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Abstract. The paperisasupplementto [2]. Let L be alattice and U an o-symmetric convex
body in R". The Minkowski functional || ||, of U, the polar body U°, the dual lattice L*, the
covering radius u(L, U), and the successive minima A;(L,U), i = 1, ..., n, are defined
in the usual way. Let £, be the family of all lattices in R". Given a convex body U, we
define

mh(U) = sup max A;(L, U) A, (L*, U,
Lely, l<i<n

sup A (L, U) - w(L*, U°),
LeLl,

1h(U)

and kh(U) is defined as the smallest positive number s for which, given arbitrary L € £,
and x € R"\(L + U), some y € L* with ||y|lyo < sd(xy.Z) can be found. It is proved
that

Cin < jh(U) < CnK (Ry)) < Csn(1 +logn),

for j = k,1, m, where C;, C,, C; are some numerical constants and K (R}) is the K-
convexity constant of the normed space (R, || |l;y). This is an essential strengthening of
the bounds obtained in [2]. The bounds for Ih(U) are then applied to improve the results of
Kannan and Lovdsz [5] estimating the lattice width of a convex body U by the number of
lattice points in U.

This paper is a supplement to the earlier paper [2]. We recall briefly the notation in-
troduced there. By £, and C, we denote, respectively, the family of all n-dimensional
lattices and the family of all symmetric convex bodies in R*. Let L € £, and U € C,,.
By L* and U° we denote, respectively, the dual lattice and the polar body, defined in
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the usual way. By w(L,U) and A;(L, U}, i = 1,..., n, we denote, respectively, the
covering radius and the successive minima of L with respect to U.

Consider a pair of convex bodies U, V € C,. Let dy be the metric on R" induced by
U and let || ||y be the norm on R" induced by V. Let xy be the euclidean inner product
of vectors x, y € R" and let d(xy, Z) be the usual one-dimensional distance of xy to Z.
In [2] we obtained upper bounds for the following quantities:

dy(x,L)-
kh(U,V) = sup sup inf QG- D) - Iyllv
Lel, xeﬁn Is;—; d(xy’Z)

h(U, V) = sup A(L,U) - u(L*, V),
Lel,

mh(U, V) = sup max A;(L, U) - Ap—ir1(L*, V).
Lefl, 1sisn

Itis convenient to denote them by jh(U, V), j = k, 1, m. In this paper, applying the notion
of K -convexity, we derive upper bounds for jh(U, V) which are essentially stronger than
those obtained in [2]. We are interested mainly in the case V = U°. Thus, we denote
jh(U) = jh(U,U% forj = k,],mand U € C,. Naturally, jh(U) are affine invariants of
U. Upper bounds for jh(U) belong to the so-called transference theorems in the geometry
of numbers; for motivations and earlier results we refer the reader to [2].

Let By denote the unit ball of the normed space [, 1 < p < oo (we identify vector
spaces /; and R"). It was proved in [1] that

jh(B}) < Cn. (D

Here and below, C is some numerical constant which may vary from line to line. Next,
it was proved in [2] that

jh(By) < Cpn, l1<p<oo, @
where C, depends on p only, that
jh(Bp) < Cn(l +logn)'/?, 1<p<o0,

and that jh(U) < Cn(l + logn) provided that U is symmetric with respect to the
coordinate hyperplanes. In this paper we prove that

C~'n <jh(U) < Cn(1 +logn) )

forany U € C,. Then we apply upper bounds for Ih(U') to improve the results of Kannan
and Loviész [5] estimating the width of a convex body U by the number of lattice points
inU.

The inequality on the left in (3) was announced in [1]; for U = B7, it had been known
earlier (see Chapter II, Theorem 9.5, of [8]). It is a direct consequence of Siegel’s mean
value theorem. The proof of the inequality on the right makes use of some results of [2],
of dual properties of £-norm, and of the theorem of M. Talagrand on majorizing measure.

Let A be a discrete subset of R". It is convenient to write g(A) = )~ 4 e~ . For
U € C,, we define

o((L + a\U)
U) = -
AU) = sup S0 D)
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The following fact is a direct consequence of Lemmas 1.4, 1.5, and 1.6 of [2]:

Lemma 1. There exists a numerical constant Cy such that if U,V € C, and B(U),
B(V) < C;!, then jh(U, V) < C for j=k,1,m.

For U € C,, by R}, we denote the space R" endowed with the norm || {|y. Endowed
with the euclidean norm, R" is denoted by R}. By Ty we denote the identity operator
from R}, to R}, and £(Ty) is the £-norm of Ty (see Section 2 of [3], Chapter 3 of [10],
(12.2) of [12], or (2.3.16) and (2.3.17) of [6]).

Lemma 2. To each ¢ > 0 there corresponds some § > O such that if U € C, and
£(Ty) < 6, then B(U) < e&.

Proof. Fix & and take any U € C, with £(Ty) < 8. The result of Talagrand [11] on
majorizing measure implies that there is a sequence x; € (R})* such that

lxfll < Ce(Ty) (1 +logk)™"2,  k=1,2,...,

and, denoting
Wiy ={x e R":|(x,x})| <1}, k=1,2,...,

we have W = ﬂ,fil W, C U (see pp. 128-129 of [11] and p. 85 of [10]). Here C is
some numerical constant. Choose any L € £, and a € R". It is convenient to write L,
instead of L 4 a. Lemma 2.4 of [2] says that

ox € Lot |{x, x*)| > rlx*) <27 o(L). r>0, x*e (R

Hence
o(La\Wo) < 2¢7"417 (L) < 20(L) - (ke) ™™ %"
fork = 1,2, ..., which implies that

o(La\U) < o(L\W) =0¢ (La\ﬂwk) =0 (U(La\wk))
k=1 k=1
< Y oL \Wi) <20(L) - Y (ke)™ 7 =20(L) - f(8).
k=1 k=1

As L € L, and a € R" were arbitrary, it follows that 8(U) < 2f(§). Now it remains to
observe that f(§) > 0asd — 0. O

Lemma 3. There exists a universal constant C such that
jh(U, V) < Ce(Ty) - £(Tv)

forallU,V €Cpand j=%,1,m.



308 W. Banaszczyk

Proof. Let C, be the constant from Lemma 1. By Lemma 2, there exists some § > 0
such thatif W € C, and £(Ty) < 8, then B(W) < Cl‘l. Choose arbitrary U, V € C, and
j=k1,m. Lets = §14(Ty) and t = §~£(Ty). Then £(Tyy) = s~ 14(Ty) = & and,
similarly, £(T;y) = 8. Hence B(sU), B(tV) < C’l,whichimpliesthatjh(sU, tV) < (.
Thus

jh(U, V) =st-jh(sU,tV) < stCy = C15—2 LTy) - £(Tv). ]
Let X be an n-dimensional real normed space. By d(X, I7) we denote the Banach—
Mazur distance of X to2; note thatd (X, I3) < n'/2.By K (X) we denote the K -convexity

constant of X (see, e.g., Chapter 2 of [10] or (2.2.19) of [6]). We recall some basic facts
about K (X):

G) K(X*) = K(X).
Q) K1) = 1.
i) K(X) < C(1 +logd(X, 7).
(iv) K(X) < C( +logd(X,1))"/2if X has a 1-unconditional basis.

For (i)—(iii) see p. 20 of [10]; assertion (iv) was proved in [9].
Lemmad. 7o each U € C, there corresponds a linear isomorphism S of R" such that
UTsw)) - LTswy) < nKRy).
This fact was proved by Figiel and Tomczak-Jaegermann in [3], by using a general

theorem of D. R. Lewis. The isomorphism S describes the so-called £-ellipsoid for U.
See also (4.1.9) of [6], Theorem 3.11 of [10], or Section 12 of [12] for a detailed analysis.

Theorem 1. There exists a universal constant C such that
ih(U) < CnK (RY)

forallU € C,and j=k, 1, m.

Proof. Choose any U € C,. Due to Lemma 4, we can find an affine image W of U
with £(Tw) - £(Two) < nK (R7;). Let C be the constant from Lemma 3. Then, for each
j=k, 1, m, we have

jh(U) = jh(W) = jh(W, W) < C&(Tw) - £(Two) < CnK (R}). O
The following result is a direct consequence of Theorem 1 and (iii):

Corollary 1. There exists a universal constant C such that
jh(U) < Cn(1 +1logn) )

forallU e C,and j=k,1,m.
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It follows from (i)—(iv) that for many convex bodies U the logarithmic factor in (4)
can be improved. See also (1) and (2). It should be pointed out that the proof of (1) in
[1] gives quite good numerical values of C; see (9) below.

Let Q be a convex body in R", symmetric or not, and let L € £,. Denote by s the
number of points of L in Q and let w; (Q) be the L-width of Q:

w = min {maxxy — minxy ).
L(Q) yeL*\{0} (xEQ Y xeQ y)

Kannan and Lovasz 5] proved that
w(Q) < col(s + DV"n?, (5)

where c is the constant which comes from the Bourgain-Milman inequality:

0 4\
vol,(U) -vol,(U") > | — | , U e(,.
con

It is assumed here that ¢y > 1. Furthermore, it was proved in [5] that
wr (Q) < con® + 2cons'/™ 6)

provided that Q has a center of symmetry. See also (3.12) and (3.13) of [4].
Now, suppose that @ is symmetric with respect to some point p andlet U = Q — p.
It is clear that wy (Q) = 2A; (L*, U) (see Lemma (2.3) of [5]). We denote

cy = 4n"Y(vol, (U) - vol,, (U%)~1/".
The proof of (6) in [5] shows actually that
wr(Q) < 2u(L, U) - b (L*, U°) + 2cyns™/™. )
By Corollary 1, we have
(L, U) -2 (L*, U% < 1h(U% < Cn(1 + logn).
Since, by definition, ¢y < cy, it follows that
wr(Q) < Cn(1 +1logn) + 2cons'/", @®)
which is better than (6) at least for large n.
For convex bodies Q satisfying some additional conditions, inequality (7) allows us
to obtain further improvements of (8); see the remarks following Corollary 1. Consider,
in particular, an n-dimensional ellipsoid D with center at some point p. Let B = D — p;

then cp < 2(e)™! due to the Santalo inequality. Let 1 denote the number of points of
L in D. It was proved in [1] that Ih(B) < %n and

Ih(B) < 2m)'n+0n"? as n— oo.
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This yields

wr(D) < (1+4(re)~'t"/™)n, )
w (D) < A +4e7 " In+0(m'?  as n—> .
Now, suppose that Q is an arbitrary convex body in R", not necessarily centrally

symmetric. Let D be the ellipsoid of maximal volume in Q and let p, B, and ¢ be defined
as above. Then D C Q C nB + p due to the John theorem. It is obvious that ¢ < s and

wr(Q) < wr(nB 4+ p) = nw (D).

Now, using (9), we obtain upper bounds for w; (Q) which differ from (5) only in nu-
merical constants.

A very interesting problem is to improve the factor n% in (5). In our proof of (8),
the central symmetry of Q or U is essential only in Lemma 4. However, to give a
nonsymmetric analogue of Lemma 4 seems to be a difficult task.

Let vol,(U) denote the n-dimensional euclidean volume of a convex body U € C,,.

Lemma 5. 7o each pair U,V € C, there corresponds a lattice L € L, such that

ML, U) - A (L*, V) > [vol, (U) - vol,,(V)]7V/".

Proof. (Sketch) For W € C, and L € L,, let Ny (L) be the number of nonzero points
of Lin W, and let N, (L) = Nw(L*). Siegel’s mean value theorem says that the mean
value M (Nw) of Nw (L) over all lattices L with determinant 1 is equal to vol, (W) (the
best description of this averaging process is given in [7]). It is not very hard to see that
IM(Ny,) = IM(Nw) (very loosely speaking, there is a fundamental domain invariant
under the transformation L > L*).
Now, take arbitrary U, V € C,, and let s = vol,(U)~V*, t = vol,(V)~V/" Then
M(Nsy + Njy) = M(Nsy) +IUN,Y) = DM(Ny) + M(Nyy)
= vol,(sU) + vol, (¢t V) = 5" vol,,(U) + " vol,, (V) = 2.

Since the function L — (N;y + N},)(L) assumes nonnegative even values only, there
must be some L € L, with N,y (L) = 0and Ny}, (L) = 0;in other words, A, (L, sU) > 1
and A1 (L*,tV) > 1. Then

ML, U - ML V) = sta (L, sU) - A (L*, tV) > st. m]

Theorem 2. There exists a numerical constant C such that jh(U) > C~'n for all
UeC,and j=k,1,m.

Proof. LetU € C,. By Lemma 5, we can find a lattice L € £, with
ML, U) - A (L*, U°) > [vol,(U) - vol, (U] 1",
which is greater than (27re)~!n due to the Santalo inequality. Then
mh(U) 2 Ai(L, U) - kpein (L, U%) 2 M(L, U) - M (L*, U®) > 2me)~'n.
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Next, we have the obvious inequality u(L*, U%) > %Al (L*, U), whence
h(U) = M (L, U) - p(L*, U%) = 3 (L, U) - M (L, U°) > (4me)”'n.

Finally, it remains to observe that kh(U) > 2 1h(U). O
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