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1. Introduction and Preliminaries

It is very interesting to think outside the box on ordinary concepts defined in the
literature in classical ways. For example, fractional order derivatives as well as integrals
are due to an unusual question of a fractional order derivative raised by Leibniz in the
16th century by writing a letter to L Hospital. At that time, it was considered as a stupid
question, but later it was analyzed by several physicists and mathematicians to obtain an
answer in the form of Riemann–Liouville fractional derivatives and integrals. In this era,
the subject of fractional calculus has become an important tool for generalizing and solving
the concepts of science and engineering related to ordinary calculus; for more detail please
see [1,2].

In q-calculus, q-derivative and h-derivative are studied very frequently in place of
ordinary derivatives. Several new theories and mathematical models of real world problems
have been studied for these derivatives (see [3–5]).

The aim of this article is to construct some inequalities for q-h-derivatives and integrals
of convex, h̄-convex, m-convex and convex functions. For recent results on inequalities for
q-calculus, see [6–13], and for (p, q)-calculus, see [14,15]. In the following, we define the
aforementioned notions.

Definition 1. Let a real function f be defined on some non-empty interval I of real line R. The func-
tion f is said to be convex on I if the following inequality holds:

f (ta + (1− t)b) ≤ t f (a) + (1− t) f (b),

for t ∈ [0, 1], a, b ∈ I.

Definition 2 ([16]). Let h̄ : J ⊇ (0, 1)→ R+◦ := [0, ∞] and f : I ⊆ R→ R+◦. We say that f
is h̄-convex function if for all x, y ∈ I and t ∈ (0, 1), we have

f (tx + (1− t)y) ≤ h̄(t) f (x) + h̄(1− t) f (y).
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If h̄(t) = t, we obtain the definition of a convex function. If h̄(t) = ts, s ∈ [0, 1], then
we obtain the definition of an s-convex function.

Definition 3 ([17]). A function f : [0, b]→ R is called m-convex function if for any x, y ∈ [0, b]
and t ∈ [0, 1], we have

f (tx + m(1− t)y) ≤ t f (x) + m(1− t) f (y),

where 0 ≤ m ≤ 1.

If m = 1, we obtain the definition of a convex function, and for m = 0, the definition
of a star-shaped function is obtained. Next, we give the Hadamard inequality for a convex
function, and the Fejér–Hadamard inequality for convex and symmetric functions.

Theorem 1. Let f : I → R be a convex function defined on an interval I ⊆ R and a, b ∈ I where
a < b. Then, the following inequality holds:

f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
. (1)

Theorem 2. Let f : I → R be a convex function defined on an interval I ⊂ R and a, b ∈ I where
a < b. If g is a symmetric function about a+b

2 , then the following inequality holds:

f
(

a + b
2

) ∫ b

a
g(x)dx ≤

∫ b

a
f (x)g(x)dx ≤ f (a) + f (b)

2

∫ b

a
g(x)dx. (2)

The Hadamard inequality for an h̄-convex function is given in the following result.

Theorem 3 ([18]). Let f : I → R be an h̄-convex function defined on an interval I ⊆ R and a, b ∈ I,
where a < b. Then, the following Hadamard inequality for h̄-convex function holds:

1
2h̄( 1

2 )
f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (x)dx ≤ ( f (a) + f (b))

∫ 1

0
h̄(t)dt. (3)

The goal of this paper is to find inequalities for q-h-integrals; in the following, we give
definitions of q-derivative, q-h-derivative, q-integral and q-h-integral.

Definition 4 ([5]). The q-derivative of a continuous function f : I → R is defined by:

Dq f (x) =
f (qx)− f (x)
(q− 1)x

, (4)

where 0 < q < 1.

Definition 5 ([19]). The q-h-derivative of a continuous function f : I → R is defined by:

ChDq f (x) = hdq f (x)

hdqx
=

f (q(x + h))− f (x)
(q− 1)x + qh

, (5)

where 0 < q < 1, h ∈ R.

For h = 0 in (5), we obtain (4), i.e.,

C0Dq f (x) = Dq f (x).
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Definition 6 ([8]). Let f : [a, b]→ R be a continuous function. Then, the q-definite integral on
[a, b] is defined as follows:

∫ x

a
f (t)dqt = (1− q)(x− a)

∞

∑
n=0

qn f (qnx + (1− qn)a). (6)

In [6], the following q-Hadamard inequalities for differentiable convex functions are
given:

Theorem 4. Let f : [a, b] → R be a differentiable convex function. Then, it must satisfy the
upcoming inequality for qa-integrals:

f
(

b + aq
1 + q

)
≤
∫ b

a f (x)da
qx

b− a
≤ q f (a) + f (b)

1 + q
. (7)

Theorem 5. The following inequality holds for qa-integrals under the conditions of Theorem 4:

f
(

a + bq
1 + q

)
+ f ′

(
a + bq
1 + q

)
(b− a)(1− q)

1 + q
≤
∫ b

a f (x)da
qx

b− a
≤ q f (a) + f (b)

1 + q
. (8)

Theorem 6. Let f : [a, b] → R be a differentiable convex function. Then, it must satisfy the
upcoming inequality for qa-integrals:

f
(

a + b
2

)
+ f ′

(
a + b

2

)
(b− a)(1− q)

2(1 + q)
≤
∫ b

a f (x)da
qx

b− a
≤ q f (a) + f (b)

1 + q
. (9)

Additionally, in [16], authors established the following q-Hadamrd inequality for
convex functions:

Theorem 7. A differentiable convex function f : [a, b]→ R must satisfy the upcoming inequality
for qb-integrals:

f
(

a + bq
1 + q

)
≤
∫ b

a f (x)db
qx

b− a
≤ f (a) + q f (b)

1 + q
. (10)

The above inequalities stated in Theorems 4–6 are further generalized for q-h-integrals
in the article [20]. The definition of q-h-integrals is given as follows:

Definition 7 ([19]). Let 0 < q < 1 and f : I = [a, b] → R be a continuous function. Then, the
left q-h-integral and the right q-h-integral on I denoted by Ia+

q−h f and Ib−
q−h f are defined as follows:

Ia+
q−h f (x) :=

∫ x

a
f (t)hdqt (11)

= ((1− q)(x− a) + qh)
∞

∑
n=0

qn f (qna + (1− qn)x + nqnh), x > a,

Ib−
q−h f (x) :=

∫ b

x
f (t)hdqt (12)

= ((1− q)(b− x) + qh)
∞

∑
n=0

qn f (qnx + (1− qn)b + nqnh), x < b.

It is clear that Ia+
q−h f (b) = Ib−

q−h f (a) =
∫ b

a f (t)hdqt.
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In the next section, by using Jensen’s inequality and applying q-h-integrals, Theorem 8
is proved for convex functions. By applying Definitions 2 and 3 and symmetry of func-
tions, Theorems 10 and 12 are established. Special cases are discussed after the proof of
each theorem.

2. Generalizations of the q-Hadamard Inequalities

In this section, we prove inequalities for h̄-convex, m-convex and convex functions by
using q-h-integrals. Some special cases are also given at the end of each theorem.

Theorem 8. Let f : I → R be a convex function and q ∈ (0, 1); also let ∑∞
k=0 kq2k = S, then for

a, b ∈ I, a < b, we have the following inequality that holds for q-h-integrals:

f
(

a + qx
1 + q

+ (1− q)hS
)
+ f

(
x + qb
1 + q

+ (1− q)hS
)

(13)

≤ 1− q
(1− q)(x− a) + qh

∫ x

a
f (x)hdqx +

1− q
(1− q)(b− x) + qh

∫ b

x
f (x)hdqx

≤ ( f (a) + q f (b))(b− a) + (1 + q)( f (a)(b− x) + f (b)(x− a))
(1 + q)(b− a)

+
2( f (b)− f (a))

b− a

× hS(1− q).

Proof. One can easily see that

a + qx
1 + q

+ hS(1− q) =
∞

∑
k=0

(1− q)qk(qka + (1− qk)x + kqkh),

where ∑∞
k=0(1 − q)qk = 1. By using the Jensen’s inequality and the definition of left

q-h-integrals, one can have

f
(

a + qx
1 + q

+ hS(1− q)
)

(14)

≤ 1− q
(1− q)(x− a) + qh

∞

∑
k=0

((1− q)(x− a) + qh)qk f (qka + (1− qk)x + kqkh)

=
1− q

(1− q)(x− a) + qh

∫ x

a
f (x)hdqt.

Additionally, one can observe that

x + qb
1 + q

+ hS(1− q) =
∞

∑
k=0

(1− q)qk(qkx + (1− qk)b + kqkh).

Again, by using the Jensen’s inequality and the definition of right q-h-integrals, one can
have

f
(

x + qb
1 + q

+ hS(1− q)
)

(15)

≤ 1− q
(1− q)(b− x) + qh

∞

∑
k=0

((1− q)(b− x) + qh)qk f (qkx + (1− qk)b + kqkh)

=
1− q

(1− q)(b− x) + qh

∫ b

x
f (t)hdqt.

The first inequality in (13) is obtained by summing the inequalities (14) and (15).
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Next, we prove the second inequality of (13). By using the convexity of f , we know
that f (x) ≤ k(x), where k(x) is the chord that joins the points (a, f (a)) and (b, f (b)), given
as follows:

k(x) =
f (b)− f (a)

b− a
x +

b f (a)− a f (b)
b− a

.

The following inequality for the left q-h-integral can be yielded:

∫ x

a
f (x)hdqx ≤

∫ x

a

(
f (b)− f (a)

b− a
x +

b f (a)− a f (b)
b− a

)
hdqx

=
(1− q)(x− a) + qh

(1− q)(b− a)

(
f (a)(b− a) + q f (a)(b− x) + q f (b)(x− a)

(1 + q)

)
+ ( f (b)− f (a))hS(1− q).

This further takes the following form

∫ x

a
f (x)hdqx ≤ (1− q)(x− a) + qh

(1− q)(b− a)

(
f (a)(b− a) + q f (a)(b− x) + q f (b)(x− a)

(1 + q)

)
(16)

+ ( f (b)− f (a))hS(1− q).

Additionally, the following inequality for the right q-h-integral can be yielded:

∫ b

x
f (x)hdqx ≤

∫ b

x

(
f (b)− f (a)

b− a
x +

b f (a)− a f (b)
b− a

)
hdqx

=
(1− q)(b− x) + qh

1− q

(
f (b)(x− a) + f (a)(b− x) + q f (b)(b− a)

(1 + q)(b− a)

+
f (b)− f (a)

b− a
hS(1− q)

)
.

This further takes the following form

∫ b

x
f (x)hdqx ≤ (1− q)(b− x) + qh

(1− q)(b− a)

(
f (b)(x− a) + f (a)(b− x) + q f (b)(b− a)

1 + q

)
(17)

+ ( f (b)− f (a))hS(1− q).

From Equations (16) and (17), one can obtain the second inequality of (13).

Corollary 1. If h = 0, we obtain the following inequality, which holds for q-integrals:

f
(

a + qx
1 + q

)
+ f

(
x + qb
1 + q

)
≤
[

1
x− a

∫ x

a
f (x)dqx +

1
b− x

∫ b

x
f (x)dqx

]
(18)

≤ ( f (a) + q f (b))(b− a) + (1 + q)( f (a)(b− x) + f (b)(x− a))
(1 + q)(b− a)

.

Theorem 9. Under the assumptions of above Theorem 8, one can have the following inequality:

f
(

a + qb
1 + q

+ hS(1− q)
)
≤ 1− q

(1− q)(b− a) + qh

∫ b

a
f (t)hdqt ≤ f (a) + q f (b)

1 + q
(19)

+
f (b)− f (a)

b− a
hS(1− q).

Proof. By setting x = b in (14) or x = a in (15), we obtain the following inequality:
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f
(

a + qb
1 + q

+ hs(1− q)
)
≤ 1− q

(1− q)(b− a) + qh

∫ b

a
f (t)hdqt. (20)

Similarly, by setting x = b in (16) or x = a in (17), we obtain the following inequality:

1− q
(1− q)(b− a) + qh

∫ b

a
f (t)hdqt ≤ f (a) + q f (b)

1 + q
+

f (b)− f (a)
b− a

hs(1− q). (21)

Further, from (20) and (21), the inequality (19) can be obtained.

Corollary 2. If we put h = 0 in (19), the following Hadamard type inequality holds for q-integrals:

f
(

a + qb
1 + q

)
≤ 1

b− a

∫ b

a
f (x)dqt ≤ f (a) + q f (b)

1 + q
. (22)

Theorem 10. Let f : I ⊆ R → R+◦ be h̄-convex function such that h̄( 1
2 ) 6= 0 and q ∈ (0, 1).

Additionally, let a, b ∈ I, a < b.

(i) If f is symmetric about a+x
2 , x ∈ (a, b), then we have the following inequality for left q-h-

integrals:

1
2h̄( 1

2 )
f
(

a + x
2

)
≤ 1− q

(1− q)(x− a) + qh1

∫ x

a
f (t) h1 dqt (23)

≤ f (x)
∫ 1

0
h̄(t) hdqt + f (a)

∫ 1

0
h̄(1− t)hdqt,

where h1 = (x− a)h.

(ii) If f is symmetric about x+b
2 , x ∈ (a, b), then we have the following inequality for right

q-h-integrals:

1
2h̄( 1

2 )
f
(

x + b
2

)
≤ 1− q

(1− q)(b− x) + qh2

∫ b

x
f (t) h2 dqt (24)

≤ f (b)
∫ 1

0
h̄(t)hdqt + f (x)

∫ 1

0
h̄(1− t)hdqt,

where h2 = (b− x)h.

Proof. We prove (i) and (ii) as follows:

(i) By using the h̄-convexity of f , the following inequality is yielded:

1
h̄( 1

2 )
f
(

a + x
2

)
≤ f (ta + (1− t)x) + f (tx + (1− t)a), t ∈ [0, 1].

Taking q-h-integral on both sides, we have

1
h̄( 1

2 )
f
(

a + x
2

)
≤ 1− q

(1− q) + qh

( ∫ 1

0
f (x− t(x− a))hdqt +

∫ 1

0
f (a + t(x− a))hdqt

)
. (25)

It is given that f (a + x− z) = f (z) for all z ∈ (a, x). Therefore, inequality (25) takes the
following form:

1
2h̄( 1

2 )
f
(

a + x
2

)
≤ 1− q

(1− q) + qh

∫ 1

0
f (a + t(x− a))hdqt. (26)
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From the definition of the left q-h-integral, we have

(1− q) + qh
(1− q)(x− a) + qh1

∫ x

a
f (t) h1 dqt (27)

= ((1− q) + qh)
∞

∑
k=0

qk f (qka + (1− qk)x + kqkh1) =
∫ 1

0
f (a + (x− a)t)hdqt.

Now, by using the h̄-convexity of f , the last term of (27) can be estimated as follows:∫ 1

0
f (a + t(x− a)) hdqt ≤ f (x)

∫ 1

0
h̄(t)hdqt + f (a)

∫ 1

0
h̄(1− t)hdqt.

Hence, from (27), we obtain the following inequality:

(1− q) + qh
(1− q)(x− a) + qh1

∫ x

a
f (t) h1 dqt ≤ f (x)

∫ 1

0
h̄(t)hdqt + f (a)

∫ 1

0
h̄(1− t)hdqt. (28)

Inequalities (26), (27) and (28) constitute the required inequality (23).

(ii) Again, by using the h̄-convexity of f , one can have the following inequality:

1
h̄( 1

2 )
f
(

x + b
2

)
≤ f (tx + (1− t)b) + f (tb + (1− t)x), t ∈ [0, 1].

Taking the q-h-integral on both sides, we have

1
h̄( 1

2 )
f
(

x + b
2

)
≤ 1− q

(1− q) + qh

( ∫ 1

0
f (b− t(b− x))hdqt +

∫ 1

0
f (x + t(b− a))hdqt

)
. (29)

It is given that f (x + b− z) = f (z) for all z ∈ (x, b). Therefore, inequality (29) takes the
following form:

1
2h̄( 1

2 )
f
(

x + b
2

)
≤ 1− q

(1− q) + qh

∫ 1

0
f (a + t(x− a))hdqt. (30)

From the definition of the right q-h-integral, we have

(1− q) + qh
(1− q)(b− x) + qh2

∫ b

x
f (t) h2 dqt (31)

= ((1− q) + qh)
∞

∑
k=0

qk f (qkx + (1− qk)b + kqkh2) =
∫ 1

0
f (x + (b− x)t)hdqt.

Now, by using the h̄-convexity of f , the last term of (31) can be estimated as follows:∫ 1

0
f (x + t(b− x)) hdqt ≤ f (b)

∫ 1

0
h̄(t)hdqt + f (x)

∫ 1

0
h̄(1− t)hdqt.

Hence, from (31), we obtain the following inequality:

(1− q) + qh
(1− q)(x− a) + qh2

∫ b

x
f (t) h2 dqt ≤ f (x)

∫ 1

0
h̄(t)hdqt + f (a)

∫ 1

0
h̄(1− t)hdqt. (32)

Inequalities (30), (31) and (32) constitute the required inequality (24).

Corollary 3. By setting h = 0, in (23) and (24), the following inequalities hold for left and right
q-integrals, respectively:
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1
2h̄( 1

2 )
f
(

a + x
2

)
≤ 1

x− a

∫ x

a
f (t) dqt ≤ f (x)

∫ 1

0
h̄(t) dqt + f (a)

∫ 1

0
h̄(1− t)dqt,

1
2h̄( 1

2 )
f
(

x + b
2

)
≤ 1

b− x

∫ b

x
f (t) dqt ≤ f (b)

∫ 1

0
h̄(t)dqt + f (x)

∫ 1

0
h̄(1− t)hdqt.

Theorem 11. Under the assumptions of above Theorem 10, one can obtain the following inequality:

1
2h̄( 1

2 )
f
(

a + b
2

)
≤ 1− q

(1− q)(b− a) + qh3

∫ b

a
f (t) h3 dqt (33)

≤ f (b)
∫ 1

0
h̄(t) hdqt + f (a)

∫ 1

0
h̄(1− t)hdqt,

where h3 = (b− a)h.

Proof. By setting x = b in (23) or x = a in (24), the required inequality (33) can be
obtained.

Corollary 4. By setting h = 0 in (33), the following inequality is obtained for q-integrals:

1
2h̄( 1

2 )
f
(

a + b
2

)
≤ 1

b− a

∫ b

a
f (t)dqt ≤ f (b)

∫ 1

0
h̄(t)hdqt + f (a)

∫ 1

0
h̄(1− t)hdqt. (34)

Theorem 12. Let f : [0, b1] → R be an m-convex function and q ∈ (0, 1). Additionally, let
a, b ∈ [0, b1], a < b.

(i) If f
( a+x−z

m
)
= f (z), z ∈ (a, x), then we have

f
(

a + x
2

)
≤ (1− q)(1 + m)

2((1− q)(x− a) + qh1)

∫ x

a
f (x)h1 dqx (35)

≤ (1− q) + qh
2(1− q)

(
f (x)

(
q

1 + q
+ (1− q)hS

)
+ m f

( a
m

)( 1
1 + q

− (1− q)hS
))

,

(ii) If f
(

x+b−z
m

)
= f (z), z ∈ (x, b), then we have

f
(

x + b
2

)
≤ (1− q)(1 + m)

2((1− q)(b− x) + qh2)

∫ b

x
f (x)h2 dqx (36)

≤ (1− q) + qh
2(1− q)

(
f (b)

(
q

1 + q
+ (1− q)hS

)
+ m f

( x
m

)( 1
1 + q

− (1− q)hS
))

.

Proof. Using m-convexity of f , we have the following inequality:

f
(

a + x
2

)
≤ 1

2
( f (a + t(x− a)) + m f

(
x− t(x− a)

m

)
.

Using the given condition f
( a+x−z

m
)
= f (z), z ∈ (a, x) and taking the left q-h-integral on

both sides, we have

2 f
(

a + x
2

)
≤ (1− q)(1 + m)

(1− q) + qh

∫ 1

0
f (a + t(x− a))hdqx. (37)

By using the m-convexity of f , we obtain
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∫ 1

0
f (a + t(x− a))hdqt ≤ f (x)

∫ 1

0
t hdqt + m f

( a
m

) ∫ 1

0
(1− t) hdqt. (38)

From (37), (27) and (38), we obtain the following inequality:

2 f
(

a + x
2

)
≤ (1− q)(1 + m)

(1− q)(x− a) + qh1

∫ x

a
f (x)h1 dqx ≤ f (x)

∫ 1

0
t hdqt + m f

( a
m

) ∫ 1

0
(1− t)hdqt. (39)

Similarly, from (37) and the definition of a right q-h-integral, one can obtain the following
inequality:

2 f
(

x + b
2

)
≤ (1− q)(1 + m)

(1− q)(b− x) + qh2

∫ b

x
f (x)h2 dqx ≤ f (b)

∫ 1

0
thdqt + m f

( x
m

) ∫ 1

0
(1− t)hdqt. (40)

By definition, we have∫ 1

0
t hdqt =

(1− q) + qh
1− q

(
q

1 + q
+ (1− q)hS

)
(41)

and ∫ 1

0
(1− t) hdqt =

(1− q) + qh
1− q

(
1

1 + q
− (1− q)hS

)
. (42)

By using (41), (42) in the inequalities (39) and (40), the required inequalities (35) and (36)
are obtained.

Corollary 5. By setting h = 0, in (35) and (36), the following inequalities hold for left and right
q-integrals, respectively:

f
(

a + x
2

)
≤ 1 + m

2(x− a)

∫ x

a
f (x)dqx ≤ 1

2(1 + q)

(
q f (x) + m f

( a
m

))
, (43)

f
(

x + b
2

)
≤ 1 + m

2(b− x)

∫ b

x
f (x)dqx ≤ 1

2(1 + q)

(
q f (b) + m f

( x
m

))
. (44)

Theorem 13. Under the assumptions of Theorem 12, the following inequality holds for q-h-integrals:

f
(

a + b
2

)
≤ (1− q)(1 + m)

2((1− q)(b− a) + qh3)

∫ b

a
f (x)h3 dqx (45)

≤ (1− q) + qh
2(1− q)

(
f (b)

(
q

1 + q
+ (1− q)hS

)
+ m f

( a
m

)( 1
1 + q

− (1− q)hS
))

.

Proof. By setting x = b in (35) or x = a in (36), the required inequality (45) can be
obtained.

Corollary 6. By setting h = 0 in (45), the following inequality for q-integrals holds:

f
(

a + b
2

)
≤ 1 + m

2(b− a)

∫ b

a
f (x)dqx ≤ 1

2(1 + q)

(
q f (b) + m f

( a
m

))
. (46)

3. Conclusions

We have presented new integral inequalities for q-h-integrals, which hold implicitly
for q- and h-integrals at the same time. Some particular cases are obtained for q-integrals.
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These inequalities have been established for convex, symmetric h̄-convex and m-convex
functions satisfying a symmetric-like condition. Several implications are deducible from
the main results. The idea of this paper is applicable in studying difference and differential
equations as well as generalizing inequalities, which hold for ordinary derivatives and
integrals. In future work, we are interested in establishing Ostrowski and Opial-type
inequalities for q-h-integrals.
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W.B.; methodology, D.C., M.A. and W.B.; supervision, M.A. and G.F.; writing—original draft, G.F.
and W.B.; writing—review & editing, D.C., M.A., G.F. and W.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
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