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Introduction. In the first section of this paper we shall obtain relationships
involving the eigenvalues of a membrane fixed on a given boundary and those
of a membrane with vanishing normal derivative on the boundary. In the second
section we shall prove a conjecture of A. WEINSTEIN which relates certain mem-
brane eigenvalues with those of the buckling problem for a clamped plate of
the same shape.

In the first section, D is assumed to be a closed convex domain with boundary
C in the xzy-plane, and u(z, y) and v(z, y) satisfy the differential equations

(1a) Au+Au =0
(1b) A+ =0

in ®. We are concerned with the two different boundary conditions

(2) u=0 onC,

and

3) u _ 0 on C,
v
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where v denotes the outward normal on C. In each of these cases there are
infinitely many eigenvalues A;, u;. We denote them by

4) MENSENS -,

and

(5) O=m<pmp=m=s -

The corresponding eigenfunctions are expressed as uy, s, Us, -+ + and vy, ve, v3, -

It has been shown by Pérya [1] that us < A In fact the isoperimetric in-
equality pe < 7*p° N\, (j = 24048, and p = 1.8412), which was formulated
originally by KorRNHAUSER & STAKGOLD [2], has just recently been rigorously
proven by Szea6 [3]. The equality sign is valid only if C is a circle. In this report
we shall obtain relationships involving the higher eigenvalues \; and p;. In
particular we shall show that for D convex

2
(6&) 1233 < >\1 - —-——(ph)max ,
(6b) b < —
(Ph)mnx
(6(3) Mni2 < )\n’ n > 1,

where p is the radius of curvature on C, and the value of h at a point P on C
is the distance from an arbitrary origin in D to the line tangent to C through P.
The problems characterized by (1a) and (1b) with conditions (2) and (3)
are classical membrane problems which have been extensively treated in the
literature (see for instance [4]).
In the second section we assume D to be any closed domain with boundary
C in the zy-plane. Let W(z, y) satisfy the differential equation

) AW + AAW =0
in D, and the boundary conditions

(8) W = W _ 0, onC.

v
The function W is a solution to the buckling problem for a clamped plate (see
[4]). In this case it is again known that infinitely many eigenvalues A; exist.
We denote them by

9 MEASAEE -,

and the corresponding eigenfunctions by Wi, W, W;, --- . The conjecture of
WeiNsTEIN, which we shall prove, is the following: The first etgenvalue in the
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buckling problem for a clamped plate is not less than the second eigenvalue of the
membrane of the same shape which is fixed on the boundary, i.e.

(10) A £ As

WEINSTEIN’S conjecture was based on the known solutions for the circle and
on the lower bounds he obtained for the eigenvalues of a rectangular plate.

In addition to proving (10) we show further that equality exists only in case
D is a simply connected region with circular boundary. The proof of this last
statement was obtained jointly by Professor WEINBERGER and the author,
and can be considered as an interesting application of the theory of nodal lines.

1. Inequalities for certain eigenvalues of a membrane. In obtaining the
inequalities (6) we make use of the following minimum principle for the eigen-
values u;:

Do) ’
ffg o dA

where D(p) denotes the Dirichlet integral on ©, and ¢ is any sufficiently smooth
function defined in ® which satisfies the condition

(11) u; = min.

(12) [[noas=0 k=12 i-1.
ol

We employ the following trial functions

6u1
P11 = ’55 ’

r_ aul
1= 7,
9y
(13)
_ 6u1 6u1
e = + a 3y

’

n
ou. ou.
‘p”+2=z1ajuj+a"+l—"+ﬁj’ n
=

o 1.

Y

Inequalities (6a), (6b) and (6¢) will be established in (4), (B) and (C) respec-
tively.

A. Tt is well known that »; = constant and hence ¢; and ¢ satisfy (12) for
k = 1. It follows then from (11) that

" < D(py) ,
fj;) o1 dA

A
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and
D(e1)

15 b = .
as) [[ haa
D

If the z and y directions are chosen in such a way that f f o dA = f f (e1)* dA,
D D
then from addition of (14) and (15)

D(m) + D(e1)

LG
LG+ (G)]

D(ul)

(16)

An application of Green’s theorem gives
%l (G) + (5)]
(17) Sx+2£wK%>+ay “
M2 = M .D (ul) .

The term in brackets may be replaced by the quantity [(du;/9»)* 4+ (dus/9s)%],
where the second integral is taken in the tangential direction on the boundary.
Since u; vanishes on

0u; 0 Uy N
(18) < c v ot
M2 = k1 + ———D—@_— )

or, from the differential equation satisfied by u,

f3 () o
pr S N — LELAVS

D (ul) ’

(19)

where p is the radius of curvature of C. We now make use of an identity due to
ReLuicH [5], which in two dimensions has the form

(20) ff widd =1 Y{ (‘.’_’i> ds.

The quantity A is defined in (6). Thus for convex D

2

21 D s
( ) M2 1 (ph)max
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We now show that (21) is a strict inequality; for in order that the equality
sign in (21) be valid ¢; and ¢; must have vanishing normal derivatives on C,
t.e. (8/9v) (Qui/0z) and (3/9v) (du:1/dy) = 0. It follows from (1a) and (2) that
(9/0s) (du1/dx) and (3/8s) (dui/dy) must also vanish on C. But the functions
duy/dx and dus/0y each vanish at points on the boundary; hence they must van-
ish identically on C. For the equality sign to be valid then both u; and du/dv
must vanish on the boundary. But this would imply that u; must vanish iden-
tically (Equation (20)), which it does not do. Hence (21) is a strict inequality
and (6a) is proven.

B. In order to verify the inequality (6b) we introduce ¢, into (11), with the
constant ay so chosen that (12) is satisfied for £ = 2. Thus

D (¢2)

" [

6¢2

ﬁ ©2 ‘(—9‘”- ds
=n+Le
' T D

au,- 6 Buz .
75 5 (55) de =0,
ou; 9 [ ou; / aug u; ou; au,)
ous 9 (9us dA Ui OUs
7§:ax av<ay>ds 03T (ay> +D (ax’ay

ou; au, 0" u;
(23) n f/ [ax ay axay] d4

(22)

It is easily seen that

for

i

upon integration by parts. Similarly

f%i(%)dw
¢ 0y dv \ or

) Jor = (L[ Ge) - (G) Jos
o L[ G - G + (- ) s

=0

and

g2l -

(24)

It
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by partial integration. In (23) and (24) we have used the differential equation
satisfied by u, at step two. We now proceed to evaluate the boundary integral

in (22).
des ;i 6u1> 3 (duy duy
2 ds = e
fv‘” a ?i(ax'i'a ay <6x+ ay>dS

_ aui i) aui 9 ou; 0 6u,~
B 75[6@ o (ax> TSy o (ay>] @

the other terms vanishing as seen from (23); or

friesiees (BN G
- 210 - (e

The last integral in (26) vanishes by (24); hence

(25)

(26)

?{é_u_,a Ug s
M+ 31 4 ) S0 99

IIA

M3

D(g)
1 6u,~
(27) — 1 2 f;<3;> ds
= A\ 7(1 + aq) —Q‘W
é }\1.
In fact from (20)

(28) M3 =M 1—

ph) max [f [(6111) aul 6u1 Py <6U1>2] )
ax —6—:17 + Qo —67‘/ dA

JLLGE) + 2y i (5) oo
L0/ 0 () o+ 1o/ (G ]

31+ | a0 )*D(w),

the last reduction arising from the fact that the x and y directions are again so
chosen that the integrals under the radical signs are equal. Hence

But

IIA

(29)
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1+ a 2
< N —
=M T 0D (o)
(30)
1
SN — .
=" (Ph)max

We show again that the equality sign in (30) is never valid. Inequality is
introduced in (29) unless @y = =1 and at the same time du;/9x = =+ (du1/dy)
(the plus or minus signs corresponding in either case). But for this to be true
the eigenfunction u; must possess nodal lines. Since this is not the case (30) be-
comes a strict inequality and (6b) is established.

C. For proof of (6¢) we use ¢,.2 as the trial function in (11). The constants
a; and @, are so chosen that (12) is satisfied fork = 1,2, 3, --- n — 1. Then

< f f s’>§»+2 dA) M2
D

§ D (‘Pn+2)

=Ea§>\,ff ui dA + 2\, a]ff uj<an+16%+aun)dA
J=1

j=1 iz
2
+ / /{D grad <an+1 aﬂf -+ aun)

(3D <[] Ahnad + f (a,.+1 O "“n)

1} Uy, ou.
: a—( Uit + ")

e fstoan et 2] + ()
An ffg pata dA.

This establishes the third of the inequalities (6).

dA

2. Proof of Weinstein’s conjecture. In this section we establish the inequality
(32) A=A

To this end we make use of the following minimum principle for the estimation
of >\2:

(33) A2 = min

D)
[[vaa
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where ¢ is any sufficiently smooth function defined in © which vanishes on C
and satisfies the condition

(34) [[ wwaa =o.
D
We choose as trial functions ¢, and ¢, the expressions
Y1 =a Wi+ Q—V-VJ

(35)

Yo = aa W1+ Q—P—V?;l

where W is the first cigenfunction in the buckling problem for the clamped plate
of the same shape (satisfying (7) and (8)), and the x and y directions are as yet
unspecified. The constants a; and a; are so chosen that (34) is satisfied.

We shall establish the inequality (82) in (4) and prove in (B), (C) and (D)
that the equality sign in (32) is valid if and only if D is a simply connected region
with circular boundary C.

A. The insertion of ¥; and ¥, from (35) into (33) gives rise to the inequalities

@ D(Wy) + D ("W‘>

(36) A S P
alff WldA—I—ff( 1> A
and
@DV + D ("BW )
37) A = Y

asza)W% dA -l—f/;)(aa—I/Zl)sz.

We use now a well known arithmetic result (see WriNsTOCK [6]), .e. if m, n,
m/, and n' are all positive, then

) hEmin | lies h =
38 implies b =
( h=m'/n

m + m’
n+n"’

This follows from the fact that the expression

m+m' _ nlm/n) 4+ n'(m'/n’)
(39) n + n' - n + n

is a mean value of m/n and m’/n’. Hence

m + m' —— 111_’]
(4:0) m = min [n ,n, .



EIGENVALUES OF MEMBRANES AND PLATES 525

Thus (36) and (87) imply

(a? + a)D(Wy) + D (an) +D (%1%7‘1)

(41) A =

(a? + ad) fL W2 dA + DOWy)

Since Wy = (dW1/dv) = 0 on C it is easily shown from Green’s theorem that

(42) ) (96?}@) +D ("’Wl) f (AW)? dA.

Also from the Schwarz inequality

f f (AW,)? d4

(43) D) 5 =2y f W? dA.
Since
(44) ffD (AW dA — MD(WY) = 0,

upon insertion of (42) and (43) in (41) and making use of (44) we obtain the de-
sired inequality,

(45) )\2 é A]_.

In the case of a circular region the eigenvalues A; and A, are known to be equal.
We shall now prove that this is the only case in which equality exists.

B. It is convenient at this point to make a few preliminary observations. The
first of these is the fact that if equality exists then a; and a, in (85) must be
zero. If this is not the case, it follows from (41) that W; must be a solution of the
membrane equation which vanishes together with its first derivative on the
boundary C. But according to (20) such a function must vanish identically.
Thus a; and a; in (35) must be zero if the equality sign in (45) is to hold. It
follows then that, if A;and A, are equal, 8W,/dz and dW1/dy are membrane eigen-
functions for the second eigenvalue \,. Since the z and y directions are completely
arbitrary the partial derivative of W, in any direction must give an eigenfunc-
tion with eigenvalue ..

It is well known (see WEINSTEIN [7]) that the function W, admits the following
decomposition

(46) Wi =uf +h,
where
47) Auy 4+ Ayus = 0,

Ah = 0, in D.
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But in case of equality one has

Auf 4 Nut =0,

(48) out our . oh
A(ﬁ)“ﬁ[a‘sﬁs] =0

where s denotes any direction. It is clear then that if A, = A,
(49) h = constant.

Since W, is a solution to the clamped plate buckling problem it follows that
us is a solution to the membrane equation (1) which satisfies the condition

*
uy = constant on C,

(50) au’l“

—é-v—=00nC.

Thus we have from (3): A; = A\ = u;, where the value of 7 is undetermined.
Now if Wy/dxz and dW1/dy are eigenfunctions with eigenvalue A,, so is the
quantity

oW, oW, oWy
51 RSN SR AL JERNTRAAS.
(51) ag " dy 9z’
where the choice of origin is arbitrary. The quantities dWy/dx, dW./dy, and
dW1/90 are independent unless the boundary C is circular, for otherwise
z an . 6W1 ﬂ 1

oW,
2 AL LA 197
(52) oy Ve "% Uy

With a new choice of origin at = a, ¥y = b, this reduces to

(53) %’1 - 0,

which cannot be true unless C is a circle. However, the region ® may still be
ring-shaped. Hence we shall treat in (C) the case where C' is not a circle and shall
handle the case where © is ring-shaped in section (D).

Assuming that C is not circular we shall now proceed to prove that oW,/dz,
oW 1/dy, and W1/8 cannot all be eigenfunctions for A.. We do this by showing
that a particular combination of the three results in an eigenfunction which
contradicts the nodal line theorem (see [4, p. 393]). From this it follows that
dW1/0x and dW1/dy are not eigenfunctions for \;, and hence Ae < Aj.

C. Let us for convenience choose u, = 9dW1/d6, with the origin taken at the
point where W, has a stationary value. (This is equivalent to taking for u; a
linear combination of aW,/dx’, aW,/dy’, and 0W,/3¢’, where the primes cor-
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respond to any translation of the origin and rotation of the coordinate system).
Around this point we expand the quantity W, in a series of the type:

(54) Wi = Const. + AoJo(Ae7) + Z} AndnOer) cos n(6 — ay),

where Ay, 4, and a, are constants. Then

(55) Uy = %I%«l = — NAnJ,ar) sin n(@ — o).

n=1
From the choice of the origin it is clear that the quantity du./dr also vanishes at
the origin; hence

(56) Ouy/dr = s 2 nd,JhOer) sinn@ — a,) = 0, r = 0.

n=1

But this means that 4; = 0. Thus

(57) Uy = — 2 nd,J.0r) sin n(@ — ay).

n=2

Butasr —0
(58) Up = — {i—z 7 sin 200 — ap) + 00°).

This shows that the function u, has at least two intersecting nodal lines, or a
nodal line intersecting itself, at the origin. In either case the eigenfunction wu,
must divide D into at least three regions each of which is bounded by a portion
of a nodal line and/or a portion of C. (Note that if A, = 0 there will be at least
three intersecting nodal lines, efc.) But this contradicts the well known nodal
line theorem [4, p. 393] which, for the membrane equation, states that if the
eigenfunctions are ordered according to increasing eigenvalues the eigenfunction
corresponding to the n®* eigenvalue can divide the region into at most n parts.
Thus W1/86 cannot be a second eigenfunction and hence, if C is not a circle,
neither can 0Wi/dx and dW1/dy.

D. We must now show that if D is ring-shaped A\ < A;. We simply observe
that if W, is the first eigenfunction in the clamped plate buckling problem for
the ring-shaped region, then the quantity dW:/dz (or dWy/dy) must divide
D into four portions (this derivative gives a function with a ring nodal line and
two portions of a diameter). Hence, by the nodal line theorem dWy/0xz (or dW1/dy)
cannot be the second eigenfunction for the membrane.

It follows then that A, = A; if and only if D is a simply connected region with
circular boundary C.

We list in (F) some other inequalities which either follow directly from (45)
or are derived by the same methods as those used in obtaining (45).



528 L. E. PAYNE

E. It was shown by P6rLya & Szeeo [8, p. 230] that if Q, is the lowest eigen-
value for the vibrating clamped plate then

(59) % = MAL
From (32) we see that

(60) O

v

)\1 A2.

One can show in a manner similar to that used in WEINSTEIN’s conjecture
that the successive introduction of the quantities,

¥s = as Wy + by Wy + oWy/0z,
Vs = ay Wy + by Wy + aW1/dy,
¥
Yo

(61)

It

ag Wl + b3 W2 + aWZ/a.’L',

It

as Wi+ by Wy + 6W2/¢9Z/,

where the a; and b, are so chosen that the quantities y; are orthogonal to both
uy and ug, results in the additional inequality

(62) N S A

It follows then from the easily proven inequality (an extension of that of P6Lya
& Szread for the first eigenvalues [8])

(63) Qn = A A,
that
(64) Qe 2= Mg,

where  is the second eigenvalue for the vibrating clamped plates, according to
the ordering @ = 0 < @ < ---.

Concluding Remarks. From formulas (45) and (62) one is led to the following
conjecture: The nt* eigenvalue in the buckling problem for a clamped plate is not
less than the n + 1%t eigenvalue for the membrane of the same shape which s fixed
on the boundary. If the conjecture is true, then

(65) Dn = M Mg

This conjecture is borne out in the few cases in which solutions or sufficiently
close bounds are known. In fact known results seem to indicate that the third
eigenvalue for the membrane is still lower than the first eigenvalue in the clamped
plate buckling problem.
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