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Abstract. Mixed projection bodies are related to ordinary projection bodies
(zonoids) in the same way that mixed volumes are related to ordinary volume.
Analogs of the classical inequalities from the Brunn-Minkowski Theory (such as
the Minkowski, Brunn-Minkowski, and Aleksandrov-Fenchel inequalities) are
developed for projection and mixed projection bodies.

Two decades ago, Bolker [5] observed that projection bodies (also known
as zonoids) were objects of independent investigation in a number of math-
ematical disciplines such as measure theory, crystallography, optimal control
theory, functional analysis, and geometric convexity. Since the appearance of
Bolker's article, projection bodies have received considerable increased atten-
tion (see, for example, [7, 13, 14, 21, 23, 26, 27, 28, 32, 40, 41]). Also, new
applications have appeared in combinatorics (see Stanley [36]), in stereology
(see Betke-McMullen [4]), in stochastic geometry (see Schneider [32, 33]), in
mathematical economics (see Hildenbrand [16]), and even in the study of ran-
dom determinants (see Vitale [39]). A fascinating recent paper of Alexander
[3] demonstrates a close relationship between the study of zonoids and work on
Hubert's Fourth Problem.

Mixed projection bodies are related to ordinary projection bodies in the same
way that mixed volumes are related to ordinary volume. The definition and
some elementary properties of mixed projection bodies can be found in the
classic volume of Bonnesen-Fenchel [6]. Support functions of mixed projection
bodies were investigated by Chakerian [9]. Stability questions for mixed pro-
jection bodies are treated by Goodey [11] and Goodey-Groemer [12]. In [18]
and [19], inequalities for the polars of mixed projection bodies were obtained.
This article treats the corresponding inequalities for the mixed projection bod-
ies themselves. Analogs of the classical mixed volume inequalities (such as the
Brunn-Minkowski, Minkowski, and Aleksandrov-Fenchel inequalities) will be
established for mixed projection bodies.

Since interest in zonoids is not limited to one discipline, an attempt is made
to make this article reasonably self-contained.

Background material and notation regarding mixed volumes and mixed sur-
face area measures is given in §0. The classical mixed volume inequalities are
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902 ERWIN LUTWAK

listed in §1. Nothing in either of these sections is original. The statements are
given for quick later reference and comparison. The reader may wish to consult
some of the following references regarding material contained in the first two
sections: Bonnesen-Fenchel [6], Busemann [8]. Leichtweiß [17], and the origi-
nal works of Aleksandrov [1, 2] and Fenchel-Jessen [10]. The excellent surveys
of McMullen-Schneider [24] and Schneider [31] are also recommended.

Definitions and basic properties of mixed projection bodies are given in §2.
Some of the material here can be found in [6, p. 45] or [18], some is folklore,
and a bit is new.

In §3, an identity involving the mixed volumes of mixed projection bodies
is presented. This easily established result (and some of its consequences) will
play a significant role in the proofs of the inequalities to be presented in later
sections.

A Minkowski inequality for mixed projection bodies (with equality condi-
tions) is presented in §4. A uniqueness theorem for convex bodies, which in-
volves the Quermassintegrals of mixed projection bodies, is also given here.

A general Aleksandrov-Fenchel inequality for mixed projection bodies is
proven in §5. This inequality, when restricted to special mixed projection bod-
ies, is obtained with equality conditions.

A Brunn-Minkowski inequality for mixed projection bodies, with equality
conditions, is established in Section 6. A generalization (without equality con-
ditions) is also derived.

0. Notation and background material
Let 3?n denote the set of convex figures (compact, convex subsets) of Eu-

clidean «-space, R". Let 3££ denote the subset of 3?n consisting of the
convex bodies (convex figures with nonempty interiors) in R" .

Let h.K = h(K, •): S"~l —► R, denote the support function (restricted to
the unit sphere) of K e 5?" ; i.e., for u e Sn~l,

(0.1) hg(u) = max{u-x : x € K},

where u-x denotes the usual inner product of x and u in R" . Let ô denote
the Hausdorff metric on 3?" ; i.e., for K, Le 3£n ,

ô(K,L) = \hK-hL\oc,

where | • |oo denotes the sup-norm on the space of continuous functions,
C(S*-1).

For Ki,..., Kr e 3?n and X\, ..., Xr > 0, the Minkowski linear combina-
tion yliATi h-h XrKr e 3^n is defined by

(0.2) kxK\ +■■■ + XrKr - { AiJCj + • • • + Xrxr 6 3tn : x¡ e K¡}.

It is trivial to verify that
(0.3) h(XiKi+-+XrKr, >) = Xlh(Kl, -) + ■■■ +Xrh{Kr, ■).

Of fundamental importance is the fact that the volume, V{XyK\ -\-\-XrKr),
of a linear combination of bodies defined by (0.2), can be expressed as a sym-
metric homogeneous «th degree polynomial in the A, :

(0.4) V{XXKX + .-- + XrKr) = TXh ■■■XinVir..in,
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inequalities for mixed projection bodies 903

where the sum is taken over all «-tuples (i\,..., in) of positive integers not
exceeding r. The coefficient Viy..in (which is required to be symmetric in its
subscripts) depends only on the bodies Kis, ..., K¡n, and is uniquely deter-
mined by (0.4); it is called the mixed volume of K¡{, ..., K¡n, and is written
as V(Kii, ..., Kin). If K\,..., Ks G Jf" , and d\, ..., ds are nonnegative
integers whose sum is « , then V(K\, d\ ;... ; Ks, ds) will denote the mixed
volume with d¡ copies of AT,. The d¡ equal to 1 will often be suppressed.
If K, L e 3fn, and 0 < i < «, then V{K, n - i; L, i) will usually be
written as V¡(K, L). For 0 < i < «, write W¡(K, L) for the mixed vol-
ume V(K, « - i - 1 ; B, i ; L), where B is the unit ball of R" . The mixed
volume Wi(K, K) is usually written as W¡(K) and is called the ith Quer-
massintegral (or i'th mean projection measure) of K. Thus, Wq{K) is the
ordinary volume of K, while W\{K) is the surface area of K divided by
« . If K\,..., Ks, Li,..., Lt G 3£n , and d\, ..., ds are nonnegative integers
(whose sum is n - t), and C = {L\,..., Lt), then V{K\, d\ ; ... ; Ks, ds ; C)
will denote the mixed volume with d¡ copies of K¡ and a single copy of each
of the Li ; i.e.,

V(Ki, dx ; ...; Ks, ds; C) = V{KU dx ;...; Ks, ds; L, ; ...; Lt).
The mixed volume V(K, « - t ; C) = V(K, « - t ; L\, ..., Lt) will often be
written as V,(K,C).

For K e 3?n , and u e S"~l, let K" denote the image of the orthogonal
projection of K onto Çu, the (« - 1)-dimensional subspace of R" that is
orthogonal to u. If Kx, ..., #„_. G Xn , then write v{K{", ..., K^_x) for
the mixed volume of the figures K", ..., K%_¡ in the space Çu ■ For K, L e
JT" , write Vi{Ku, Lu) for the mixed volume v(Ku, « - j - 1 ; L", i). For
v¡(Ku, 5"), write Wi(Ku), and for the (« - l)-dimensional volume of K" ,
write v(Ku) rather than iüo(^") • It is well known, and easily shown, that for
K\,..., Kn-\ G Jf" , and m G S""1,

(0.5) v(Klu,...,K¡l_i) = nV(Kl,...,Kn-1,ü),
where S denotes the line segment joining w/2 and -w/2.

Associated with ATi, ... , AT„_i G^," is a Borel measure, S^iTi, ... , AT„_i ; • ),
on 5"_1, called the mixed surface area measure of K\, ..., K„-\, which has
the property that for each K e 3?" ,

(0.6) V(Kl,...,K„-l,K) = - [     Ajr(«)^(^i..--.^.-r,«)-
« ys„-i

In fact, the measure S(K\, ..., Kn-\ ; • ), can be defined by the property that
(0.6) holds for all K e 3fn .

1. Mixed volumes
One may view the mixed volume functional

V: 5rnx---x5fn —+[0,oo)»-«-'
n

as a polylinearization induced by the ordinary volume functional,
V:3fn^[0,oo),
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904 ERWIN LUTWAK

when 3fn is endowed with the Minkowski linear structure (viz. (0.2)). The
following is a list of the basic properties of the mixed volume functional:

lv. It is symmetric and multilinear with respect to Minkowski linear com-
binations.

2V. Its diagonal form reduces to ordinary volume; i.e., for K G 3fn ,

V(K,...,K) = V(K).
3V. It is continuous with respect to the Hausdorff metric.
4V. It is invariant under independent translations of its arguments, and

it is invariant under simultaneous unimodular linear transformations; i.e., if
Kx, ..., Kn G 3fn , and <p G SL{n), then

V(<t>Kl,...,<t>Kn) = V(Kl,...,Kn).
5Y. It is monotone nondecreasing with respect to set inclusion; i.e., if K¡, L,

G 3fn , and K¡ c L,, then

V(Kl,...,Kn)<V(Li,...,Ln).
6V. If #i,...,#, G^\ and C = (A:1; ..., Kt), then the functional V¡{ •, C)

is a valuation; i.e., for K, L£ 3fn , such that Kö Le 3?" ,

Vi(KöL, C) + Vi(KnL, C) = V¡(K, C) + V¡(L, C).
Properties lv and 2y uniquely determine the mixed volume functional (as can

be seen from its definition (0.4)).
One of the fundamental inequalities for mixed volumes is the Minkowski

(mixed volume) inequality: If K, L e 3f£ , then
(1.1) Vy(K,L)n>V{K)n-xV{L),

with equality if and only if K and L are homothetic. In fact a general version
of Minkowski's inequality holds: If K, L e 3f0" , and 0 </'<«- 1, then

(1.2) W,(K, L)»'* > WiiKy-^WiiL),
with equality if and only if K and L are homothetic. Of course, (1.1) is the
special case /' = 0 of (1.2).

An obvious immediate consequence of the Minkowski inequality is that if
i,Le/cJ0", and if either

(1.3a) Vl(K,Q) = Vl(L,Q)   for all Q e J?
or
(1.3b) Vl(Q,K) = Vi(Q,L)   for all QeJT
hold, then it follows that K — L, up to translation.

An important generalization of the Minkowski inequality is the Aleksandrov-
Fenchel inequality: If K\,..., K„e3f0n , \<m<n, and C = (Km+l, ..., Kn),
then

m

(1.4) V{KX ,...,Kn)m > HvH-m{Kj, C).
7=1

Unfortunately, the equality conditions of this inequality are, in general, un-
known (see the discussion in Schneider [34]).
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Let K\, ..., Kn e 3f¿ . The special case m = « - 1, of inequality (1.4), is

(1.5) V(Kl,...,Knr-l>Vl(Ki,Kn)---Vl(K„_uKn).
When inequality (1.5) is combined with the Minkowski inequality (1.1), the
result is

(1.6) V{Ky,...,Kn)>V{Kx)---V{K„),
with equality if and only if the K¡ are homothetic.

An important special case of inequality (1.4), where the equality conditions
are known, is the classical inequality between the Quermassintegrals: If K e
3f0" , and 0<i<j<n, then

(1.7) itS-'WtitC)*-* <Wj{K)*-1,
with equality if and only if K is a ball. Of course, the special case where i = 0
and j = 1 is the classical inequality between the volume and surface area of a
convex body.

A simple consequence of the Minkowski inequality (and the multilinearity
of mixed volumes) is the Brunn-Minkowski inequality: If K, L e 3f£ , then
(1.8) V(K + L)l'n> V{K)xln + V{L)xln,

with equality if and only if K and L are homothetic. This is the special case
i = 0 of the general inequality: If K, Le 3?0n , and 0 < i < n - 1, then
(1.9) Wi{K + zy/i«-') > Wi(K)1^"^ + Wi{L)xl{n-i],

with equality if and only if K and L are homothetic. For i = n - 1, the
quantities on both sides of inequality (1.9) are equal.

A generalization of inequality (1.9) is also known (see [2, pp. 1218-1219]):
If 0 < i < n - 1, K, L, Ki,..., Ki G 3Tn, and C = (Ki,..., Kt), then
(1.10) VjiK + L^)1«"-'^ ^(tf,C)1/("-'') + ^(L,C)I/(,I-'').

The equality conditions for inequality (1.10) are not yet known.

2. Projection and mixed projection bodies
The projection body, UK, of the body K e 3?" is defined as the convex

figure whose support function is given, for u e Sn~~x, by

(2.1a) h(UK,u) = v(Ku).

It follows from (0.5) that
(2.1b) h(UK, u) = nVi{K, a).
Since for u' e S"-x, h(U, u') = \u-u'\/2,ix follows from (0.6) that

(2.1c) «(n#, u) = \ [     \u-u'\ dS(K, u1).

From (2.1c), one easily sees that the homogeneous extension of degree 1 (to
R" ) of h(UK, • ) is a convex function and hence UK is a convex figure.

It is easy to see, from (2.1a), that a projection body is always centered (sym-
metric about the origin), and if K has interior points then UK will have
interior points as well.
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906 ERWIN LUTWAK

In the same manner that the ordinary volume functional, and Minkowski
addition, leads to mixed volumes, the projection operator, and Minkowski ad-
dition, leads to mixed projection bodies: If Ki, ..., Kr e 3fn and X\,..., Xr >
0, then the projection body of the Minkowski linear combination

X\K\ + •••-(- XrKr e 3tn,

can be written as a symmetric homogeneous polynomial of degree « - 1 in the
Xf.

(2.2) n{XiKx + --- + XrKr) = Y,h---K-Piv-in-i,
where the sum is a Minkowski sum (of bodies) taken over all (n - 1)-tuples
(z'i , ..., i„-i) of positive integers not exceeding r. The body IT.,,...,__, (which
by definition is required to be symmetric in its subscripts) depends only on
the bodies K¡x, ..., Kin_l, and is uniquely determined by (2.2); it is called the
mixed projection body of /if,-,, ..., K,■ _x, and is written as U.(Kil, ..., £/„_,).
If Kx,...,Kn-x e 3f", and C = (Kx,..., Kt), then II(C, Ki+l,..., Kn.x)
will sometimes be used in place of n(Afi, ..., Kn_{). If K¡+\ = ■■• = Kn = K,
then write U¡(K, C) for U(Ki ,...,Kn-X). In particular, for K, L e 3fn ,
write U¡(K, L) for the mixed projection body Tl(K, ... , K, L, ..., L), with
i copies of L, and n — i — 1 copies of K. For the projection body n,(A^, B)
simply write U¡K. (Note that this indexing follows [18, 19, 30], and differs
from that used in the survey of Schneider and Weil [35].)

Observe that the projection of a Minkowski linear combination of figures is
equal to the corresponding Minkowski linear combination of the projections
of the figures. From this observation, one easily deduces (2.2) from (2.1a),
together with (0.3) and (0.4). In fact from this follows that

(2.3a) h(Tl(Kl,...,Kn-l),u)) = v(K?,...,Kun_l).

Thus, from (0.5), it follows that

(2.3b) h(mKl,...,KH-l),u)) = nV{Ki,...,K„-í,ü),
and from (0.6), it follows that

(2.3c)        h{Yl{Kx,...,Kn-X),u)=X- ¡     \u-u'\dS(Kl,...,Kn^;W).
¿ Js"-*

The uniqueness of the coefficients (bodies in 3fn ) in (2.2) is easily observed
to follow from the corresponding property of mixed volumes if (2.2) is rewritten
in terms of support functions, and (0.3) is used.

Just as the (ordinary) volume functional, and Minkowski combinations, pro-
duces the polylinearized form known as mixed volumes, the projection operator,

l\:3fn ^3Tn,

which takes K into UK, produces the mixed projection operator
n: 3f"x---x3rn —+3?n.

"-v-'
71-1

The following is a list of the basic properties of the mixed projection operator.
From (2.3b), together with (0.3) and lv, it follows that:
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lp. The projection operator is symmetric and multilinear with respect to
Minkowski linear combinations; i.e., if K, K', K2, ..., K„-{ e 3Zn , X, X' > 0,
and C = (Ä2, • • •, ^fn-i), then

U{XK + X'K', C) = XU(K, C) + X'l\{K', C).
From (2.3a), (2.1a), and 2y, it follows that:
2p. The diagonal form of the mixed projection operator reduces to the

ordinary projection operator; i.e., for K e 3fn ,

Tl(K,...,K) = nK.
From (2.3b) and 3V, it can be seen that:
3p. The mixed projection operator is continuous with respect to the Haus-

dorff metric.
It was shown by Petty [25] (alternate proofs can be found in [7] and [22])

that for K e 3fn and <f> e SL{n),

(2.4) U(j)K = ¿-'UK,
where <j>~' is the transpose of the inverse of </>. Suppose, K\, ..., Kr e 3fn ,
X\, ..., Xr > 0, and 4> e SL(n). Obviously, from the definition of a Minkowski
linear combination, it follows that

4>{XXKX + ■■■ + XrKr) = XX(j>Kx + ■■■ + Xr<t>Kr.
From this observation, together with (2.4), and the definition of mixed projec-
tion bodies (2.2), it follows immediately that:

4p. If Ki,..., Kn_i e 3fn , and <t> e SL(n), then

U{(f>Ky,...,<i>Kn-{) = (p-tU{Kx,...,Kn.i)i
and since |det(</>~')| = 1, that

V{I\{(t>Kx,...,cj>Kn.x)) = V{Y\{Ku...,Kn^)).

From (2.3b) and 5V, it can be seen that:
5P. The mixed projection operator is monotone nondecreasing with respect

to set inclusion; i.e., if Ki, L¡ e 3fn , and K¡ c L,, then

n(JSTi,...,i:ll_i)cn(L1,...,Lll_i).

From 6¥ and (2.3b), one has:
6P. If Ki, ..., Ki e 3fn , and C = {K{, ..., K¡), then the functional

n,(• , C) is a valuation; i.e., for K, L e 3?" , such that KöLe3f" ,

Yli(K U L, C) + Ui(K n L, C) = Yli(K, C) + n,(L, C).
Property 6P is also a consequence of (2.3c), when combined with the obser-

vation of Schneider [29] regarding the valuation property of the surface area
measures.

Note that properties lp and 2P characterize the mixed projection operator.
It is well known, and not difficult to show, that the projection body n^f, of a

polytope K e 3f", is a polytope. Also if L\.Lr e 3fn and X\,..., Xr > 0,
then it is easily shown (see, for example, Grünbaum [15]) that the Minkowski
linear combination, X\L\ H-+ XrLr, is a polytope if each L, is a polytope.
From these facts, together with definition (2.2), follows:
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7p. If K\, ..., Afn_i G 3fn , are polytopes then Il(Afi, ..., Af„_i) is a poly-
tope.

3. AN IDENTITY FOR MIXED PROJECTION BODIES

An easy identity for mixed projection bodies, which involves mixed volumes,
will facilitate a number of proofs given later.

Lemma 3.1. If K\,..., Af„_i, L\,..., L„_i e 3fn , then

n V(Ku...,K„.l,U(Ll,...,Ln_l))
{ ' ' =V(Ll,...,LH-l,IHKl,...,KH-l)).
Proof. If the convex figures involved all have interior points, then from (0.6)
and (2.3c) it follows that

2«F(/sf,,...,7?„_1,n(L1,...,L„_1))

= /      /     |ww'| dS(Li,..., L„_, ; u') dS(K¡ ,..., tf„_i ; u).

Change the order of integration, and again use (0.6) and (2.3) to get (3.1). For
arbitrary figures in 3fn , a standard limit argument will now yield the identity
of the lemma.   D

Some special cases of (3.1) will frequently be used: For K\ = ■ • ■ = Afn-,-i =
K, and K„-¡ = ■■• - Kn_x = B , Lemma 3.1 reduces to

Lemma 3.2. If K,LX, ..., Ln-\ e 3fn and 0 < i < n - 1, then

(3.2) Wi(K,U(Ll,...,Ln-l)) = V(Ll,...,L„-l,UiK).
A useful special case of (3.2) is that for K, L, M e 3fn , and 0 < / < « - 1,

(3.3) Wi(K,Ul(L,M)) = V(L,...,L,M, IL/if ).
In particular, when L = M, (3.3) becomes

(3.4) Wi(K,UL) = Vl(L,niK).

If Ki = • • • = Kn-i-x = K, while #„_, = • • • = #„_> = B, and Lt = ■■ ■ =
L„_7_i = L, while Ln-j = • • - — L„_i = B, then Lemma 3.1 becomes

Lemma 3.3. If K, L e 3Tn , and 0 </,;'<«- 1, then

(3.5) Wl(K,YljL) = Wj{L,X\iK).
The special case of (3.5), where i = j = 0 is well known (see, for example,

[20]).
Take £,=••• = L„_i = B in Lemma 3.1, note that n(5, ..., B) = ILS =

o)„-\B, use U, and get
Lemma 3.4. If Kx, ..., Kn^ e 3fn , then

(3.6) Wn-i(Il(Kï,...,Kn-l)) = û>n-lV(Kl,...,Kn-l,B).
For Ki = ■■■ - K„-2 = K, and K„_\ = L, identity (3.6) becomes

(3.7) Wn^(Tly(K,L)) = (on.lWl(K,L).
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The special case of (3.6), where Af. = • • • = if„_,_i = K, and K„-¡ = ■■■ =
Af„_i = B, can be rewritten as

(3.8) Wn_{{I\iK) = (On-xWi^K).
In order to make the proofs that follow less cluttered, the following shorthand

notation will be used: If k is an integer, then k' and k" will be used in place
of « - k and n - k - 1, respectively.

4. The Minkowski inequality for mixed projection bodies

The following Minkowski inequality for mixed projection bodies will be es-
tablished: For K,Le3f0n,

F(n,(/if, L))"-1 > V(YlK)"-2V{nL),

with equality if and only if K and L are homothetic. This is the special case
i = 0 of:
Theorem 4.1. If K,Le3?0n , and 0 < / < «, then

(4.1) Wi{Ux{K, L))""1 > ^(njf)"-2^(nL),

with equality if and only if K and L are homothetic.
Proof. First the case where i < n—\. Suppose Q e 3f0n . From (3.1), inequality
(1.5), and (3.2),

Wi{Q,Ux{K,L))n-l = V{K,...,K,L,l\iQ)"-x

^V^K^iQr-^L^iQ)
= Wi(Q,nK)"-2Wi(Q,UL).

Now apply the general Minkowski inequality (1.2) twice, and get

(4.1,)       Wi{Q, Ylx{K, L))"-1 > Wi(Q)("-Vi"/i'Wi(nK)W'Wi(nL)l/i',

with equality if and only if Q, UK, and ILL are homothetic. In inequality
(4.1i), take II.(AT, L) for Q , and since W¡{Q, Q) = W¡(Q), obtain inequality
(4.1).

Suppose there is equality in inequality (4.1):

(4.i2) Wiiu^K, L))"-1 = ^(nAy-2^-(nL).

From the equality conditions of inequality (4.1. ), and the fact that projection
bodies are centered, it follows that there exist X, ß > 0, such that

(4.13) I\X{K, L) = XYIK = nflL.
Now (4.13) combined with (4.12), shows that

(4.14) X"-2fi = l.
Suppose u e Sn~l. By (4.13), (2.3a), and (2.1a),

(4.15) Vi(Ku, Lu) = Xv(Ku)   and   vx{Ku, Lu) = ¡iv(Lu).

But, (4.15) and (4.14) give
(4.16) v{(Ku, L")"-1 = v(Ku)n-2v(Lu).
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From (4.1ö) , and the equality conditions of the Minkowski inequality (1.1), in
the space Çu , it follows that K" and Lu are homothetic.

A result of Süss [37] states that if the bodies Ku and Lu are homothetic,
for all u e Sn~l, then K and L are homothetic. This establishes the equality
conditions for the case i < n - 1.

The case i = n - \ is particularly simple. From (3.7) and (3.8), it follows
that inequality (4.1), for i = n — 1, is just a disguised version of inequality
(1.2), for i = 1.   D

By using the inequality of Theorem 4.1, and other inequalities which will
be established, a general version of Theorem 4.1 will be obtained in the next
section.

A somewhat surprising consequence of Theorem 4.1 is the following version,
for mixed projection bodies, of the uniqueness result (1.3):

Theorem 4.2. IfK,LeJ!' c 3f0" , and 0<i<n, and if either

(4.2a) ^-(n,(A:,ß)) = ^(n,(L,ß))   for all QeJf
or
(4.2b) Wi(n1(Q,K)) = W,(Ul(Q,L))   for all Q e J?
hold, then it follows that K = L, up to translation.
Proof. Suppose that (4.2a) holds. Take K for Q in (4.2a), use Theorem (4.1)
and 2p, and get
(4.2,) Wi(TlK)>Wi(YlL),
with equality if and only if K and L are homothetic. Take L for Q in (4.2a),
use Theorem 4.1 and 2P, and get Wi{Y\L) > Wi{UK). Hence, there is equality
in (4.2,) and thus, there exists a X > 0 for which K and XL are translates.
But equality in (4.2,) implies that X = 1 .

Exactly the same sort of argument shows that condition (4.2b) implies that
K and L must be translates.   D

5. The Aleksandrov-Fenchel inequality for mixed projection bodies

The Aleksandrov-Fenchel inequality, for mixed projection bodies, which will
be proven is: If K\, ..., Af„_, G 3fn , and C = (ATm+,, ..., Af„_,), then

m

v{x\kx ,..., Af„_1))w > T\y$in-m-x{Kh o).
7=1

This is the special case / = 0 of

Theorem 5.1. If Kx,..., /sf„_, e 3fn, C - (/sfm+,, ..., /sf„_,), and 0 < m <
« - 1, then

m

Wi(X\{Kx, ..., Kn-X))m > n^(n„_m-i(Kj, C)).

Proof. From (3.6), it follows that for i — « ^ 1, inequality (5.1) reduces to
inequality (1.4). Hence, assume i < n — 1.

From (3.2), it follows that for Qe3f" ,
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(5.1,) Wi(Q,U(Kl,...,Kn.1)) = V{Kl,...,K„-l,UiQ).
Let D = {Km+i, ..., AT„_,, n,0). From inequality (1.4), it follows that

m
(5.12) V(KX ,...,*„_,, n,ß)m > JI Vm,(Kj,D).

J=l

But
Vm, (Kj, D) = V(Kj ,...,Kj,Km+x,...,Kn_x, n,-ß),

and hence from (3.2) we get

(5.13) Vm,(Kj, D) = Wi(Q, nm»(Kj,C)).
From inequality (1.2), and (5.13), it follows that

Vm,(Kj, D)''' > ^•(ß)'"V/(nm»(^,C)).
Combine this with (5.1,) and (5.12) to obtain

m

(5.14) Wi(Q,n(Kx,...,Kn_x))mi' > Wi(Q)mi"Y[Wi(nm„(Kj,Q).
J=l

Now take Q = U(KX,..., /sf„_,), recall that W¡{Q, Q) = W¡(Q), and from
(5.14) get inequality (5.1).   D

From the case m = n - 2 of inequality (5.1), it follows that

(5.2) ^■(n(/sf,,...,A:„_i))"-2>^-(n,(/if1,/if„_,))...^-(n,(A:„_2,/if„_i)).

Combine inequalities (5.2) and (4.1), and the result is

Theorem 5.2. If Kx, ..., Af„_, G 3?0" , and 0 < / < «, then

(5.3) Wi(U(Kx,...,Kn_x))"-l>Wi(YlKx)...Wi(YlKn_x),

with equality if and only if the K¿ are homothetic.

Theorem 5.2 is the case m-n-l ofTheorem 5.1, with equality conditions.
The special case of Theorem 5.2, where we have Kx = ■■■ = Afn_,_y = K,

and Kn-j: = ■ ■ • = Af„_, = L, provides the promised generalization of Theorem
4.1.

Theorem 5.3. If K, L e 3?0n , while 0 < / < «, and 0 < j <n- 1, then

(5.4) rV¡(Uj(K, L))"-x > WiiYlK)"'}-1 W^YlLy,

with equality if and only if K and L are homothetic.

Exactly the same method of proof that yielded Theorem 4.2 from Theorem
4.1 gives

Theorem 5.4. // K, L e J? c 3f0n, and 0 < i < n, while 0 < j < n - 1, and if
either
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(5.5a) Wi(Ilj(K,Q)) = Wi(Uj(L,Q))   forallQeJ?
or
(5.5b) Wi(Uj(Q,K)) = Wl(UJ(Q,L))  for all QeJ?
hold, then it follows that K = L, up to translation.

An immediate consequence of Theorem 5.3 is that for K e 3f£ , 0 < i < « ,
and 0 < j < n - 1,

(5.6) WiiUjKf-' > ©jT^ffliw^mcy-^,
with equality if and only if Af is a ball. However, the equality conditions for a
more general inequality than (5.6) can be obtained.

Theorem 5.5. // Af g 3f0n, and 0 < / < j < n - 1, while 0 < m < n, then

(5.7) WnÇljK)*-'-* > tü^^^)(J''"'V„-'>m(^,•/if)"->-,,
with equality if and only if K is a ball.
Proof. From (3.8), it follows that the case m — n-1 of inequality (5.7) reduces
to (1.7), and hence, it may be assumed that m < « - 1.

Suppose ß G 3f0" . From (3.5),

(5.7,) ^m(ß,n,Af) = ^(A:,nmß).
From inequality (1.4), with C = (B, ..., B, nmß), with i copies of B, it
follows that

(5.72) ^(Af, nmß)'" > ^(n^ey-^-íAf, nmßV".
From (3.8) and inequality (1.7), it follows that

(5.73) ^-i(nmß) > (on_xooxJm'wm{Q)m"lm',

with equality if and only if ß is a ball.
For the second term on the right of (5.72), note that by (3.5),

^(A:,nmß) = wm(ß,n,A:).
Apply inequality (1.2) to the quantity on the right and get:

(5.74) WiiK^mQr' > ^m(ß)m'Vm(n,-A:),
with equality if and only if ß and n, Af are homothetic.

Now take ß = 11/Af ; combine (5.7,) with (5.72), (5.73), and (5.74), and
the result is the promised inequality of the theorem.

Suppose there is equality in inequality (5.7):

(5.75) Wm(UjKY" = (0^:l)m' ¿-'WniUiKy''.
From the equality conditions of inequalities (5.73) and (5.74), this implies
that n,Af and n7Af must be centered balls. Thus there exist X, ß > 0, such
that
(5.76) YliK = XB   and   YljK = ßB.
But (5.76), together with (5.75), gives

(5.77) ß<" = aJ-^Xi".
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Fix ueSn-x . From (2.3a) and (5.76), it follows that
(5.78) Wi{Ku) = X   and   Wj(Ku) = ß.

But (5.7g) combined with (5.77) shows that there is equality in inequality
(1.7), between the (« - 1)-dimensional Quermassintegrals of Af" , in the space
tu, and thus Af" is a ball. Since all projections of Af are balls, it follows from
the previously mentioned result of Süss, that Af must be a ball.   D

6. The Brunn-Minkowski inequality for mixed projection bodies

The Brunn-Minkowski inequality for projection bodies, which will be estab-
lished is: If Af, L e 3f0n , then

(6.1) F(n(Af + L))1/"«"-1' > V{UK)1^"-^ + V{IIL)1^"-^,

with equality if and only if Af and L are homothetic. In fact a considerably
more general inequality (with equality conditions) will be established. However,
first an inequality of this type, without equality conditions, is given.

Theorem 6.1. If 0 < i < n, while 0 < j < « - 1, and K, L, Mx, ... , M¡,
M[,...,M'ie3fn, C = (Mi,..., Mi), and D = (M{,..., Mj), then

Vi{Ilj(K + L, D), QW*-W.»-J-i)
> V¡(Ilj(K, D), C)l/(n~i){n~J~l) + Vi{Uj{L, D),C)l/{n~i)in~j~l).

Proof. If j = n - 2, then from lp, it follows that
ny-(Af +L,D) = Uj(K,D) + Uj(L, D).

Hence, for j = « - 2, the inequality of the theorem reduces to inequality
(1.10). If i = n - 1, then from (3.1), it follows that the inequality of the
theorem reduces to (1.10). Thus, only the cases where j < n — 2, and i < n — 1
need be treated.

Suppose Qe3fn . From (3.1) it follows that

(6.2,) V(Q,i";C;Uj(K + L,D)) = V(K + L,j";D;Ui(Q,C)).
Inequality (1.10) shows that

V(K + L,j";D;Ili(Q,C))W"
> V(K, /'; D; ü,-(ß, C))1^" + V(L, j"; D; n,(ß, C))1"".

But from the identity (3.1), follows

V(K, /'; D; U¡(Q, C))'"" = V(Q, i"; C; ny-(Af, D))1^",
and hence, inequality (1.4) gives

(6.23) V(K, /'; D; n,-(ß, C))1"" > Vi(Q, Cf^'J"Vi(Uj(K, D), C)1""'".
In exactly the same way, it can be seen that
(6.24) V(L,j";D; n,(ß, C))1"" > V¡(Q, C)i"'i'J"vi(Uj(L, D), C)1/'"-''".

Combine (6.2,), (6.22), (6.23), (6.24), and the result is

V(Q, i" ; C ; n,-(Af + L, D))W" V^Q, C)"W
> Vi(Tlj(K, D), C)1";" + Vi{Uj{L, D), C)1^".
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Take 11/(Af + L, D) for ß, and note that the left side of the last inequality
reduces to Vi(l\j{K + L, D), C)l/,'j" , which shows that the last inequality is
the inequality of the theorem.   D

The most interesting case of the inequality of Theorem 6.1 is the special case
where D = (B, ..., B). In this case the inequality of Theorem 6.1 reads

Vi(Ilj(K + L),C)l>in-iKtt-J-V
> Vi{UjK, Q'/C'-'X"-;-!) + V¡(UjL, Qi/O^WW-i).

For the special case where also C = (B, ..., B), the equality conditions of
this inequality may be easily established.

Theorem 6.2. If K, Le3f0n, and 0 < i < n, while 0<j<n-2, then
WiÇLlj{K + L))M"-W«--/-|) > Wi{UjK)l^n-^n-j-l) + Wi(IljL)lHH-iHn-j-»,

with equality if and only if K and L are homothetic.
Proof. If ß G 3fQn , then (3.5) shows that

(6.3,) Wi(Q,Ylj(K + L)) = Wj(K + L,niQ).
From inequality (1.10), it follows that

(6.32) Wj(K + L, IUQ)1/J" > rVj(K, UiQ)1"" + Wj(L, IUQ)W"-
But from (3.5), one has

Wj(K, UiQ)W" = Wi(Q, UjKfli" ,
and hence, inequality (1.2) gives

(6.33) Wj(K, YliQ)1"" > WiiQY'li'i" W^UjK)1'*'?',

with equality if and only if ß and n;Af are homothetic. In exactly the same
way, one obtains

(6.34) Wj(L, n,ß)'^" > WiiQfli'i" Wt(rijL)W ,
with equality if and only if ß and TljL are homothetic.

Combine (6.3,), (6.32), (6.33), and (6.34), and the result is

(6.35) Wi(Q, n,(Af + L))x'i" WiiQr"!^" > W^UjK)1'^" + W^L)1"*" ,

with equality if and only if n,Af, Ifl/L,and ß are homothetic. Take Ily^Af-l-L)
for ß, and inequality (6J5) becomes the inequality of Theorem 6.2.

Suppose there is equality in the inequality of the theorem:

Wi(Ilj(K + L))^"-^-J-^
[ ' 6) - WiiTljK)1«*-*»-!-» + Wi(UjL)l^-^n-J-l\

From the equality conditions for inequality (6.3s), conclude that n,Af, n,L,
and n;(Af + L) are homothetic. Since projection bodies are centered, there
exist X, ß > 0, such that

(6.37) IljK = Xnj(K + L),    and   n,L = ¿iIL;(Af + L).
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But (6.37) combined with (6.3ö), gives
(6.38) l=X^"+ßl/j".

Suppose iîê5"-'. Since (Af + L)u = Af" + L" , it follows from (2.3a) and
(6.37) that
(6.39) Wj(Ku) = XWj(Ku + Lu)   and   Wj(Lu) = ßWj{Ku + L").

However (6.39) combined with (6.28), yields
Wj{Ku + L")1^" = Wj(Ku)W" + Wj{Luy/J".

But the equality conditions of inequality (1.9), in the space ^u , show that this
implies that Af" and Lu must be homothetic. Since this holds for all u e S"~l,
it follows, from the previously mentioned result of Süss, that Af and L are
homothetic.   D

The more interesting cases of Theorem 6.2 are the cases where 1 = 0 or
7 = 0. For the case i = 0, Theorem 6.2 is: If Af, L e 3f0" , and 0 <;'<«- 2,
then
(6.4) F(n;(Af + L))i/»(»-J-i) > V{UjK)l^"-J-^ + V^L)1'"^^ ,

with equality if and only if Af and L are homothetic. For the case 7 = 0,
Theorem 6.2 is: If Af, L e 3fQ" and 0 < i < n, then
(6.5) ^(n(Af + L))i/(»-0(»-i) > Wi{UK)l^n-^n-l) + Wi(nL)l^"-^n-l),

with equality if and only if Af and L are homothetic. If / = « - 1,
then by (3.8), (6.5) reduces to the special case i — 1 and C = B, of inequality
(1.10). Of course, the promised Brunn-Minkowski inequality for projection
bodies (6.1) is the special case j = 0 of (6.4), and 1 = 0 of (6.5).
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