}, 1, \mathrm{~m}$.

Proof. Let C_{1} be the constant from Lemma 1. By Lemma 2, there exists some $\delta>0$ such that if $W \in \mathcal{C}_{n}$ and $\ell\left(T_{W}\right) \leq \delta$, then $\beta(W) \leq C_{1}^{-1}$. Choose arbitrary $U, V \in \mathcal{C}_{n}$ and $\mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$. Let $s=\delta^{-1} \ell\left(T_{U}\right)$ and $t=\delta^{-1} \ell\left(T_{V}\right)$. Then $\ell\left(T_{s U}\right)=s^{-1} \ell\left(T_{U}\right)=\delta$ and, similarly, $\ell\left(T_{t}\right)=\delta$. Hence $\beta(s U), \beta(t V) \leq C_{1}^{-1}$, which implies thatjh $(s U, t V) \leq C_{1}$. Thus

$$
\mathrm{jh}(U, V)=s t \cdot \mathrm{jh}(s U, t V) \leq s t C_{1}=C_{1} \delta^{-2} \ell\left(T_{U}\right) \cdot \ell\left(T_{V}\right)
$$

Let X be an n-dimensional real normed space. By $d\left(X, l_{2}^{n}\right)$ we denote the BanachMazur distance of X to l_{2}^{n}; note that $d\left(X, l_{2}^{n}\right) \leq n^{1 / 2}$. By $K(X)$ we denote the K-convexity constant of X (see, e.g., Chapter 2 of [10] or (2.2.19) of [6]). We recall some basic facts about $K(X)$:
(i) $K\left(X^{*}\right)=K(X)$.
(ii) $K\left(l_{2}^{n}\right)=1$.
(iii) $K(X) \leq C\left(1+\log d\left(X, l_{2}^{n}\right)\right)$.
(iv) $K(X) \leq C\left(1+\log d\left(X, l_{2}^{n}\right)\right)^{1 / 2}$ if X has a 1 -unconditional basis.

For (i)-(iii) see p. 20 of [10]; assertion (iv) was proved in [9].
Lemma 4. To each $U \in \mathcal{C}_{n}$ there corresponds a linear isomorphism S of \boldsymbol{R}^{n} such that

$$
\ell\left(T_{S(U)}\right) \cdot \ell\left(T_{S(U)^{\circ}}\right) \leq n K\left(\boldsymbol{R}_{U}^{n}\right)
$$

This fact was proved by Figiel and Tomczak-Jaegermann in [3], by using a general theorem of D . R. Lewis. The isomorphism S describes the so-called ℓ-ellipsoid for U. See also (4.1.9) of [6], Theorem 3.11 of [10], or Section 12 of [12] for a detailed analysis.

Theorem 1. There exists a universal constant C such that

$$
\mathrm{jh}(U) \leq C n K\left(R_{U}^{n}\right)
$$

for all $U \in \mathcal{C}_{n}$ and $\mathrm{j}=\mathrm{k}, 1, \mathrm{~m}$.
Proof. Choose any $U \in \mathcal{C}_{n}$. Due to Lemma 4, we can find an affine image W of U with $\ell\left(T_{W}\right) \cdot \ell\left(T_{W^{0}}\right) \leq n K\left(\boldsymbol{R}_{U}^{n}\right)$. Let C be the constant from Lemma 3. Then, for each $j=k, 1, m$, we have

$$
\mathrm{jh}(U)=\mathrm{jh}(W)=\mathrm{jh}\left(W, W^{0}\right) \leq C \ell\left(T_{W}\right) \cdot \ell\left(T_{W^{0}}\right) \leq C n K\left(R_{U}^{n}\right) .
$$

The following result is a direct consequence of Theorem 1 and (iii):
Corollary 1. There exists a universal constant C such that

$$
\begin{equation*}
\mathrm{jh}(U) \leq C n(1+\log n) \tag{4}
\end{equation*}
$$

for all $U \in \mathcal{C}_{n}$ and $\mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$.

It follows from (i)-(iv) that for many convex bodies U the logarithmic factor in (4) can be improved. See also (1) and (2). It should be pointed out that the proof of (1) in [1] gives quite good numerical values of C; see (9) below.

Let Q be a convex body in \boldsymbol{R}^{n}, symmetric or not, and let $L \in \mathcal{L}_{n}$. Denote by s the number of points of L in Q and let $w_{L}(Q)$ be the L-width of Q :

$$
w_{L}(Q)=\min _{y \in L^{*} \backslash\{0\}}\left(\max _{x \in Q} x y-\min _{x \in Q} x y\right)
$$

Kannan and Lovász [5] proved that

$$
\begin{equation*}
w_{L}(Q) \leq c_{0}\left\lceil(s+1)^{1 / n}\right\rceil n^{2} \tag{5}
\end{equation*}
$$

where c_{0} is the constant which comes from the Bourgain-Milman inequality:

$$
\operatorname{vol}_{n}(U) \cdot \operatorname{vol}_{n}\left(U^{0}\right) \geq\left(\frac{4}{c_{0} n}\right)^{n}, \quad U \in \mathcal{C}_{n}
$$

It is assumed here that $c_{0} \geq 1$. Furthermore, it was proved in [5] that

$$
\begin{equation*}
w_{L}(Q) \leq c_{0} n^{2}+2 c_{0} n s^{1 / n} \tag{6}
\end{equation*}
$$

provided that Q has a center of symmetry. See also (3.12) and (3.13) of [4].
Now, suppose that Q is symmetric with respect to some point p and let $U=Q-p$. It is clear that $w_{L}(Q)=2 \lambda_{1}\left(L^{*}, U^{0}\right)$ (see Lemma (2.3) of [5]). We denote

$$
c_{U}=4 n^{-1}\left(\operatorname{vol}_{n}(U) \cdot \operatorname{vol}_{n}\left(U^{0}\right)\right)^{-1 / n}
$$

The proof of (6) in [5] shows actually that

$$
\begin{equation*}
w_{L}(Q)<2 \mu(L, U) \cdot \lambda_{1}\left(L^{*}, U^{0}\right)+2 c_{U} n s^{1 / n} \tag{7}
\end{equation*}
$$

By Corollary 1, we have

$$
\mu(L, U) \cdot \lambda_{1}\left(L^{*}, U^{0}\right) \leq \operatorname{lh}\left(U^{0}\right) \leq C n(1+\log n)
$$

Since, by definition, $c_{U} \leq c_{0}$, it follows that

$$
\begin{equation*}
w_{L}(Q)<C n(1+\log n)+2 c_{0} n s^{1 / n} \tag{8}
\end{equation*}
$$

which is better than (6) at least for large n.
For convex bodies Q satisfying some additional conditions, inequality (7) allows us to obtain further improvements of (8); see the remarks following Corollary 1. Consider, in particular, an n-dimensional ellipsoid D with center at some point p. Let $B=D-p$; then $c_{B}<2(\pi e)^{-1}$ due to the Santalo inequality. Let t denote the number of points of L in D. It was proved in [1] that $\operatorname{lh}(B) \leq \frac{1}{2} n$ and

$$
\operatorname{lh}(B) \leq(2 \pi)^{-1} n+O\left(n^{1 / 2}\right) \quad \text { as } \quad n \rightarrow \infty
$$

This yields

$$
\begin{align*}
& w_{L}(D)<\left(1+4(\pi e)^{-1} t^{1 / n}\right) n, \tag{9}\\
& w_{L}(D)<\left(1+4 e^{-1} t^{1 / n}\right) \pi^{-1} n+O\left(n^{1 / 2}\right) \quad \text { as } \quad n \rightarrow \infty .
\end{align*}
$$

Now, suppose that Q is an arbitrary convex body in \boldsymbol{R}^{n}, not necessarily centrally symmetric. Let D be the ellipsoid of maximal volume in Q and let p, B, and t be defined as above. Then $D \subset Q \subset n B+p$ due to the John theorem. It is obvious that $t \leq s$ and

$$
w_{L}(Q) \leq w_{L}(n B+p)=n w_{L}(D)
$$

Now, using (9), we obtain upper bounds for $w_{L}(Q)$ which differ from (5) only in numerical constants.

A very interesting problem is to improve the factor n^{2} in (5). In our proof of (8), the central symmetry of Q or U is essential only in Lemma 4. However, to give a nonsymmetric analogue of Lemma 4 seems to be a difficult task.

Let $\operatorname{vol}_{n}(U)$ denote the n-dimensional euclidean volume of a convex body $U \in \mathcal{C}_{n}$.
Lemma 5. To each pair $U, V \in \mathcal{C}_{n}$ there corresponds a lattice $L \in \mathcal{L}_{n}$ such that

$$
\lambda_{1}(L, U) \cdot \lambda_{1}\left(L^{*}, V\right)>\left[\operatorname{vol}_{n}(U) \cdot \operatorname{vol}_{n}(V)\right]^{-1 / n} .
$$

Proof. (Sketch) For $W \in \mathcal{C}_{n}$ and $L \in \mathcal{L}_{n}$, let $N_{W}(L)$ be the number of nonzero points of L in W, and let $N_{W}^{*}(L)=N_{W}\left(L^{*}\right)$. Siegel's mean value theorem says that the mean value $\mathfrak{M}\left(N_{W}\right)$ of $N_{W}(L)$ over all lattices L with determinant 1 is equal to $\operatorname{vol}_{n}(W)$ (the best description of this averaging process is given in [7]). It is not very hard to see that $\mathfrak{M}\left(N_{W}^{*}\right)=\mathfrak{M}\left(N_{W}\right)$ (very loosely speaking, there is a fundamental domain invariant under the transformation $L \mapsto L^{*}$).

Now, take arbitrary $U, V \in \mathcal{C}_{n}$, and let $s=\operatorname{vol}_{n}(U)^{-1 / n}, t=\operatorname{vol}_{n}(V)^{-1 / n}$. Then

$$
\begin{aligned}
\mathfrak{M}\left(N_{s U}+N_{t V}^{*}\right) & =\mathfrak{M}\left(N_{s U}\right)+\mathfrak{M}\left(N_{t}^{*}\right)=\mathfrak{M}\left(N_{s U}\right)+\mathfrak{M}\left(N_{t V}\right) \\
& =\operatorname{vol}_{n}(s U)+\operatorname{vol}_{n}(t V)=s^{n} \operatorname{vol}_{n}(U)+t^{n} \operatorname{vol}_{n}(V)=2 .
\end{aligned}
$$

Since the function $L \mapsto\left(N_{s U}+N_{i V}^{*}\right)(L)$ assumes nonnegative even values only, there must be some $L \in \mathcal{L}_{n}$ with $N_{s U}(L)=0$ and $N_{t V}^{*}(L)=0$; in other words, $\lambda_{1}(L, s U)>1$ and $\lambda_{1}\left(L^{*}, t V\right)>1$. Then

$$
\lambda_{1}(L, U) \cdot \lambda_{1}\left(L^{*}, V\right)=s t \lambda_{1}(L, s U) \cdot \lambda_{1}\left(L^{*}, t V\right)>s t .
$$

Theorem 2. There exists a numerical constant C such that $\mathrm{jh}(U) \geq C^{-1} n$ for all $U \in \mathcal{C}_{n}$ and $\mathrm{j}=\mathrm{k}, \mathrm{l}, \mathrm{m}$.

Proof. Let $U \in \mathcal{C}_{n}$. By Lemma 5, we can find a lattice $L \in \mathcal{L}_{n}$ with

$$
\lambda_{1}(L, U) \cdot \lambda_{1}\left(L^{*}, U^{0}\right)>\left[\operatorname{vol}_{n}(U) \cdot \operatorname{vol}_{n}\left(U^{0}\right)\right]^{-1 / n},
$$

which is greater than $(2 \pi e)^{-1} n$ due to the Santalo inequality. Then

$$
\operatorname{mh}(U) \geq \lambda_{i}(L, U) \cdot \lambda_{n-i+1}\left(L^{*}, U^{0}\right) \geq \lambda_{1}(L, U) \cdot \lambda_{1}\left(L^{*}, U^{0}\right)>(2 \pi e)^{-1} n .
$$

Next, we have the obvious inequality $\mu\left(L^{*}, U^{0}\right) \geq \frac{1}{2} \lambda_{1}\left(L^{*}, U^{0}\right)$, whence

$$
\operatorname{lh}(U) \geq \lambda_{1}(L, U) \cdot \mu\left(L^{*}, U^{0}\right) \geq \frac{1}{2} \lambda_{1}(L, U) \cdot \lambda_{1}\left(L^{*}, U^{0}\right)>(4 \pi e)^{-1} n
$$

Finally, it remains to observe that $\mathrm{kh}(U) \geq 2 \operatorname{lh}(U)$.

Acknowledgment

The author wishes to express his deep gratitude to Nicole Tomczak-Jaegermann for her comments and suggestions.

References

1. W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Math. Ann. 296 (1993), 625-635.
2. W. Banaszczyk, Inequalities for convex bodies and polar reciprocal lattices in \boldsymbol{R}^{n}, Discrete Comput. Geom. 13 (1995), 217-231.
3. T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155-171.
4. P. Gritzmann and J. M. Wills, Lattice points, in Handbook of Convex Geometry, edited by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, pp. 765-797.
5. R. Kannan and L. Lovász, Covering minima and lattice-point-free convex bodies, Ann. Math. 128 (1988), 577-602.
6. J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity, in Handbook of Convex Geometry, edited by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, pp. 739-763.
7. A. M. Macbeath and C. A. Rogers, Siegel's mean value theorem in the geometry of numbers, Math. Proc. Cambridge Philos. Soc. 54 (1958), 139-151.
8. J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer-Verlag, Berlin, 1973.
9. G. Pisier, On the duality between type and cotype, Proc. Conf. on Martingale Theory in Harmonic Analysis and Banach Spaces, Cleveland, 1981, Lecture Notes in Mathematics, Vol. 939, Springer-Verlag, Berlin, 1982.
10. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge, 1989.
11. M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99-149.
12. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman Scientific \& Technical, Harlow, 1989.

Received February 15, 1995.

[^0]: * This research was supported by KBN Grant 2 P301 01904.

