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Abstract

In the paper [16] Luo proved an inequality relating the Wigner-Yanase information and the
SLD-information. In this paper we prove that Luo’s inequality is a particular case of a general
inequality which holds for any regular quantum Fisher information. Moreover we show that this
general inequality is a consequence of the Kubo-Ando inequality that states that any matrix mean
is bigger than the harmonic mean and smaller than the arithmetic mean.
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1 Introduction

Fisher information appeared for the first time in [3]. From that seminal work the use of Fisher information
spread out, not only in statistics, but also in other mathematical fields, and in a number of applied
sciences [4]. Several quantum versions of Fisher information have been studied. Among the first examples
one has the Wigner-Yanase information (see [24] or [5][6][7][8] for a recent treatment) and the SLD-
information (see [1][23][13]) that are defined as follows. As usual [·, ·] denotes the commutator. Let ρ
be a density matrix and let A be a self-adjoint matrix. Let L be the solution of the operator equation
(Lρ + ρL) = 2i[ρ,A]. Define the Wigner-Yanase and the SLD-information as

IWY
ρ (A) := −1

2
Tr([ρ

1
2 , A]2), ISLD

ρ (A) :=
1
4
Tr(ρL2). (1.1)

In the paper [16] Luo proved the following three results.
i) If ρ(t) := e−itAρeitA, the functions of t given by IWY

ρ(t) (A), ISLD
ρ(t) (A) are constant (this is Theorem

1 in [16]).
ii) The following inequality is true (this is Theorem 2 in [16]):

IWY
ρ (A) ≤ ISLD

ρ (A) ≤ 2IWY
ρ (A). (1.2)

iii) The constant 2 is optimal in the inequality (1.2). Namely, if 1 ≤ k < 2, the inequality

ISLD
ρ (A) ≤ kIWY

ρ (A)

is false, and a counterexample can be found in the elementary 2 × 2 case (this is the final Example in
[16]).

A full quantum theory for Fisher information was established only a few years ago by Petz in his clas-
sification theorem [19]. It is worth to note that the Petz theorem rests on two fundamental breakthroughs
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due to Rao and Chentsov. Rao observed that Fisher information should be seen as a Riemannian metric
on statistical models [22]. Chentsov characterized Fisher information as the unique (in the appropriate
setting) Riemannian metric contracting under coarse graining [2].

Starting from this idea, Petz defined the quantum Fisher informations (QFI) as Riemannian met-
rics (on the state manifold) contracting under coarse graining. He was able to prove that QFI are
parametrized by functions f ∈ Fop, where Fop is the set of symmetric normalized operator monotone
functions. The regular elements of Fop are those for which f(0) > 0. The corresponding QFI is said
regular too. For regular QFI one can define the metric adjusted skew information (or f -information) as

If
ρ (A) :=

f(0)
2
||i[ρ,A]||ρ,f

(see [11] [10]). The WY and SLD informations, defined in (1.1), are particular cases of the above
definition.

In this paper we show that the three results proved by Luo are particular cases of the following
general results.

i’) Set ρH(t) := e−itHρeitH . If [A,H] = 0 then the function If
ρH(t)(A) is constant. Since quantum

Fisher informations contract under coarse graining they are unitary covariant and this is the crucial
ingredient of the proof. This result was stated by Hansen in [11] and we provide here a detailed proof.

ii’) The inequality (1.2) is a particular case of the following inequality

If
ρ (A) ≤ ISLD

ρ (A) ≤ 1
2f(0)

If
ρ (A), (1.3)

which is true for any (regular) quantum Fisher information. Inequality (1.3) is a consequence of the
Kubo-Ando inequality

2(A−1 + B−1)−1 ≤ m(A,B) ≤ A + B

2
that states that any matrix mean is bigger then harmonic mean and smaller then arithmetic mean.

iii’) The constant 1
2f(0) is optimal in inequality (1.3). Namely, if 1 ≤ k < 1

2f(0) , the inequality

ISLD
ρ (A) ≤ kIf

ρ (A)

is false and a counterexample can be found in the elementary 2× 2 case.
Let us observe that in the papers [15] [17] Luo proved also another inequality for the WY and SLD

information, namely
IWY
ρ (A) ≤ Varρ(A), ISLD

ρ (A) ≤ Varρ(A). (1.4)

From inequalities (1.3) and (1.4) one immediately obtains that also this result is completely general,
namely

If
ρ (A) ≤ Varρ(A),

a result recently proved by Hansen in [11] and with a different approach by ourselves in [10].

2 Operator monotone functions, matrix means and quantum
Fisher information

Let Mn := Mn(C) (resp. Mn,sa := Mn(C)sa) be the set of all n × n complex matrices (resp. all n × n
self-adjoint matrices). We shall denote general matrices by X, Y, ... while letters A,B, ... will be used for
self-adjoint matrices (the Hilbert-Schmidt scalar product is denoted by 〈A,B〉 = Tr(A∗B)). The adjoint
of a matrix X is denoted by X† while the adjoint of a superoperator T : (Mn, 〈·, ·〉) → (Mn, 〈·, ·〉) is
denoted by T ∗. Let Dn be the set of strictly positive elements of Mn while D1

n ⊂ Dn is the set of strictly
positive density matrices, namely D1

n = {ρ ∈ Mn|Trρ = 1, ρ > 0}. If it is not specified from now on we
treat the case of faithful states, namely ρ > 0.

Definition 2.1. Suppose that ρ ∈ D1
n is fixed. Define X0 := X − Tr(ρX)I.
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Definition 2.2. For A,B ∈ Mn,sa and ρ ∈ D1
n define covariance and variance as

Covρ(A,B) := Tr(ρAB)− Tr(ρA) · Tr(ρB) = Tr(ρA0B0)

Varρ(A) := Tr(ρA2)− Tr(ρA)2 = Tr(ρA2
0).

Let R+ := (0,∞). A function f : R+ → R is said operator monotone (increasing) if, for any n ∈ N,
any A, B ∈ Mn such that 0 ≤ A ≤ B, the inequalities 0 ≤ f(A) ≤ f(B) hold. An operator monotone
function is said symmetric if f(x) = xf(x−1) and normalized if f(1) = 1.

Definition 2.3. Fop is the class of functions f : R+ → R+ such that

(i′) f(1) = 1,

(ii′) tf(t−1) = f(t),

(iii′) f is operator monotone.

Example 2.4. Two important elements of Fop are

fWY (x) :=
(

1 +
√

x

2

)2

, fSLD(x) =
1 + x

2
.

We now report Kubo-Ando theory of matrix means (see [14]) as exposed in [21].

Definition 2.5. A mean for pairs of positive matrices is a function m : Dn ×Dn → Dn such that
(i) m(A,A) = A,
(ii) m(A,B) = m(B,A),
(iii) A < B =⇒ A < m(A,B) < B,
(vi) A < A′, B < B′ =⇒ m(A,B) < m(A′, B′),
(v) m is continuous,
(vi) Cm(A,B)C∗ ≤ m(CAC∗, CBC∗), for every C ∈ Mn.

Property (vi) is known as the transformer inequality. We denote by Mop the set of matrix means.
The fundamental result, due to Kubo and Ando, is the following

Theorem 2.6. There exists a bijection between Mop and Fop given by the formula

mf (A,B) := A
1
2 f(A− 1

2 BA− 1
2 )A

1
2 .

When A and B commute (for example if A = x, B = y are positive numbers) we have that

mf (A,B) := A · f(BA−1).

Example 2.7. The arithmetic, geometric and harmonic (matrix) means are given respectively by

mA(A,B) := A∇B :=
1
2
(A + B),

mG(A,B) := A#B := A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,

mH(A,B) := A!B := 2(A−1 + B−1)−1.

The convex combination of two means is still a mean (see [14]). Kubo and Ando [14] proved that,
among matrix means, arithmetic is the largest while harmonic is the smallest.

Corollary 2.8. For any f ∈ Fop and for any x, y > 0 one has

fRLD(x) :=
2x

1 + x
≤ f(x) ≤ 1 + x

2
,

2xy

x + y
≤ mf (x, y) ≤ x + y

2
.
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In what follows if N is a differential manifold we denote by TρN the tangent space to N at the point
ρ ∈ N. Recall that there exists a natural identification of TρD

1
n with the space of self-adjoint traceless

matrices; namely, for any ρ ∈ D1
n

TρD
1
n = {A ∈ Mn|A = A∗ , Tr(A) = 0}.

A Markov morphism is a completely positive and trace preserving operator T : Mn → Mm. A
monotone metric (also said a quantum Fisher infromation) is a family of Riemannian metrics g = {gn}
on {D1

n}, n ∈ N, such that
gm

T (ρ)(TX, TX) ≤ gn
ρ (X, X)

holds for every Markov morphism T : Mn → Mm, for every ρ ∈ D1
n and for every X ∈ TρD

1
n. Usually

monotone metrics are normalized in such a way that [A, ρ] = 0 implies gf,ρ(A,A) = Tr(ρ−1A2).
Define Lρ(A) := ρA, and Rρ(A) := Aρ, and observe that they are commuting self-adjoint superop-

erators on Mn,sa. Now we can state the fundamental theorems about monotone metrics.

Theorem 2.9. (see [19])
There exists a bijective correspondence between monotone metrics (quantum Fisher informations) on

D1
n and normalized symmetric operator monotone functions f ∈ Fop. This correspondence is given by

the formula
〈A,B〉ρ,f := Tr(A ·mf (Lρ, Rρ)−1(B)).

We set ||A||2ρ,f := 〈A,A〉ρ,f .

Proposition 2.10.
||A||ρ,fSLD

≤ ||A||ρ,f ≤ ||A||ρ,fRLD
.

Proof. Immediate consequence of Corollary 2.8.

Proposition 2.11. (See [19] pag. 83) Monotone metrics are unitarily covariant, namely if U is unitary
then

||U∗AU ||2U∗ρU,f = ||A||2ρ,f .

3 The function f̃ and the f-information

For f ∈ Fop define f(0) := limx→0 f(x). The condition f(0) 6= 0 is relevant because it is a necessary
and sufficient condition for the existence of the so-called radial extension of a monotone metric to pure
states (see [20]). Following [11] we say that a function f ∈ Fop is regular iff f(0) 6= 0. The corresponding
operator mean, associated QFI, etc. are said regular too.

Definition 3.1.
F r

op := {f ∈ Fop| f(0) 6= 0}, F n
op := {f ∈ Fop| f(0) = 0}.

Trivially one has Fop = F r
op∪̇F n

op.

Definition 3.2. For f ∈ F r
op and x > 0 set

f̃(x) :=
1
2

[
(x + 1)− (x− 1)2

f(0)
f(x)

]
.

Example 3.3.

f̃WY (x) =
√

x, f̃SLD(x) =
2x

1 + x
.

Observe [10] that f ∈ F r
op implies f̃ ∈ F n

op.
A self-adjoint operator A determines the evolution of the state ρ by the formula ρA(t) := e−iAtρeiAt.

The evolution satisfies the equation ρ̇A(t) = i[ρA(t), A]. We set

ρ̇A := ρ̇A(0) = i[ρ,A].

Observe that L := 2(Lρ+Rρ)−1(i[ρ,A]) can be seen as a quantum analogue of the symmetric logarithmic
derivative (see [16]).
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Definition 3.4.
IWY
ρ (A) := −1

2
Tr([ρ

1
2 , A]2), ISLD

ρ (A) :=
1
4
Tr

(
ρL2

)
.

Proposition 3.5.

IWY
ρ (A) =

fWY (0)
2

||ρ̇A||2ρ,fW Y
, ISLD

ρ (A) =
fSLD(0)

2
||ρ̇A||2ρ,fSLD

.

Proof. For the first equality see [12] or [5][11]. For the second equality remember that fSLD(x) := 1+x
2 .

Therefore one has

ISLD
ρ (A) = Tr

(
ρ(Lρ + Rρ)−1(i[ρ,A])(Lρ + Rρ)−1(i[ρ,A])

)
=

1
2
Tr

(
(Lρ + Rρ)(Lρ + Rρ)−1(ρ̇A)(Lρ + Rρ)−1(ρ̇A)

)
=

1
4
Tr(2(Lρ + Rρ)−1(ρ̇A)(ρ̇A))

=
fSLD(0)

2
Tr(mSLD(Lρ, Rρ)−1(ρ̇A)(ρ̇A))

=
fSLD(0)

2
||ρ̇A||2ρ,fSLD

.

Definition 3.6. For f ∈ Fr
op the metric adjusted skew information (or f -information) is defined as

If
ρ (A) :=

f(0)
2
||ρ̇A||2ρ,f .

Of course, if ρ and A commute then If
ρ (A) = 0. In what follows the following definition is very

important.

Definition 3.7.
Cf

ρ(A0) := Tr(mf (Lρ, Rρ)(A0) ·A0).

Observe [10] that If
ρ (A) = Varρ(A) − Cf̃

ρ(A0). Note that this formula allows us to consider the
f -information also for not faithful states.

Definition 3.8. For any state (faithful or not faithful) and for f regular define:

If
ρ (A) := Varρ(A)− Cf̃

ρ(A0).

Proposition 3.9. (See [10]).

g ≤ f =⇒ 0 ≤ Cg
ρ(A0) ≤ Cf

ρ(A0)

ρ pure =⇒ Cg
ρ(A0) = 0.

We have immediately the following result.

Proposition 3.10.
If
ρ (A) ≤ Varρ(A)

with equality on pure states.

Luo (see [18]) suggested that if one considers the variance as a measure of “uncertainty” of an
observable A in the state ρ then the equality

Varρ(A) = If
ρ (A) + Cf̃

ρ(A0)

splits the variance in a “quantum” part (If
ρ (A)) plus a “classical” part (Cf̃

ρ(A0)).
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4 The main results

Theorem 1 in [16] is a particular case of the following result (that was stated by Hansen in [11]).

Theorem 4.1. If [A,H] = 0 then If
ρH(t)(A) = If

ρ (A), for all t ∈ R.

Proof.

Set Ut := eitH then
ρH(t) := e−itHρeitH = U∗

t ρUt.

Since [A,Ut] = 0 we have (using Proposition 2.11)

If
ρH(t)(A) =

f(0)
2
||i[ρH(t), A]||2ρH(t),f =

f(0)
2
||i[U∗

t ρUt, A]||2U∗
t ρUt,f

=
f(0)

2
||U∗

t (i[ρ,A])Ut||2U∗
t ρUt,f =

f(0)
2
||i[ρ,A]||2ρ,f = If

ρ (A).

Proposition 4.2.
g̃ ≤ f̃ =⇒ If

ρ (A) ≤ Ig
ρ (A).

Proof. Immediate consequence of Proposition 3.9.

Theorem 2 in [16] is a particular case of the following result.

Theorem 4.3. We have that for any f ∈ F r
op, for any ρ ∈ D1

n and for any A ∈ Mn,sa

If
ρ (A) ≤ ISLD

ρ (A) ≤ 1
2f(0)

If
ρ (A).

Proof. The first inequality is an immediate consequence of Proposition 4.2, Example 3.3 and Corollary
2.8. The second inequality is a consequence of Proposition 2.10, because we have

||ρ̇A||ρ,fSLD
≤ ||ρ̇A||ρ,f

and therefore
fSLD(0)

2
||ρ̇A||2ρ,fSLD

≤ 1
4
||ρ̇A||2ρ,f

so that

IfSLD
ρ (A) =

fSLD(0)
2

||ρ̇A||2ρ,fSLD
≤ 1

2f(0)
· f(0)

2
· ||ρ̇A||2ρ,f =

1
2f(0)

· If
ρ (A).

A different proof can be given of the second inequality. It is more complicated but can shed light on
Luo’s proof and on the optimality of the constant 1

2f(0) .

Proposition 4.4. Let k ≥ 1. The following inequalities are equivalent

(i) ISLD
ρ (A) ≤ k · If

ρ (A) ∀A ∈ Mn,sa,∀ρ ∈ D1
n,

(ii) mf̃ ≤
(
1− 1

k

)
mA + 1

kmH,

(iii) f(x) ≤ 2kf(0) · 1+x
2 , ∀x > 0.

Proof. Let {ϕi} be a complete orthonormal base composed of eigenvectors of ρ, and {λi} the corre-
sponding eigenvalues. Set aij ≡ 〈A0ϕi|ϕj〉. Note that aij 6= Aij := the i, j entry of A.

As a consequence of the spectral theorem for commuting selfadjoint operators one gets the following
formulas (see [10]):

Varρ(A) = Tr(ρA2
0) =

1
2

∑
i,j

(λi + λj)aijaji,
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Cf̃
ρ(A0) =

∑
i,j

mf̃ (λi, λj)aijaji.

(i) ⇐⇒ (ii).

k · If
ρ (A)− ISLD

ρ (A) = [k ·Varρ(A)− k · Cf̃
ρ(A0)]− [Varρ(A)− Cf̃SLD

ρ (A0)]

= (k − 1) Varρ(A) + Cf̃SLD
ρ (A0)− kCf̃

ρ(A0)

= (k − 1)
∑
i,j

1
2
· (λi + λj)aijaji +

∑
i,j

mH(λi, λj)aijaji − k ·
∑
i,j

mf̃ (λi, λj)aijaji

= k
∑
i,j

[(
1− 1

k

)
mA(λi, λj) +

1
k

mH(λi, λj)−mf̃ (λi, λj)
]
|aij |2.

Therefore, because of the arbitrarity of both ρ and A, one has that

kIf
ρ (A)− ISLD

ρ (A) ≥ 0

is equivalent to

mf̃ ≤
(
1− 1

k

)
mA +

1
k

mH.

(ii) ⇐⇒ (iii). Suppose x > 0, x 6= 1. Then

mf̃ ≤
(
1− 1

k

)
mA +

1
k

mH

is equivalent to

f̃(x) ≤
(
1− 1

k

) (
1 + x

2

)
+

1
k

(
2x

x + 1

)
∀x > 0

which, using the definition of f̃ , can be transformed into

2kf(0) · 1 + x

2
≥ f(x) ∀x > 0

and this ends the proof.

Example 4.5. In the case of the Wigner-Yanase metric one has fWY (0) = 1
4 and f̃WY (x) =

√
x. The

inequality of Proposition 4.4(ii) (when k = 2 = 1
2fW Y (0) ) states that

mG ≤
1
2
(mA + mH)

that is the geometric mean is smaller then the “midpoint” between arithmetic and harmonic mean. The
calculations used by Luo in the proof of inequality (1.1) can be seen as an application of the above
inequality.

We now prove that 1
2f(0) is the best constant we can have in Theorem 4.3.

Proposition 4.6. Let 1 ≤ k ≤ 1
2f(0) . The inequality

ISLD
ρ (A) ≤ k · If

ρ (A) ∀A ∈ Mn,sa,∀ρ ∈ D1
n

is false.

Proof. From the hypothesis we get that the inequality

f(x) ≤ 2kf(0) · 1 + x

2
∀x > 0

cannot be true, otherwise one would have

1 = f(1) ≤ 2kf(0) < 1

which is absurd. From Proposition 4.4 we get the conclusion.
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5 The inequality on the Bloch sphere

As an example we discuss in detail what happens for 2× 2 matrices. We show that also in this case the
constant 1

2f(0) is optimal. The final Example in [16] is a particular case of this discussion.
Recall that the Pauli matrices are the following

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A generic 2× 2 density matrix in the Stokes parameterization is written as

ρ =
1
2

(
1 + x y + iz
y − iz 1− x

)
=

1
2
(I + xσ1 + yσ2 + zσ3),

where (x, y, z) ∈ R3, and x2 + y2 + z2 ≤ 1. Let r :=
√

x2 + y2 + z2 ∈ [0, 1]. The eigenvalues of ρ are
λ1 = 1−r

2 and λ2 = 1+r
2 .

Proposition 5.1.
If
ρ (A) =

[
1−mf̃ (1− r, 1 + r)

]
· |a12|2.

Proof. We use notation as in the proof of Proposition 4.4. Observe that

λi + λj

2
−mf̃ (λi, λj) =

{
0, i = j,
1
2 −mf̃ (λi, λj), i 6= j.

Therefore

If
ρ (A) =

∑
i,j

[
λi + λj

2
−mf̃ (λi, λj)

]
· |aij |2

=
[
1
2
−mf̃ (

1− r

2
,
1 + r

2
)
]
|a12|2 +

[
1
2
−mf̃ (

1 + r

2
,
1− r

2
)
]
|a21|2

=
[
1−mf̃ (1− r, 1 + r)

]
· |a12|2.

Corollary 5.2. If r 6= 0 then

ISLD
ρ (A) =

[
r2

1−mf̃ (1− r, 1 + r)

]
· If

ρ (A).

Proof. If fSLD(x) = 1+x
2 then f̃SLD = 2x

x+1 . In this case

mf̃SLD
(1− r, 1 + r) = (1 + r)f̃SLD

(
1− r

1 + r

)
= 1− r2.

Therefore, from the above proposition

ISLD
ρ (A) =

[
1−mf̃SLD

(1− r, 1 + r)
]
· |a12|2 =

[
1− (1− r2)

]
· |a12|2 = r2 · |a12|2

and this ends the proof.

Example 5.3. In the case fWY (x) =
(

1+
√

x
2

)2

one has f̃WY (x) =
√

x. In this case (see [16])

ISLD
ρ (A) =

[
r2

1−mf̃W Y
(1− r, 1 + r)

]
· IWY

ρ (A) =
[

r2

1−
√

1− r2

]
· IWY

ρ (A) = [1 +
√

1− r2] · IWY
ρ (A).
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Remark 5.4.

Note that for any regular f the function f̃ is not regular and therefore

lim
r→1

r2

1−mf̃ (1− r, 1 + r)
= lim

r→1

r2

1− (1 + r)f̃
(

1−r
1+r

) =
1

1− f̃(0)
= 1.

We already know such a result because the case r = 1 is that of pure states where all the f -informations
coincide with variance.

Proposition 5.5. If f is regular then

lim
r→0

r2

1−mf̃ (1− r, 1 + r)
= − 1

2f̃ ′′(1)
=

1
2f(0)

.

Proof. Let g(r) := 1−mf̃ (1− r, 1 + r). For any f ∈ Fop one has f ′(1) = 1
2 (because of symmetry) and

this implies that g(0) = g′(0) = 0. Therefore we have to use twice the De L’Hopital theorem. An easy
calculation shows that f̃ ′′(1) = −f(0), therefore we get

lim
r→0

r2

1−mf̃ (1− r, 1 + r)
= lim

r→0

d2

dr2 r2

d2

dr2

[
1−mf̃ (1− r, 1 + r)

] = lim
r→0

2

− 4
(1+r)3 f̃ ′′

(
1−r
1+r

)
=

2
−4f̃ ′′(1)

=
1

2f(0)
.

From the above Proposition we get a different proof of the fact that the constant 1
2f(0) is optimal

also in the 2× 2 matrix case.
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