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Abstract. The paper is a supplement to [2]. Let L be a lattice and U an o-symmetric convex 
body inR n. The Minkowski functional I[ I1~ of U, the polar body U ~ the dual lattice L*, the 
covering radius/z(L, U), and the successive minima ~.i(L, U), i = 1 . . . . .  n, are defined 
in the usual way. Let 12, be the family of all lattices in R". Given a convex body U, we 
define 

mh(U) = sup max ~.i(L, U)~.n-i+l(L*, U~ 
L~s l< i<n  

lh(U) = sup Zl(L, U) �9 U~ 
L E L  n 

and kh(U) is defined as the smallest positive number s for which, given arbitrary L 6 12, 
and x ~ R"\(L + U), some y 6 L* with IlYlluo < sd(xy, Z) can be found. It is proved 
that 

Cln < jh(U) < C2nK(R~) < C3n(1 + logn), 

for j = k, 1, m, where C1, C2, C3 are some numerical constants and K(R"v) is the K- 
convexity constant of the normed space (R", II IIu). This is an essential strengthening of 
the bounds obtained in [2]. The bounds for lh(U) are then applied to improve the results of 
Kannan and Lov~sz [5] estimating the lattice width of a convex body U by the number of 
lattice points in U. 

This paper is a supplement to the earlier paper [2]. We recall briefly the notation in- 

troduced there. By/2n and Cn we denote, respectively, the family of all n-dimensional 

lattices and the family of all symmetric convex bodies in R n. Let L ~ /~n and U ~ Cn. 

By L* and U ~ we denote, respectively, the dual lattice and the polar body, defined in 

* This research was supported by KBN Grant 2 P301 019 04. 
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the usual way. By # (L ,  U) and ~.i(L, U), i = 1 . . . . .  n, we denote, respectively, the 
covering radius and the successive minima of L with respect to U. 

Consider a pair of convex bodies U, V 6 Cn. Let du be the metric on R n induced by 
U and let ]1 II v be the norm on R" induced by V. Let xy  be the euclidean inner product 
of vectors x, y 6 R n and let d(xy,  Z) be the usual one-dimensional distance o f x y  to Z. 
In [2] we obtained upper bounds for the following quantifies: 

dr(x ,  L) . Ilyllv 
kh(U, V ) =  sup sup inf 

LcL.  xelCn yeL* d(xy,  Z) ' 
xr xy~Z 

lh(U, V) = sup )~l (L, U) �9 It(L*, V), 
Lcs  

mh(U, V) = sup m a x  ~.i(L, U)"~.n-i+l(L*, V). 
L~s l<iSn 

It is convenient to denote them byjh(U, V), j = k, 1, m. In this paper, applying the notion 
of K-convexity, we derive upper bounds forjh(U, V) which are essentially stronger than 
those obtained in [2]. We are interested mainly in the case V = U ~ Thus, we denote 
jh(U) = jh(U, U ~ forj  = k, 1, m and U 6 Cn. Naturally, jh(U) are affine invariants of 
U. Upper bounds forjh(U) belong to the so-called transference theorems in the geometry 
of numbers; for motivations and earlier results we refer the reader to [2]. 

Let Bp denote the unit ball of the normed space lp, 1 _< p _< oo (we identify vector 
spaces lp and Rn). It was proved in [1] that 

jh(B~) _< Cn. (1) 

Here and below, C is some numerical constant which may vary from line to line. Next, 
it was proved in [2] that 

jh(Bp) _ Cpn, 1 < p < ~ ,  (2) 

where Cp depends on p only, that 

jh(Bp) _< Cn(1 + logn) 1/2, 1 < p _< c~, 

and that jh(U) _< Cn(1 + logn) provided that U is symmetric with respect to the 
coordinate hyperplanes. In this paper we prove that 

C- tn  < jh(U) < Cn(1 + l o g n )  (3) 

for any U 6 C,. Then we apply upper bounds for lh(U) to improve the results of Kannan 
and Lov~isz [5] estimating the width of a convex body U by the number of lattice points 
in U. 

The inequality on the left in (3) was announced in [1]; for U = B~, it had been known 
earlier (see Chapter II, Theorem 9.5, of [8]). It is a direct consequence of Siegel's mean 
value theorem. The proof of the inequality on the right makes use of some results of [2], 
of dual properties of e-norm, and of the theorem ofM. Talagrand on majorizing measure. 

. . . .  2 

Let A be a discrete subset of R". It is convement to write o(A) = ~x~A e-~X - For 
U ~ Cn, we define 

o((L + a ) \U)  
fl(U) = sup sup 

LJt" a~" O(L) 
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The following fact is a direct consequence of Lemmas 1.4, 1.5, and 1.6 of [2]: 

Lemma 1. There exists a numerical constant Cl such that if U, V 6 C, and 3(U),  
~(V)  <_ C11, then jh(U, V) < C1 for j = k, 1, m. 

For U ~ C,, by R~ we denote the space R n endowed with the norm II [I u. Endowed 
with the euclidean norm, R n is denoted by R~. By Tv we denote the identity operator 
from R~ to R~,  and s is the e-norm of Tu (see Section 2 of [3], Chapter 3 of  [10], 
(12.2) of  [12], or (2.3.16) and (2.3.17) of [6]). 

Lemma 2. To each e > 0 there corresponds some 3 > 0 such that if U ~ Cn and 
e(Tw) < $, then ~(U) < e. 

Proof. Fix 3 and take any U ~ C, with e(Tu ) < $. The result of  Talagrand [11] on 
major\zing measure implies that there is a sequence x~ 6 (R~)* such that 

and, denoting 

IIx~ll _ Ce(Tu) (1 + logk)  -1/2, k = 1, 2 . . . . .  

W k : { x ~ R " : l ( x , x ~ , ) l ~ l } ,  k = l , 2  . . . . .  

we have W = N~=I Wk C U (see pp. 128-129 of [11] and p. 85 of [10]). Here C is 
some numerical constant. Choose any L ~ E, and a ~ R n. It is convenient to write La 
instead of L + a. Lemma 2.4 of  [2] says that 

Q({X E L a: ](x, X*)l >__ r IIx* II}) < 2 e-rrr2Q(L), r > O, x* ~ (R~)*. 

Hence 

O(La\Wk) < 2e-~llx;ll-20(L ) < 20(L ) �9 (ke)-~c-2~-'- 

for k = 1, 2 . . . . .  which implies that 

O(LAU) < O(La\ W) = 0 La\ Wk = 0 (La\Wk) 
k= l  

oo oo 

<_ E O ( L a \ W k  ) <~ 2 o ( L ) .  E(ke)_~r c 2~-2 = 20 (L) .  f ($ ) .  
k = l  k = l  

As L ~/2n and a ~ R n were arbitrary, it follows that 3(U) < 2f (3 ) .  Now it remains to 
observe that f ( 3 )  --+ 0 as 6 -+ 0. [] 

Lemma 3. There exists a universal constant C such that 

jh(U, V) < C~(Tu)-  g.(Tv) 

for all U, V ~ Cn and j = k, 1, m. 
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Proof Let C1 be the constant from Lemma 1. By Lemma 2, there exists some 8 > 0 
suchthatif W ~ C~ and e(Tw) < 8,then/5(W) < C l  1. Choose arbitrary U, V ~ Cn and 
j = k, 1, m. Let s = 6-1e(Tv) and t = ~-le(Tv). Then e(Tsu) = s - le (Tv)  = 6 and, 
similarly, e(Ttv) = 3. Hence/3 (sU),/3(tV) < C[ 1, which implies thatjh(sU, t V) < C1. 
Thus 

jh(U, V) = st -jh(sU, tV) < StCl = Cl~-2  e (Tu)  �9 e (Tv) .  [] 

Let X be an n-dimensional real normed space. By d(X,  l~) we denote the Banach- 
Mazur distance of X to l~; note that d (X, l~ ) < n i/2. B y K (X) we denote the K-convexity 
constant of X (see, e.g., Chapter 2 of [10] or (2.2.19) of [6]). We recall some basic facts 
about K (X): 

(i) K(X*) = K(X) .  
(ii) K(l~) = 1. 

(iii) K(X)  < C(1 + logd(X, l~)). 
(iv) K (X)  <_ C(1 + logd(X, l~)) 1/2 if X has a 1-unconditional basis. 

For (i)-(iii) see p. 20 of [10]; assertion (iv) was proved in [9]. 

Lemma 4. To each U ~ C, there corresponds a linear isomorphism S of R n such that 

e(Ts(u)) . e(Ts(u)o) < nK (Rnu). 

This fact was proved by Figiel and Tomczak-Jaegermann in [3], by using a general 
theorem of D. R. Lewis. The isomorphism S describes the so-called e-ellipsoid for U. 
See also (4.1.9) of [6], Theorem 3.11 of [ 10], or Section 12 of [ 12] for a detailed analysis. 

Theorem 1. There exists a universal constant C such that 

jh(U) < CnK(R~) 

for all U ~ Cn and j = k, 1, m. 

Proof Choose any U e Cn. Due to Lemma 4, we can find an affine image W of U 
with e(Tw) �9 e(Tw o) < nK(R~).  Let C be the constant from Lemma 3. Then, for each 
j = k, 1, m, we have 

jh(U) -----jh(W) = jh(W, W~ Cg(Tw).  e(Tw o) <_ CnK (R~). [] 

The following result is a direct consequence of Theorem 1 and (iii): 

Corollary 1. There exists a universal constant C such that 

jh(U) _< Cn(1 + logn) (4) 

for all U ~ Cn and j = k, 1, m. 
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It follows from (i)-(iv) that for many convex bodies U the logarithmic factor in (4) 
can be improved. See also (1) and (2). It should be pointed out that the proof of (1) in 
[1] gives quite good numerical values of C; see (9) below. 

Let Q be a convex body in R n, symmetric or not, and let L �9 s Denote by s the 
number of  points of L in Q and let WL (Q) be the L-width of Q: 

WL(Q) = rrfin (maxxy  -- minxy '] .  
y~L*\{0} \ xEQ x~Q .I 

Kannan and Lov~isz [5] proved that 

WL(Q) <_ c0[(s + 1)l/"]n 2, (5) 

where co is the constant which comes from the Bourgain-Milman inequality: 

voln(U) �9 voln(U ~ > , U �9 Cn. 

It is assumed here that co > 1. Furthermore, it was proved in [5] that 

WL (Q) < con 2 + 2cons l/n (6) 

provided that Q has a center of symmetry. See also (3.12) and (3.13) of  [4]. 
Now, suppose that Q is symmetric with respect to some point p and let U = Q - p. 

It is clear that WL(Q) = 23~1 (L*, U ~ (see Lemma (2.3) of  [5]). We denote 

cv = 4n -1 (vol, (U) �9 vol, (U~ 

The proof of  (6) in [5] shows actually that 

WL(Q) < 2/z(L, U) �9 ~.1 ( L * ,  U 0) + 2 c u n s  1/n. (7) 

By Corollary 1, we have 

# ( L ,  U) .k l (L* ,  U ~ < lh(U ~ < Cn(1 +logn) .  

Since, by definition, cu < co, it follows that 

WL(Q) < Cn(1 + logn)  + 2cons l/n, (8) 

which is better than (6) at least for large n. 
For convex bodies Q satisfying some additional conditions, inequality (7) allows us 

to obtain further improvements of  (8); see the remarks following Corollary 1. Consider, 
in particular, an n-dimensional ellipsoid D with center at some point p. Let B = D - p;  
then co < 2(7re) -1 due to the Santalo inequality. Let t denote the number of  points of  

1 L in D. It was proved in [1] that lh(B) < ~n and 

lh(B) _< (27r)-ln + O(n 1/2) as n --~ c~. 
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This yields 

wL(D) < (l +4(zre)-l t l /~)n,  (9) 

wL(D) < (1 +4e- l t l / " ) r r - ln  + O(n 1/2) as n --+ ~ .  

Now, suppose that Q is an arbitrary convex body in R n, not necessarily centrally 
symmetric. Let D be the ellipsoid of maximal volume in Q and let p, B, and t be defined 
as above. Then D C Q c n B + p due to the John theorem. It is obvious that t < s and 

wL(Q) < wL(nB + p) = nwL(D). 

Now, using (9), we obtain upper bounds for wL(Q) which differ from (5) only in nu- 
merical constants. 

A very interesting problem is to improve the factor n 2 in (5). In our proof of (8), 
the central symmetry of Q or U is essential only in Lemma 4. However, to give a 
nonsymmetric analogue of Lemma 4 seems to be a difficult task. 

Let voln(U) denote the n-dimensional euclidean volume of a convex body U 6 Cn. 

Lenuna 5. To each pair U, V ~ Cn there corresponds a lattice L ~ E,n such that 

)~I(L, U) -  Zl(L*, V) > [voln(U) �9 vol,(V)] -1/n. 

Proof. (Sketch) For W ~ Cn and L ~/2n, let Nw (L) be the number of nonzero points 
of L in W, and let N~v(L) = Nw(L*). Siegel's mean value theorem says that the mean 
value 9~(Nw) of Nw (L) over all lattices L with determinant 1 is equal to voln (W) (the 
best description of this averaging process is given in [7]). It is not very hard to see that 
9~(N~r = 9?;t(Nw) (very loosely speaking, there is a fundamental domain invariant 
under the transformation L w-> L*). 

Now, take arbitrary U, V ~ Cn, and let s = vol~(U) -1/~, t = vol~(V) -l/n. Then 

9Jt(Nsu + Ntv) = 9~(Nsv) + 9-)~(N;v) = 9~(Nst~) + 9Jt(Ntv) 

= voln(sU) d- VOln(tV) = S n voln(U) + t n voln(V) = 2. 

Since the function L w-> (Nsv + N;v)(L) assumes nonnegative even values only, there 
mustbe some L ~ E,n withNsu(L) = OandN;v(L) = 0; inotherwords,~l(L,  sU) > 1 
and ).I(L*, tV)  > 1. Then 

)~I(L, U) �9 ~I(L*, V) = st~.l(L, sU) �9 )~I(L*, tV)  > st. [] 

Theorem 2. There exists a numerical constant C such that jh(U) > C- in  for all 
U 6 Cn and j = k, l, m. 

Proof. Let U ~ Cn. By Lemma 5, we can find a lattice L ~ Ln with 

)~1 (L, U) �9 )q (L*, U ~ > [ voln(U) �9 vol,(U~ -l/n, 

which is greater than (2ne)- ln  due to the Santalo inequality. Then 

mh(W) > ~.i(L, U) �9 ~.n-i+l(L*, W O) >_ ~-1 (L, U)-)~I(L*, U O) > (2ne)- ln .  
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1 , Next, we have the obvious inequality #(L*, U ~ > ~:kl (L , U~ whence 

1 ~.1(L, U) ~.1(L*, U ~ > (4zre)-ln. lh(U) > kl(L, U) �9 U ~ > 5 

Finally, it remains to observe that kh(U) _> 2 lh(U). [] 
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