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ABSTRACT The present monograph is focused on numerical radius in-
equalities for bounded linear operators on complex Hilbert spaces for the
case of one and two operators. The book is intended for use by both re-
searchers in various �elds of Linear Operator Theory in Hilbert Spaces and
Mathematical Inequalities, domains which have grown exponentially in the
last decade, as well as by postgraduate students and scientists applying
inequalities in their speci�c areas.
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Preface

As pointed out by Gustafson and Rao in their seminal book [Numerical
Range. The Field of Values of Linear Operators and Matrices. Universitext.
Springer-Verlag, New York, 1997. xiv+189 pp.] the concepts of numerical
range and numerical radius play an important role in various �elds of Con-
temporary Mathematics, including Operator Theory, Operator Trigonom-
etry, Numerical Analysis, Fluid Dynamics and others.
Since 1997 the research devoted to these mathematical objects has grown

greatly. A simple search in the databaseMathSciNet of the American Math-
ematical Society with the key word "numerical range" in the title reveals
more than 300 papers published after 1997 while the same search with the
key word "numerical radius" adds other 100, showing an immense interest
on the subject by numerous researchers working in di¤erent �elds of Mod-
ern Mathematics. If no restrictions for the year is imposed the number of
papers with those key words in the title exceed 1000. However, the size of
the areas of applications for numerical ranges and radii is very di¢ cult to
estimate. If we perform a search looking for the publications where in a
way or another the concept of "numerical range" is used, we can get more
then 1550 items.
The present monograph is focused on numerical radius inequalities for

bounded linear operators on complex Hilbert spaces for the case of one and
two operators.
The book is intended for use by both researchers in various �elds of

Linear Operator Theory in Hilbert Spaces and Mathematical Inequalities,
domains which have grown exponentially in the last decade, as well as by
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postgraduate students and scientists applying inequalities in their speci�c
areas.
In the introductory chapter we present some fundamental facts about the

numerical range and the numerical radius of bounded linear operators in
Hilbert spaces. Some classical inequalities due to Berger, Holbrook, Fong
& Holbrook and Bouldin are given. More recent and interesting results
obtained by Kittaneh, El-Haddad & Kittanek and Yamazaki are provided
as well.
In Chapter 2, we present recent results obtained by the author concern-

ing numerical radius and norm inequalities for one operator on a complex
Hilbert space. The techniques employed to prove the results are elemen-
tary. We also use some special vector inequalities in inner product spaces
due to Buzano, Goldstein, Ry¤ & Clarke as well as some reverse Schwarz
inequalities and Grüss type inequalities obtained by the author. Numerous
references for the Kantorovich inequality that is extended to larger classes
of operators than positive operators are provided as well.
In Chapter 3, we present recent results obtained by the author concern-

ing the norms and the numerical radii of two bounded linear operators.
The techniques in this case are also elementary and can be understood by
undergraduate students taking a subject in Operator Theory. Some vec-
tor inequalities in inner product spaces as well as inequalities for means of
nonnegative real numbers are also employed.
For the sake of completeness, all the results presented are completely

proved and the original references where they have been �rstly obtained are
mentioned. The chapters are followed by the list of references used therein
and therefore are relatively independent and can be read separately.

The Author
Melbourne, February 2013
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1
Introduction

In this introductory chapter we present some fundamental facts about the
numerical range and the numerical radius of bounded linear operators in
Hilbert spaces that are used throughout the book. Some famous inequalities
due to Berger, Holbrook, Fong & Holbrook and Bouldin are given. More
recent results obtained by Kittaneh, El-Haddad & Kittanek and Yamazaki
are provided as well.

1.1 Basic De�nitions and Facts

Let (H; h�; �i) be a complex Hilbert space. The numerical range of an op-
erator T is the subset of the complex numbers C given by [6, p. 1]:

W (T ) = fhTx; xi ; x 2 H; kxk = 1g :

The following properties of W (T ) are immediate:

(i) W (�I + �T ) = �+ �W (T ) for �; � 2 C;

(ii) W (T �) =
�
��; � 2W (T )

	
; where T � is the adjoint operator of T ;

(iii) W (U�TU) =W (T ) for any unitary operator U:

The following classical fact about the geometry of the numerical range
[6, p. 4] may be stated:
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Theorem 1 (Toeplitz-Hausdor¤) The numerical range of an operator
is convex.

An important use ofW (T ) is to bound the spectrum � (T ) of the operator
T [6, p. 6]:

Theorem 2 (Spectral inclusion) The spectrum of an operator is con-
tained in the closure of its numerical range.

The self-adjoint operators have their spectra bounded sharply by the
numerical range [6, p. 7]:

Theorem 3 The following statements hold true:

(i) T is self-adjoint i¤ W (T ) is real;

(ii) If T is self-adjoint and W (T ) = [m;M ] (the closed interval of real
numbers m;M), then kTk = max fjmj ; jM jg :

(iii) If W (T ) = [m;M ] ; then m;M 2 � (T ) :

The numerical radius w (T ) of an operator T on H is given by [6, p. 8]:

w (T ) = sup fj�j ; � 2W (T )g = sup fjhTx; xij ; kxk = 1g : (1.1)

Obviously, by (1.1), for any x 2 H one has

jhTx; xij � w (T ) kxk2 : (1.2)

It is well known that w (�) is a norm on the Banach algebra B (H) of all
bounded linear operators T : H ! H; i.e.,

(i) w (T ) � 0 for any T 2 B (H) and w (T ) = 0 if and only if T = 0;

(ii) w (�T ) = j�jw (T ) for any � 2 C and T 2 B (H) ;

(iii) w (T + V ) � w (T ) + w (V ) for any T; V 2 B (H) :

This norm is equivalent with the operator norm. In fact, the following
more precise result holds [6, p. 9]:

Theorem 4 (Equivalent norm) For any T 2 B (H) one has

w (T ) � kTk � 2w (T ) : (1.3)

Let us now look at two extreme cases of the inequality (1.3). In the
following r (t) := sup fj�j ; � 2 � (T )g will denote the spectral radius of T
and �p (T ) = f� 2 � (T ) ; T f = �f for some f 2 Hg the point spectrum
of T:
The following results hold [6, p. 10]:
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Theorem 5 We have

(i) If w (T ) = kTk ; then r (T ) = kTk :

(ii) If � 2W (T ) and j�j = kTk ; then � 2 �p (T ) :

To address the other extreme case w (T ) = 1
2 kTk ; we can state the

following su¢ cient condition in terms of (see [6, p. 11])

R (T ) := fTf; f 2 Hg and R (T �) := fT �f; f 2 Hg :

Theorem 6 If R (T ) ? R (T �) ; then w (T ) = 1
2 kTk :

It is well-known that the two-dimensional shift

S2 =

�
0 0
1 0

�
;

has the property that w (T ) = 1
2 kTk :

The following theorem shows that some operators T with w (T ) = 1
2 kTk

have S2 as a component [6, p. 11]:

Theorem 7 If w (T ) = 1
2 kTk and T attains its norm, then T has a two-

dimensional reducing subspace on which it is the shift S2:

For other results on numerical radius, see [7], Chapter 11.

1.2 Results for One Operator

The following power inequality for one operator is a classical result in the
�eld (for a simple proof see [14]):

Theorem 8 (Berger [2], 1965) For any operator T 2 B (H) and nat-
ural number n we have

w (Tn) � wn (T ) :

Further, we list some recent inequalities for one operator.

Theorem 9 (Kittaneh [10], 2003) For any operator T 2 B (H) we have
the following re�nement of the �rst inequality in (1.3)

w (T ) � 1

2

�
kTk+

T 21=2� : (1.4)

Utilizing the Cartesian decomposition for operators, F. Kittaneh im-
proves the inequality (1.3) as follows:
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Theorem 10 (Kittaneh [11], 2005) For any operator T 2 B (H) we
have

1

4
kT �T + TT �k � w2 (T ) � 1

2
kT �T + TT �k : (1.5)

When more information concerning the angle between the ranges of T
and T � is available, the the following interesting estimate holds:

Theorem 11 (Bouldin [3], 1971) If we denote by � the angle between
the ranges of T and T �; then

w (T ) � 1

2
kTk

h
cos�+

�
cos2 �+ 1

�1=2i
: (1.6)

For powers of the absolute value of operators, one can state the following
results:

Theorem 12 (El-Haddad & Kittaneh [9], 2007) If for an operator T 2
B (H) we denote jT j := (T �T )1=2 ; then

wr (T ) � 1

2

jT j2�r + jT �j2(1��)r (1.7)

and
w2r (T ) �

� jT j2r + (1� �) jT �j2r (1.8)

where � 2 (0; 1) and r � 1:

If we take � = 1
2 and r = 1 we get from (1.7)

w (T ) � 1

2
kjT j+ jT �jk (1.9)

and from (1.8)

w2 (T ) � 1

2

jT j2 + jT �j2 : (1.10)

For the Cartesian decomposition of T the we have:

Theorem 13 (El-Haddad & Kittaneh [9], 2007) If T = B+iC is the
Cartesian decomposition of T then:

wr (T ) � kjBjr + jCjrk (1.11)

for r 2 (0; 2]:
If r � 2; then

wr (T ) � 2 r2�1 kjBjr + jCjrk (1.12)

and

2�
r
2�1 kjB + Cjr + jB � Cjrk (1.13)

� wr (T ) � 1

2
kjB + Cjr + jB � Cjrk :
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We observe that for r = 1 we get from (1.11)

w (T ) � kjBj+ jCjk (1.14)

while for r = 2 we get from (1.12) or from (1.11)

w2 (T ) �
jBj2 + jCj2 (1.15)

and from (1.13)

1

4

jB + Cj2 + jB � Cj2 � w2 (T ) � 1

2

jB + Cj2 + jB � Cj2 : (1.16)

Let T = U jT j be the polar decomposition of the bounded linear operator
T . The Aluthge transform eT of T is de�ned by eT := jT j1=2 U jT j1=2 ; see [1].
The following properties of eT are as follows:
(i)
eT � kTk ;

(ii) w
�eT� � w (T ) ;

(iii) r
�eT� = w (T ) ;

(iv) w
�eT� � T 21=2 (� kTk) ; [15].

Utilizing this transform one can obtain the following re�nement of Kit-
taneh�s inequality (1.4).

Theorem 14 (Yamazaki [15], 2007) For any operator T 2 B (H) we
have

w (T ) � 1

2

�
kTk+ w

�eT�� � 1

2

�
kTk+

T 21=2� : (1.17)

We remark that if eT = 0; then obviously w (T ) = 1
2 kTk :

1.3 Results for Two Operators

The following general result for the product of two operators holds [6, p.
37]:

Theorem 15 (Holbrook [8], 1969) If A;B are two bounded linear op-
erators on the Hilbert space (H; h�; �i) ; then w (AB) � 4w (A)w (B) : In the
case that AB = BA; then w (AB) � 2w (A)w (B) : The constant 2 is best
possible here.
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The following results are also well known [6, p. 38].

Theorem 16 (Holbrook [8], 1969) If A is a unitary operator that com-
mutes with another operator B; then

w (AB) � w (B) : (1.18)

If A is an isometry and AB = BA; then (1.18) also holds true.

We say that A and B double commute if AB = BA and AB� = B�A:
The following result holds [6, p. 38].

Theorem 17 (Holbrook [8], 1969) If the operators A and B double com-
mute, then

w (AB) � w (B) kAk : (1.19)

As a consequence of the above, we have [33, p. 39]:

Corollary 18 Let A be a normal operator commuting with B: Then

w (AB) � w (A)w (B) : (1.20)

A related problem with the inequality (1.19) is to �nd the best constant
c for which the inequality

w (AB) � cw (A) kBk

holds for any two commuting operators A;B 2 B (H) : It is known that
1:064 < c < 1:169; see [4], [12] and [13].
In relation to this problem, it has been shown that:

Theorem 19 (Fong & Holbrook [5], 1983) For any A;B 2 B (H) we
have

w (AB +BA) � 2
p
2w (A) kBk : (1.21)

The following result for several operators holds:

Theorem 20 (Kittaneh [11], 2005) For any A;B;C;D; S; T 2 B (H)
we have

w (ATB + CSD) (1.22)

� 1

2

A jT �j2(1��)A� +B� jT j2�B + C jS�j2(1��) C� +D� jT j2�D
 ;

where � 2 [0; 1] :

Following [11] we list here some particular inequalities of interest.
If we take T = I and S = 0 in (1.22) we get

w (AB) � 1

2
kAA� +B�Bk : (1.23)
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In addition to this we have the related inequality

w (AB) � 1

2
kA�A+BB�k : (1.24)

If we choose T = S = I; C = B and D = �A in (1.22) we get

w (AB �BA) � 1

2
kA�A+AA� +BB� +B�Bk (1.25)

which provides an upper bound for the numerical radius of the commutator
AB �BA:
If we take � = 1

2 in (1.22) we also can derive the inequality

w (AB �B�A) � 1

2
kjAj+ jA�j+B� (jAj+ jA�j)Bk : (1.26)
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2
Inequalities for One Operator

In this chapter we present with complete proofs some recent results ob-
tained by the author concerning numerical radius and norm inequalities
for a bounded linear operator on a complex Hilbert space. The techniques
employed to prove the results are elementary. We also use some special
vector inequalities in inner product spaces due to Buzano, Goldstein, Ry¤
& Clarke, Dragomir & Sándor as well as some reverse Schwarz inequalities
and Grüss type inequalities obtained by the author. Many references for the
Kantorovich inequality that is extended here to larger classes of operators
than positive operators are provided as well.

2.1 Reverse Inequalities for the Numerical Radius

2.1.1 Reverse Inequalities

The following results may be stated:

Theorem 21 (Dragomir [13], 2005) Let T : H ! H be a bounded lin-
ear operator on the complex Hilbert space H: If � 2 Cn f0g and r > 0 are
such that

kT � �Ik � r; (2.1)

where I : H ! H is the identity operator on H; then

(0 �) kTk � w (T ) � 1

2
� r

2

j�j : (2.2)
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Proof. For x 2 H with kxk = 1; we have from (2.1) that

kTx� �xk � kT � �Ik � r;

giving

kTxk2 + j�j2 � 2Re
�
� hTx; xi

�
+ r2 (2.3)

� 2 j�j jhTx; xij+ r2:

Taking the supremum over x 2 H; kxk = 1 in (2.3) we get the following
inequality that is of interest in itself:

kTk2 + j�j2 � 2w (T ) j�j+ r2: (2.4)

Since, obviously,
2 kTk j�j � kTk2 + j�j2 ; (2.5)

hence by (2.4) and (2.5) we deduce the desired inequality (2.2).

Remark 22 If the operator T : H ! H is such that R (T ) ? R (T �) ;
kTk = 1 and kT � Ik � 1, then the equality holds in (2.2). Indeed, by
Theorem 6, we have in this case w (T ) = 1

2 kTk =
1
2 and since we can

choose � = 1; r = 1 in Theorem 21, then we get in both sides of (2.2) the
same quantity 1

2 :

The following corollary may be stated:

Corollary 23 Let T : H ! H be a bounded linear operator and '; 2 C
with  =2 f�';'g : If

Re h x� Tx; Tx� 'xi � 0 for any x 2 H; kxk = 1 (2.6)

then

(0 �) kTk � w (T ) � 1

4
� j � 'j

2

j + 'j : (2.7)

Proof. Utilising the fact that in any Hilbert space the following two state-
ments are equivalent:

(i) Re hu� x; x� zi � 0; x; z; u 2 H;

(ii)
x� z+u

2

 � 1
2 ku� zk ;

we deduce that (2.6) is equivalent toTx�  + '

2
� Ix

 � 1

2
j � 'j (2.8)
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for any x 2 H; kxk = 1; which in its turn is equivalent to the operator
norm inequality: T �  + '

2
� I
 � 1

2
j � 'j : (2.9)

Now, applying Theorem 21 for T = T; � = '+ 
2 and r = 1

2 j�� j ; we
deduce the desired result (2.7).

Remark 24 Following [33, p. 25], we say that an operator B : H ! H
is accretive, if Re hBx; xi � 0 for any x 2 H: One may observe that the
assumption (2.6) above is then equivalent with the fact that the operator
(T � � �'I) ( I � T ) is accretive.

Perhaps a more convenient su¢ cient condition in terms of positive oper-
ators is the following one:

Corollary 25 Let '; 2 C with  =2 f�';'g and T : H ! H a bounded
linear operator in H: If (T � � �'I) ( I � T ) is self-adjoint and

(T � � �'I) ( I � T ) � 0 (2.10)

in the operator partial order, then

(0 �) kTk � w (T ) � 1

4
� j � 'j

2

j + 'j : (2.11)

Corollary 26 Assume that T; �; r are as in Theorem 21. If, in addition,

jj�j � w (T )j � �; (2.12)

for some � � 0; then

(0 �) kTk2 � w2 (T ) � r2 � �2: (2.13)

Proof. From (2.4) of Theorem 21, we have

kTk2 � w2 (T ) � r2 � w2 (T ) + 2w (T ) j�j � j�j2 (2.14)

= r2 � (j�j � w (T ))2 :

The desired inequality follows from (2.12).

Remark 27 In particular, if kT � �Ik � r and j�j = w (T ) ; � 2 C, then

(0 �) kTk2 � w2 (T ) � r2: (2.15)

The following result may be stated as well.
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Theorem 28 (Dragomir [13], 2005) Let T : H ! H be a nonzero
bounded linear operator on H and � 2 C n f0g ; r > 0 with j�j > r: If

kT � �Ik � r; (2.16)

then s
1� r2

j�j2
� w (T )

kTk (� 1) : (2.17)

Proof. From (2.4) of Theorem 21, we have

kTk2 + j�j2 � r2 � 2 j�jw (T ) ;

which implies, on dividing with
q
j�j2 � r2 > 0 that

kTk2q
j�j2 � r2

+

q
j�j2 � r2 � 2 j�jw (T )q

j�j2 � r2
: (2.18)

By the elementary inequality

2 kTk � kTk2q
j�j2 � r2

+

q
j�j2 � r2 (2.19)

and by (2.18) we deduce

kTk � w (T ) j�jq
j�j2 � r2

;

which is equivalent to (2.17).

Remark 29 Squaring (2.17), we get the inequality

(0 �) kTk2 � w2 (T ) � r2

j�j2
kTk2 : (2.20)

Remark 30 For any bounded linear operator T : H ! H we have the
relation w (T ) � 1

2 kTk : Inequality (2.17) would produce a re�nement of
this classic fact only in the case when

1

2
�
 
1� r2

j�j2

! 1
2

;

which is equivalent to r= j�j �
p
3=2:

The following corollary holds.
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Corollary 31 Let '; 2 C with Re ( �') > 0: If T : H ! H is a bounded
linear operator such that either (2.6) or (2.10) holds true, then:

2
p
Re ( �')

j + 'j � w (T )

kTk (� 1) (2.21)

and

(0 �) kTk2 � w2 (T ) �
���� � ' + '

����2 kTk2 : (2.22)

Proof. If we consider � =  +'
2 and r = 1

2 j � 'j ; then

j�j2 � r2 =
���� + '2

����2 � ���� � '2
����2 = Re ( �') > 0:

Now, on applying Theorem 28, we deduce the desired result.

Remark 32 If j � 'j �
p
3
2 j + 'j ; Re ( �') > 0; then (2.21) is a re�ne-

ment of the inequality w (T ) � 1
2 kTk :

The following result may be of interest as well.

Theorem 33 (Dragomir [13], 2005) Let T : H ! H be a nonzero
bounded linear operator on H and � 2 Cn f0g ; r > 0 with j�j > r: If

kT � �Ik � r; (2.23)

then

(0 �) kTk2 � w2 (T ) � 2r2

j�j+
q
j�j2 � r2

w (T ) : (2.24)

Proof. From the proof of Theorem 21, we have

kTxk2 + j�j2 � 2Re
�
� hTx; xi

�
+ r2 (2.25)

for any x 2 H; kxk = 1:
If we divide (2.25) by j�j jhTx; xij ; (which, by (2.25), is positive) then

we obtain

kTxk2

j�j jhTx; xij �
2Re

�
� hTx; xi

�
j�j jhTx; xij +

r2

j�j jhTx; xij �
j�j

jhTx; xij (2.26)

for any x 2 H; kxk = 1:
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If we subtract in (2.26) the same quantity jhTx;xij
j�j from both sides, then

we get

kTxk2

j�j jhTx; xij �
jhTx; xij
j�j (2.27)

�
2Re

�
� hTx; xi

�
j�j jhTx; xij +

r2

j�j jhTx; xij �
jhTx; xij
j�j � j�j

jhTx; xij

=
2Re

�
� hTx; xi

�
j�j jhTx; xij � j�j2 � r2

j�j jhTx; xij �
jhTx; xij
j�j

=
2Re

�
� hTx; xi

�
j�j jhTx; xij �

0@
q
j�j2 � r2p
j�j jhTx; xij

�
p
jhTx; xijp
j�j

1A2

� 2

q
j�j2 � r2

j�j :

Since
Re
�
� hTx; xi

�
� j�j jhTx; xij

and 0@
q
j�j2 � r2p
j�j jhTx; xij

�
p
jhTx; xijp
j�j

1A2

� 0;

by (2.27) we get

kTxk2

j�j jhTx; xij �
jhTx; xij
j�j �

2

�
j�j �

q
j�j2 � r2

�
j�j

which gives the inequality

kTxk2 � jhTx; xij2 + 2 jhTx; xij
�
j�j �

q
j�j2 � r2

�
(2.28)

for any x 2 H; kxk = 1:
Taking the supremum over x 2 H; kxk = 1; we get

kTk2 � sup
�
jhTx; xij2 + 2 jhTx; xij

�
j�j �

q
j�j2 � r2

��
� sup

n
jhTx; xij2

o
+ 2

�
j�j �

q
j�j2 � r2

�
sup fjhTx; xijg

= w2 (T ) + 2

�
j�j �

q
j�j2 � r2

�
w (T ) ;

which is clearly equivalent to (2.24).
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Corollary 34 Let '; 2 C with Re ( �') > 0: If T : H ! H is a bounded
linear operator such that either (2.6) or (2.10) hold true, then:

(0 �) kTk2 � w2 (T ) �
h
j + 'j � 2

p
Re ( �')

i
w (T ) : (2.29)

Remark 35 If M � m > 0 are such that either (T � �mI) (MI � T ) is
accretive, or, su¢ ciently, (T � �mI) (MI � T ) is self-adjoint and

(T � �mI) (MI � T ) � 0 in the operator partial order, (2.30)

then, by (2.21) we have:

(1 �) kTk
w (T )

� M +m

2
p
mM

; (2.31)

which is equivalent to

(0 �) kTk � w (T ) �

�p
M �

p
m
�2

2
p
mM

w (T ) ; (2.32)

while from (2.24) we have

(0 �) kTk2 � w2 (T ) �
�p

M �
p
m
�2
w (T ) : (2.33)

Also, the inequality (2.7) becomes

(0 �) kTk � w (T ) � 1

4
� (M �m)2

M +m
: (2.34)

2.2 More Inequalities for Norm and Numerical
Radius

2.2.1 A Result Via Buzano�s Inequality

The following result may be stated as well:

Theorem 36 (Dragomir [16], 2007) Let (H; h�; �i) be a Hilbert space and
T : H ! H a bounded linear operator on H: Then

w2 (T ) � 1

2

h
w
�
T 2
�
+ kTk2

i
: (2.35)

The constant 12 is best possible in (2.35).
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Proof. We need the following re�nement of Schwarz�s inequality obtained
by the author in 1985 [4, Theorem 2] (see also [20] and [14]):

kak kbk � jha; bi � ha; ei he; bij+ jha; ei he; bij � jha; bij ; (2.36)

provided a; b; e are vectors in H and kek = 1:
Observing that

jha; bi � ha; ei he; bij � jha; ei he; bij � jha; bij ;

hence by the �rst inequality in (2.36) we deduce

1

2
(kak kbk+ jha; bij) � jha; ei he; bij : (2.37)

This inequality was obtained in a di¤erent way earlier by M.L. Buzano in
[2].
Now, choose in (2.37), e = x; kxk = 1; a = Tx and b = T �x to get

1

2

�
kTxk kT �xk+

��
T 2x; x���� � jhTx; xij2 (2.38)

for any x 2 H; kxk = 1:
Taking the supremum in (2.38) over x 2 H; kxk = 1; we deduce the

desired inequality (2.35).
Now, if we assume that (2.35) holds with a constant C > 0; i:e:;

w2 (T ) � C
h
w
�
T 2
�
+ kTk2

i
(2.39)

for any T 2 B (H) ; then if we choose T a normal operator and use the
fact that for normal operators we have w (T ) = kTk and w

�
T 2
�
=
T 2 =

kTk2 ; then by (2.39) we deduce that 2C � 1 which proves the sharpness
of the constant.

Remark 37 From the above result (2.35) we obviously have

w (T ) �
�
1

2

h
w
�
T 2
�
+ kTk2

i�1=2
(2.40)

�
�
1

2

�T 2+ kTk2��1=2 � kTk
and

w (T ) �
�
1

2

h
w
�
T 2
�
+ kTk2

i�1=2
(2.41)

�
�
1

2

�
w2 (T ) + kTk2

��1=2
� kTk :
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2.2.2 Other Related Results

The following result may be stated.

Theorem 38 (Dragomir [16], 2007) Let T : H ! H be a bounded lin-
ear operator on the Hilbert space H and � 2 Cn f0g : If kTk � j�j ; then

kTk2r + j�j2r � 2 kTkr�1 j�jr w (T ) + r2 j�j2r�2 kT � �Ik2 ; (2.42)

where r � 1:

Proof. We use the following inequality for vectors in inner product spaces
due to Goldstein, Ry¤ and Clarke [31]:

kak2r + kbk2r � 2 kakr kbkr Re ha; bikak kbk (2.43)

�

8<: r2 kak2r�2 ka� bk2 if r � 1;

kbk2r�2 ka� bk2 if r < 1;

provided r 2 R and a; b 2 H with kak � kbk :
Now, let x 2 H with kxk = 1: From the hypothesis of the theorem,

we have that kTxk � j�j kxk and applying (2.43) for the choices a = �x;
kxk = 1; b = Tx; we get

kTxk2r + j�j2r � 2 kTxkr�1 j�jr jhTx; xij � r2 j�j2r�2 kTx� �xk2 (2.44)

for any x 2 H; kxk = 1 and r � 1:
Taking the supremum in (2.44) over x 2 H; kxk = 1; we deduce the

desired inequality (2.42).
The following result may be stated as well:

Theorem 39 (Dragomir [16], 2007) Let T : H ! H be a bounded lin-
ear operator on the Hilbert space (H; h�; �i) : Then for any � 2 [0; 1] and
t 2 R one has the inequality:

kTk2 �
h
(1� �)2 + �2

i
w2 (T ) + � kT � tIk2 (2.45)

+ (1� �) kT � itIk2 :

Proof. We use the following inequality obtained by the author in [14]:h
� ktb� ak2 + (1� �) kitb� ak2

i
kbk2

� kak2 kbk2 � [(1� �) Im ha; bi+ �Re ha; bi]2 (� 0)
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to get:

kak2 kbk2 � [(1� �) Im ha; bi+ �Re ha; bi]2 (2.46)

+
h
� ktb� ak2 + (1� �) kitb� ak2

i
kbk2

�
h
(1� �)2 + �2

i
jha; bij2

+
h
� ktb� ak2 + (1� �) kitb� ak2

i
kbk2

for any a; b 2 H; � 2 [0; 1] and t 2 R.
Choosing in (2.46) a = Tx; b = x; x 2 H; kxk = 1; we get

kTxk2 �
h
(1� �)2 + �2

i
jhTx; xij2 (2.47)

+ � ktx� Txk2 + (1� �) kitx� Txk2 :

Finally, taking the supremum over x 2 H; kxk = 1 in (2.47), we deduce the
desired result.
The following particular cases may be of interest.

Corollary 40 For any T a bounded linear operator on H; one has:

(0 �) kTk2 � w2 (T ) �

8>><>>:
inf
t2R

kT � tIk2

inf
t2R

kT � itIk2
(2.48)

and
kTk2 � 1

2
w2 (T ) +

1

2
inf
t2R

h
kT � tIk2 + kT � itIk2

i
: (2.49)

Remark 41 The inequality (2.48) can in fact be improved taking into ac-
count that for any a; b 2 H; b 6= 0; (see for instance [6]) the bound

inf
�2C

ka� �bk2 = kak2 kbk2 � jha; bij2

kbk2

actually implies that

kak2 kbk2 � jha; bij2 � kbk2 ka� �bk2 (2.50)

for any a; b 2 H and � 2 C.
Now if in (2.50) we choose a = Tx; b = x; x 2 H; kxk = 1; then we

obtain
kTxk2 � jhTx; xij2 � kTx� �xk2 (2.51)

for any � 2 C, which, by taking the supremum over x 2 H; kxk = 1, implies
that

(0 �) kTk2 � w2 (T ) � inf
�2C

kT � �Ik2 : (2.52)
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Remark 42 If we take a = x; b = Tx in (2.50), then we obtain

kTxk2 � jhTx; xij2 + kTxk2 kx� �Txk2 (2.53)

for any x 2 H; kxk = 1 and � 2 C. Now, if we take the supremum over
x 2 H; kxk = 1 in (2.53), then we get

(0 �) kTk2 � w2 (T ) � kTk2 inf
�2C

kI � �Tk2 : (2.54)

Finally and from a di¤erent view point we may state:

Theorem 43 (Dragomir [16], 2007) Let T : H ! H be a bounded lin-
ear operator on H: If p � 2; then:

kTkp + j�jp � 1

2
(kT + �Ikp + kT � �Ikp) ; (2.55)

for any � 2 C.

Proof. We use the following inequality obtained by Dragomir and Sándor
in [20]:

ka+ bkp + ka� bkp � 2 (kakp + kbkp) (2.56)

for any a; b 2 H and p � 2:
Now, if we choose a = Tx; b = �x; then we get

kTx+ �xkp + kTx� �xkp � 2 (kTxkp + j�jp) (2.57)

for any x 2 H; kxk = 1:
Taking the supremum in (2.57) over x 2 H; kxk = 1; we get the desired

result (2.55).

Remark 44 For p = 2; we have the simpler result:

kTk2 + j�j2 � 1

2

�
kT + �Ik2 + kT � �Ik2

�
(2.58)

for any � 2 C. This can easily be obtained from the parallelogram identity
as well.

2.3 Some Associated Functionals

2.3.1 Some Fundamental Facts

Replacing the supremum with the in�mum in the de�nitions of the operator
norm and numerical radius, we can also consider the quantities ` (T ) :=
infkxk=1 kTxk and m (T ) = infkxk=1 jhTx; xij : By the Schwarz inequality,
it is obvious that m (T ) � ` (T ) for each T 2 B (H) :
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We can also consider the functionals vs; �s : B (H) ! R introduced in
[17] and given by

vs (T ) := sup
kxk=1

Re hTx; xi and �s (T ) := sup
kxk=1

Im hTx; xi (2.59)

where �s�stands for supremum, while the corresponding ones for in�mum
are de�ned as:

vi (T ) := inf
kxk=1

Re hTx; xi and �i (T ) := inf
kxk=1

Im hTx; xi : (2.60)

We notice that the functionals vp; �p with p 2 fs; ig are obviously con-
nected by the formula

�p (T ) = �vq (iT ) for any T 2 B (H) ; (2.61)

where p 6= q and the �i�in front of T represents the imaginary unit. Also,
by de�nition, vs and �s are positive homogeneous and subadditive while vi
and �i are positive homogeneous and superadditive.
Due to the fact that for any x 2 H; kxk = 1 we have

�w (T ) � � jhTx; xij � Re hTx; xi ;
Im hTx; xi � jIm hTx; xij � w (T ) ;

then, by taking the supremum and the in�mum respectively over x 2 H;
kxk = 1; we deduce the simple inequality:

max fjvp (T )j ; j�p (T )jg � w (T ) ; T 2 B (H) (2.62)

where p 2 fs; ig :
The main aim of this section is two fold. Firstly, some natural connec-

tions amongst the functionals vp; �p, the operator norm and the numerical
ranges w;m;we and me are pointed out. Secondly, some new inequalities
for operators T 2 B (H) for which the composite operator C;� (T ) with
;� 2 K is assumed to be c2-accretive with c 2 R are also given. New upper
bounds for the nonnegative quantity kTk2 � w2 (T ) ; are obtained as well.

2.3.2 Preliminary Results

In the following we establish an identity connecting the numerical radius of
an operator with the other functionals de�ned in the introduction of this
section.

Lemma 45 Let T 2 B (H) and ;� 2 K. Then for any x 2 H; kxk = 1
we have the equality:

Re [h(�I � T )x; xi hx; (T � I)xi] (2.63)

=
1

4
j�� j2 �

������T �  + �

2
� I
�
x; x

�����2 :
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Proof. We use the following elementary identity for complex numbers:

Re
�
a�b
�
=
1

4

h
ja+ bj2 � ja� bj2

i
; a; b 2 C; (2.64)

for the choices a = h(�I � T )x; xi = �� hTx; xi and b = h(T � I)x; xi =
hTx; xi �  to get

Re
h
h(�I � T )x; xi h(T � I)x; xi

i
(2.65)

=
1

4

h
j�� j2 � jh2 hTx; xi � ( + �)ij2

i
for x 2 H; kxk = 1; which is clearly equivalent with (2.63).

Corollary 46 For any T 2 B (H) and ;� 2 K we have

inf
kxk=1

Re [h(�I � T )x; xi hx; (T � I)xi] (2.66)

=
1

4
j�� j2 � w2

�
T �  + �

2
� I
�

and

sup
kxk=1

Re [h(�I � T )x; xi hx; (T � I)xi] (2.67)

=
1

4
j�� j2 �m2

�
T �  + �

2
� I
�
:

The proof is obvious from the identity (2.63) on taking the in�mum and
the supremum over x 2 H; kxk = 1; respectively.
If we denote by SH := fx 2 Hj kxk = 1g the unit sphere in H and, for

T 2 B (H) ; ;� 2 K we de�ne [17]

� (T ; ;�) (x) := Re [h(�I � T )x; xi hx; (T � I)xi] ; x 2 SH ;

then, on utilizing the elementary properties of complex numbers we have

� (T ; ;�) (x) = (Re�� Re hTx; xi) (Re hTx; xi � Re ) (2.68)

+ (Im�� Im hTx; xi) (Im hTx; xi � Im )

for any x 2 SH :
If we denote [17]:

�s(i) (T ; ;�) := sup
kxk=1

�
inf

kxk=1

�
� (T ; ;�) (x)

then (2.66) can be stated as:

�i (T ; ;�) + w
2

�
T �  + �

2
� I
�
=
1

4
j�� j2 (2.69)
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while (2.67) can be stated as:

�s (T ; ;�) +m
2

�
T �  + �

2
� I
�
=
1

4
j�� j2 (2.70)

for any T 2 B (H) and ;� 2 K.

Remark 47 Utilising the equality (2.68), a su¢ cient condition for the in-
equality �i (T ; ;�) � 0 or, equivalently, w

�
T � +�

2 � I
�
� 1

2 j�� j to
hold is that

Re� � Re hTx; xi � Re  and Im� � Im hTx; xi � Im  (2.71)

for each x 2 H; kxk = 1:

The following identity that links the norm with the inner product also
holds.

Lemma 48 Let T 2 B (H) and ;� 2 K. The for each x 2 H; kxk = 1;
we have the equality:

Re h(T � � �I) (�I � T )x; xi = 1

4
j�� j2�

�T �  + �

2
� I
�
x

2 : (2.72)
Proof. We utilize the simple identity in inner product spaces

Re hu� y; y � vi = 1

4
ku� vk2 �

y � u+ v

2

2 ; (2.73)

u; v; y 2 H; for the choices u = �x; y = Tx; v = x with x 2 H; kxk = 1
to get

Re h�x� Tx; Tx� xi = 1

4
j�� j2 �

�T �  + �

2
� I
�
x

2 ;
x 2 H; kxk = 1; which is clearly equivalent with (2.72).

Corollary 49 For any T 2 B (H) and ;� 2 K we have

vi [(T
� � �I) (�I � T )] (2.74)

=
1

4
j�� j2 �

T �  + �

2
� I
2

and

vs [(T
� � �I) (�I � T )] (2.75)

=
1

4
j�� j2 � `2

�
T �  + �

2
� I
�
:
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We recall that a bounded linear operator T : H ! H is called strongly
c2-accretive (with c 6= 0) if Re hTy; yi � c2 for each y 2 H; kyk = 1:
For c = 0; the operator is called accretive. Therefore, and for the sake of
simplicity, we can call the operator c2-accretive for c 2 R and understand
the statement in the above sense.
Utilising the identity (2.72) we can state the following characterization

result that will be useful in the sequel:

Lemma 50 (Dragomir [17], 2007) For T 2 B (H) and ;� 2 K, c 2 R;
the following statements are equivalent:

(i) The operator C;� (T ) := (T � � �I) (�I � T ) is c2�accretive;

(ii) We have the inequality:T �  + �

2
� I
2 � 1

4
j�� j2 � c2: (2.76)

Remark 51 Since the self-adjoint operator T : H ! H satisfying the
condition: T � c2I in the operator partial order ��� is c2�accretive, then
a su¢ cient condition for C;� (T ) to be c2�accretive is that C;� (T ) is
self-adjoint and C;� (T ) � c2I:

2.3.3 General Inequalities

We can state the following result that provides some inequalities between
di¤erent numerical radii:

Theorem 52 (Dragomir [17], 2007) For any T 2 B (H) and ;� 2 K
we have the inequalities

1

4
j�� j2 � m2

�
T �  + �

2
� I
�

(2.77)

+

8<:
1
2w

2
e (�I � T; T � I)

w (�I � T )w (T � I)

and

1

4
j�� j2 � w2

�
T �  + �

2
� I
�
+
1

2
m2
e (�I � T; T � I) : (2.78)

Proof. Utilising the elementary inequality

Re
�
a�b
�
� 1

2

h
jaj2 + jbj2

i
; a; b 2 C (2.79)
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we can state that

Re
h
h(�I � T )x; xi h(T � I)x; xi

i
(2.80)

� 1

2

h
jh(�I � T )x; xij2 + jh(T � I)x; xij2

i
for any x 2 H; kxk = 1:
Taking the supremum over x 2 H; kxk = 1 in (2.80) and utilizing the

representation (2.67) in Corollary 46, we deduce

1

4
j�� j2 �m2

�
T �  + �

2
� I
�

� 1

2
sup
kxk=1

h
jh(�I � T )x; xij2 + jh(T � I)x; xij2

i
=
1

2
w2e (�I � T; T � I) ;

which is clearly equivalent to the �rst inequality in (2.77).
Now, by the elementary inequality

Re
�
a�b
�
� jaj jbj for each a; b 2 C;

we can also state that

1

4
j�� j2 �m2

�
T �  + �

2
� I
�

� sup
kxk=1

[jh(T � �I)x; xij jh(T � I)x; xij]

� sup
kxk=1

jh(T � �I)x; xij � sup
kxk=1

jh(T � I)x; xij

= w (�I � T )w (T � I)

and the second part of (2.77) is also proved.
Taking the in�mum over x 2 H; kxk = 1 in (2.80) and making use of the

representation (2.66) from Corollary 46, we deduce the inequality in (2.78).

Remark 53 If the operator T 2 B (H) and the complex numbers ;� are
such that �i (T ; ;�) � 0 or, equivalently w

�
T � +�

2 I
�
� 1

2 j�� j ; then
we have the reverse inequalities

0 � 1

4
j�� j2 �m2

�
T �  + �

2
� I
�

(2.81)

�

8<:
1
2w

2
e (�I � T; T � I)

w (�I � T )w (T � I)
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and

0 � 1

4
j�� j2 � w2

�
T �  + �

2
� I
�

(2.82)

� 1

2
m2
e (�I � T; T � I) :

Since, in general, w (B) � kBk ; B 2 B (H) ; hence a su¢ cient condition

for (2.81) and (2.82) to hold is that
T � +�

2 I
 � 1

2 j�� j holds true.
We also notice that this last condition is equivalent with the fact that the
operator C;� (T ) = (T � � �I) (�I � T ) is accretive.

From a di¤erent perspective and as pointed out in Remark 47, a su¢ cient
condition for �i (T ; ;�) � 0 to hold is that (2.71) holds true and, therefore,
if (2.71) is valid, then both (2.81) and (2.82) can be stated.
The following reverse inequality of (2.82) is incorporated in the following

result:

Proposition 54 (Dragomir [17], 2007) Let T 2 B (H) and ;� 2 K be
such that (2.71) holds true. Then

(0 �) (Re�� vs (T )) (vi (T )� Re ) (2.83)

+ (Im�� �s (T )) (�i (T )� Im )

� 1

4
j�� j2 � w2

�
T �  + �

2
� I
�
:

Proof. Taking the in�mum for x 2 H; kxk = 1 in the identity (2.68) and
utilizing the representation (2.66) and the properties of in�mum, we have:

1

4
j�� j2 � w2

�
T �  + �

2
� I
�

� inf
kxk=1

[(Re�� Re hTx; xi) (Re hTx; xi � Re )]

+ inf
kxk=1

[(Im�� Im hTx; xi) (Im hTx; xi � Im )]

� inf
kxk=1

(Re�� Re hTx; xi) � inf
kxk=1

(Re hTx; xi � Re )

+ inf
kxk=1

(Im�� Im hTx; xi) � inf
kxk=1

(Im hTx; xi � Im )

=

 
Re�� sup

kxk=1
Re hTx; xi

!�
inf

kxk=1
Re hTx; xi � Re 

�

+

 
Im�� sup

kxk=1
Im hTx; xi

!�
inf

kxk=1
Im hTx; xi � Im 

�
which is exactly the desired result (2.83).
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The representation in Lemma 48 has its natural consequences relating
the numerical values ` (T ) and w (T ) of certain operators as described in
the following:

Theorem 55 (Dragomir [17], 2007) For any T 2 B (H) and ;� 2 K
we have:

1

4
j�� j2 � `2

�
T �  + �

2
� I
�

(2.84)

+

8>>><>>>:
1
2w
��
��I � T �

�
(�I � T ) + (T � � �I) (T � I)

�
;

w [(T � � �I) (�I � T )] ;

1
4 k(T

� � �I) (�I � T )� Ik2

and

1

4
j�� j2 �

T �  + �

2
I

2 (2.85)

+

8>>><>>>:
1
2m
��
��I � T �

�
(�I � T ) + (T � � �I) (T � I)

�
;

m [(T � � �I) (�I � T )] ;

1
4`
2 [(T � � �I) (�I � T )� I] ;

respectively.

Proof. Utilising the elementary inequality in inner product spaces

Re hu; vi � 1

2

h
kuk2 + kvk2

i
; u; v 2 H; (2.86)

we can state that

Re h(�I � T )x; (T � I)xi (2.87)

� 1

2

h
k(�I � T )xk2 + k(T � I)xk2

i
=
1

2

�
�
��I � T �

�
(�I � T )x; x

�
+ h(T � � �I) (T � I)x; xi

�
=
1

2


��
��I � T �

�
(�I � T ) + (T � � �I) (T � I)

�
x; x

�
for each x 2 H; kxk = 1:
Taking the supremum in (2.87) over x 2 H; kxk = 1 and utilizing the

representation (2.75), we deduce the �rst inequality in (2.84).
Now, by the elementary inequality Re (T ) � jT j ; T 2 C we have

Re h(T � � �I) (�I � T )x; xi � jh(T � � �I) (�I � T )x; xij ; (2.88)



2.3 Some Associated Functionals 29

which provides, by taking the supremum over x 2 H; kxk = 1; the second
inequality in (2.84).
Finally, on utilizing the inequality

Re hu; vi � 1

4
ku� vk2 ; u; v 2 H;

we also have

Re h(T � � �I) (�I � T )x; xi � 1

4
k[(T � � �I) (�I � T )� I]xk2 (2.89)

for any x 2 H; kxk = 1; which gives, by taking the supremum, the last part
of (2.84).
The proof of (2.85) follows by the representation (2.74) in Corollary 49

and by the inequalities (2.87) �(2.89) above in which we take the in�mum
over x 2 H; kxk = 1:

Corollary 56 Let T 2 B (H) and ;� 2 K. If C;� (T ) is accretive, then

0 � 1

4
j�� j2 � `2

�
T �  + �

2
� I
�

(2.90)

�

8>>><>>>:
1
2w
��
��I � T �

�
(�I � T ) + (T � � �I) (T � I)

�
;

w [(T � � �I) (�I � T )] ;

1
4 k(T

� � �I) (�I � T )� Ik2

and

0 � 1

4
j�� j2 �

T �  + �

2
I

2 (2.91)

�

8>>><>>>:
1
2m
��
��I � T �

�
(�I � T ) + (T � � �I) (T � I)

�
;

m [(T � � �I) (�I � T )] ;

1
4`
2 [(T � � �I) (�I � T )� I] ;

respectively.

2.3.4 Reverse Inequalities

The inequality kTk � w (T ) for any bounded linear operator T 2 B (H)
is a fundamental result in Operator Theory and therefore it is useful to
know some upper bounds for the nonnegative quantity kTk �w (T ) under
various assumptions for the operator T . In our recent paper [13] several such
inequalities have been obtained. In order to establish some new results that
would complement the inequalities outlined in the Introduction, we need
the following lemma which provides two simple identities of interest:
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Lemma 57 (Dragomir [17], 2007) For any T 2 B (H) and ;� 2 K
we have

kTxk2 � jhTx; xij2 (2.92)

=

�T �  + �

2
� I
�
x

2 � ������T �  + �

2
� I
�
x; x

�����2
= Re [h(�I � T )x; xi hx; (T � I)xi]� Re h(�I � T )x; (T � I)xi ;

for each x 2 H; kxk = 1:

Proof. The �rst identity is obvious by direct calculation. The second iden-
tity can be obtained, for instance, by subtracting the identity (2.72) from
(2.63).
As a natural application of the above lemma in providing upper bounds

for the nonnegative quantity kTk2 � w2 (T ) ; T 2 B (H) ; we can state the
following result:

Theorem 58 (Dragomir [17], 2007) For any T 2 B (H) and ;� 2 K
we have

(0 �) kTk2 � w2 (T ) (2.93)

�
T �  + �

2
I

2 �m2

�
T �  + �

2
� I
�

=
1

4
j�� j2 �m2

�
T �  + �

2
� I
�
� vi [(T � � �I) (�I � T )] :

Proof. From the �rst identity in (2.92) we have

kTxk2 = jhTx; xij2 +
�T �  + �

2
� I
�
x

2 (2.94)

�
������T �  + �

2
� I
�
x; x

�����2
for any x 2 H; kxk = 1:
Taking the supremum over x 2 H; kxk = 1 and utilizing the fact that

sup
kxk=1

"
jhTx; xij2 +

�T �  + �

2
� I
�
x

2 � ������T �  + �

2
� I
�
x; x

�����2
#

� sup
kxk=1

jhTx; xij2 + sup
kxk=1

�T �  + �

2
� I
�
x

2
� inf
kxk=1

������T �  + �

2
� I
�
x; x

�����2
= w2 (T ) +

�T �  + �

2
� I
�
x

2 �m2

�
T �  + �

2
� I
�
;
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we deduce the �rst part of (2.93).
The second part follows by the identity (2.74).

Remark 59 Utilising the inequality (2.77) in Theorem 52 we can obtain
from (2.93) the following result:

(0 �) kTk2 � w2 (T ) (2.95)

� �vi [(T � � �I) (�I � T )] +

8<:
1
2w

2
e (�I � T; T � I) ;

w (�I � T )w (T � I) ;

which holds true for each T 2 B (H) and ;� 2 K.
Since m2

�
T � +�

2 I
�
� 0, hence we also have the general inequality

(0 �) kTk2 � w2 (T ) (2.96)

� 1

4
j�� j2 � vi [(T � � �I) (�I � T )] ;

for any T 2 B (H) and ;� 2 K.

Theorem 58 admits the following particular case that provides a simple
reverse inequality for kTk � w (T ) under some appropriate assumptions
for the operator T that have been considered in the introduction and are
motivated by earlier results:

Corollary 60 Let T 2 B (H) and ;� 2 K, c 2 R: If the composite oper-
ator C;� (T ) is c2�accretive, then:

(0 �) kTk2 � w2 (T ) (2.97)

� 1

4
j�� j2 � c2 �m2

�
T �  + �

2
� I
�
:

The proof is obvious by the �rst part of the inequality (2.93) and by
Lemma 50 which states that C;� (T ) is c2�accretive if and only if the
inequality (2.73) holds true.

Remark 61 From (2.97) we can deduce the following reverse inequalities
which are coarser, but perhaps more useful when the terms in the upper
bounds are known:

(0 �) kTk2 � w2 (T ) (2.98)

� �c2 +

8>>><>>>:
1
4 j�� j

2
;

1
2w

2
e (�I � T; T � I) ;

w (�I � T )w (T � I) :
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In particular, if C;� (T ) is accretive, then the following inequalities can be
stated:

(0 �) kTk2 � w2 (T ) (2.99)

� 1

4
j�� j2 �m2

�
T �  + �

2
� I
�

�

8>>><>>>:
1
4 j�� j

2
;

1
2w

2
e (�I � T; T � I) ;

w (�I � T )w (T � I) :

Remark 62 If N � n > 0 and the composite operator Cn;N (T ) is c2�accretive
or, su¢ ciently, self-adjoint and positive de�nite with the constant c2 � 0;
then we have the inequalities:

(0 �) kTk2 � w2 (T ) (2.100)

� 1

4
(N � n)2 � c2 �m2

�
T �  + �

2
� I
�

� �c2 +

8>>><>>>:
1
4 (N � n)2 ;

1
2w

2
e (NI � T; T � nI) ;

w (NI � T )w (T � nI) :

Remark 63 If the operator T on the scalars ;� from the statement of
Corollary 60 have in addition the property that������T �  + �

2
� I
�
x; x

����� � d for each x 2 H; kxk = 1; (2.101)

where d > 0 is given, then by (2.97) we also have

(0 �) kTk2 � w2 (T ) � 1

4
j�� j2 � c2 � d2: (2.102)

We notice that a su¢ cient condition for (2.101) to hold is that the operator
T � +�

2 � I be d�accretive.

Remark 64 Finally, we note that if the operator Cn;N (T ) is accretive,
(or su¢ ciently self-adjoint and positive), then we have the following reverse
inequalities:

(0 �) kTk2 � w2 (T ) �

8>>><>>>:
1
4 (N � n)2 ;

1
2w

2
e (NI � T; T � nI) ;

w (NI � T )w (T � nI) :

(2.103)
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2.4 Inequalities for the Maximum of the Real Part

2.4.1 Introduction

For a bounded linear operator T on the complex Hilbert space, consider the
maximum and the minimum of the spectrum of the real part of T denoted
by [18]

vs(i) (T ) := sup
kxk=1

�
inf

kxk=1

�
Re hTx; xi = �max(min) (Re (T )) :

The following properties are obvious by the de�nition:

(a) vs (�T ) = �vi (T ) ; T 2 B (H) ;

(aa) vi (T ) � 0 for accretive operators on H;

(aaa) vs(i) (A+B) � (�) vs(i) (A) + vs(i) (B) for any A;B 2 B (H) ;

(av) maxfjvi (A)j ; jvs (A)jg = w (Re(A)) � w (A) for all A 2 B (H) :

More properties which connect these functionals with the semi-inner
products generated by the operator norm and the numerical radius are
outlined in the next section. An improvement of Lumer�s classical result
and some bounds are also given.
Motivated by the above results, we establish in the present section some

upper bounds for the nonnegative quantities kAk�vs (�A) (� kAk�w (A) �
0) and w (A)�vs (�A) (� 0); for some � 2 C, j�j = 1 under suitable assump-
tions on the involved operator A 2 B (H) : Lower bounds for the quantities
vs(�A)
kAk

�
� w(A)

kAk � 1
�
and vs(�A)

w(A) (� 1) are also given. They improve some
results from the earlier paper [13]. Inequalities in terms of the semi-inner
products that can naturally be associated with the operator norm and the
numerical radius are provided as well.
For other recent results concerning inequalities between the operator

norm and numerical radius see the papers [13], [16], [12], [39] and [38].
Lower bounds for w (A) are in the �nite-dimensional case studied in [43].
For classical results, see the books [33], [34] and the references therein.

2.4.2 Preliminary Results for Semi-Inner Products

In any normed linear space (E; k�k) ; since the function f : E ! R, f (x) =
1
2 kxk

2 is convex, one can introduce the following semi-inner products (see
for instance [10]):

hx; yii := lim
t!0�

ky + txk2 � kyk2

2t
; (2.104)

hx; yis := lim
t!0+

ky + txk2 � kyk2

2t
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where x; y are vectors in E: The mappings h�; �is and h�; �ii are called the
superior respectively the inferior semi-inner product associated with the
norm k�k :
For the sake of completeness we list here some properties of h�; �is(i) that

will be used in the sequel.
We have, for p; q 2 fi; sg and p 6= q; that

(i) hx; xip = kxk
2 for any x 2 E;

(ii) hix; xip = hx; ixip = 0 for any x 2 E;

(iii) h�x; yip = � hx; yip = hx; �yip for any � � 0 and x; y 2 E;

(iv) h�x; yip = hx;�yip = �hx; yiq for any x; y 2 E;

(v) hix; yip = �hx; iyip for any x; y 2 E;

(vi) The following Schwarz type inequality holds:���hx; yip��� � kxk kyk ;
for any x; y 2 E;

(vii) The following identity holds:

h�x+ y; xip = � kxk2 + hy; xip ,

for any � 2 R and x; y 2 E;

(viii) The following sub(super)-additivity property holds:

hx+ y; zip � (�) hx; zip + hy; zip ;

for any x; y; z 2 E, where the sign ���applies for the superior semi-
inner product, while the sign ���applies for the inferior one;

(ix) The following continuity property is valid:���hx+ y; zip � hy; zip��� � kxk kzk ;
for any x; y; z 2 E;

(x) From the de�nition we have the inequality

hx; yii � hx; yis

for any x; y 2 E:
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In the Banach algebra B (H) we can associate to both the operator norm
k�k and the numerical radius w (�) the following semi-inner products:

hA;Bis(i);n := lim
t!0+(�)

kB + tAk2 � kBk2

2t
(2.105)

and

hA;Bis(i);w := lim
t!0+(�)

w2 (B + tA)� w2 (B)
2t

(2.106)

respectively, where A;B 2 B (H) :
It is obvious that the semi-inner products h�; �is(i);n(w) de�ned above have

the usual properties of such mappings de�ned on general normed spaces
and some special properties that will be speci�ed in the following.
As a speci�c property that follows by the well known inequality between

the norm and the numerical radius of an operator, i.e., w (T ) � kTk for
any T 2 B (H) ; we have

hT; Iii;n � hT; Iii;w (�) hT; Iis;w � hT; Iis;n (2.107)

for any T 2 B (H) ; where I is the identity operator on H:We also observe
that

hT; Iis(i);n = lim
t!0+(�)

kI + tTk � 1
t

and

hT; Iis(i);w = lim
t!0+(�)

w (I + tT )� 1
t

for any T 2 B (H) :
It may be of interest to note that hT; Iis;n and hT; Iis;w are also called

the logarithmic norms of T corresponding to k�k and w respectively. Log-
arithmic norms corresponding to a given norm have been rather widely
studied (mainly in the fnite-dimensional case); see [53].
The following result is due to Lumer and was obtained originally for the

numerical radius of operators in Banach spaces:

Theorem 65 (Lumer [42], 1961) If T 2 B (H) ; then hT; Iip;n = vp (T ) ;
p 2 fs; ig :

The following simple result provides a connection between the semi-inner
products generated by the operator norm and by the numerical radius as
follows:

Theorem 66 (Dragomir [18], 2008) For any T 2 B (H) ; we have:

hT; Iip;n = hT; Iip;w ; (2.108)

where p 2 fs; ig :
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Proof. Let us give a short proof for the case p = s:
Suppose x 2 H; kxk = 1: Then for t > 0 we obviously have:

Re hTx; xi = Re hx+ tTx; xi � 1
t

(2.109)

� jhx+ tTx; xij � 1
t

� w (I + tT )� 1
t

:

Taking the supremum over x 2 H; kxk = 1; we get

vs (T ) = sup
kxk=1

Re hTx; xi � w (I + tT )� 1
t

for any t > 0; which implies, by letting t! 0+ that

sup
kxk=1

Re hTx; xi � hT; Iis;w ; (2.110)

for any T 2 B (H) :
By Lumer�s theorem we deduce then hT; Iis;n � hT; Iis;w and since, by

(2.107) we have hT; Iis;w � hT; Iis;n the equality (2.108) is obtained.
Now, on employing the properties of the semi-inner products outlined

above, we can state the following properties as well:

(va) vs(i) (T ) = hT; Iis(i);w for any T 2 B (H) ;

(vaa) vs(i) (T ) = vs(i) (�I + T )� � for any � 2 R and T 2 B (H) ;

(vaaa)
��vs(i) (T +B)� vs(i) (B)�� � w (T ) for any T;B 2 B (H) :

The following inequalities may be stated as well:

Theorem 67 (Dragomir [18], 2008) For any T 2 B (H) and � 2 C we
have

1

2

h
kTk2 + j�j2

i
� vs

�
��T
�

(2.111)

�

8><>:
1
2

h
kTk2 + j�j2

i
� 1

2 kT � �Ik
2
;

1
4

h
kT + �Ik2 � kT � �Ik2

i
;

and

1

2

h
w2 (T ) + j�j2

i
� vs

�
��T
�

(2.112)

�

8<:
1
2

h
w2 (T ) + j�j2

i
� 1

2w
2 (T � �I) ;

1
4

�
w2 (T + �I)� w2 (T � �I)

�
:

respectively.
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Proof. Let x 2 H; kxk = 1: Then, obviously

0 � kTxk2 � 2Re
�

��Tx; x

��
+ j�j2 = k(T � �I)xk2 � kT � �Ik2 ;

which is equivalent with

1

2

h
kTxk2 + j�j2

i
� 1
2
kT � �Ik2 � Re



��Tx; x

�
(2.113)

� 1

2

h
kTxk2 + j�j2

i
;

for any x 2 H; kxk = 1:
Taking the supremum over kxk = 1 we get the �rst inequality in (2.111)

and the one from the �rst branch in the second.
For x 2 H; kxk = 1 we also have that

kTx+ �xk2 = kTx� �xk2 + 4Re


��Tx; x

�
; (2.114)

which, on taking the supremum over kxk = 1; will produce the second part
of the second inequality in (2.111).
The second inequality may be proven in a similar way. The details are

omitted.
It is well known, in general, that the semi-inner products h�; �is(i) de�ned

on Banach spaces are not commutative. However, for the Banach algebra
B (H) we can point out the following connection between hI; T is(i);n(w) and
the quantities vi (T ) and vs (T ) ; where T 2 B (H) :

Corollary 68 For any T 2 B (H) we have

(vi (T ) =) hT; Iii;n �
1

2

h
hI; T is;n + hI; T ii;n

i
(2.115)

� hT; Iis;n (= vs (T )) :

and

(vi (T ) =) hT; Iii;w �
1

2

h
hI; T is;w + hI; T ii;w

i
(2.116)

� hT; Iis;w (= vs (T )) :

Proof. We have from the second part of the second inequality in (2.111)
that

1

2

"
kT + tIk2 � kTk2

2t
� kT � tIk

2 � kTk2

2t

#
� vs (T ) (2.117)

for any t > 0:
Taking the limit over t! 0+ and noticing that

lim
t!0+

kT � tIk2 � kTk2

2t
= h�I; T is;n = �hI; T ii;n ;
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we get the second inequality in (2.115).
Now, writing the second inequality in (2.115) for �T; we get

vs (�T ) �
1

2

h
hI;�T is;n + hI;�T ii;n

i
= �1

2

h
hI; T is;n + hI; T ii;n

i
;

which is equivalent with the �rst part of (2.115).
Since w (T ) � kTk ; hence the �rst inequality in (2.112) provides a better

upper bound for vs
�
��T
�
than the �rst inequality in (2.111).

2.4.3 Reverse Inequalities in Terms of the Operator Norm

The following result concerning reverse inequalities for the maximum of
the spectrum of the real part and the operator norm of T 2 B (H) may be
stated:

Theorem 69 (Dragomir [18], 2008) For any T 2 B (H) n f0g and � 2
Cn f0g we have the inequality:

(0 � kTk � w (T ) �) kTk � vs
� ��

j�jT
�

(2.118)

� 1

2 j�j kT � �Ik
2
:

In addition, if kT � �Ik � j�j ; then we have:s
1�

 1�T � I
2 � vs

�
��
j�jT

�
kTk

�
� w (T )

kTk � 1
�

(2.119)

and �
0 � kTk2 � w2 (T ) �

�
kTk2 � v2s

� ��

j�jT
�

(2.120)

� 2
�
j�j �

q
j�j2 � kT � �Ik2

�
vs

� ��

j�jT
�

�
� 2

�
j�j �

q
j�j2 � kT � �Ik2

�
w (T )

�
;

respectively.

Proof. Utilizing the property (av), we have

w (T ) = w

� ��

j�jT
�
�
����vs� ��

j�jT
����� � vs

� ��

j�jT
�
;
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for any � 2 Cn f0g and the �rst inequality in (2.118) is proved.
By the arithmetic mean-geometric mean inequality we have

1

2

h
kTk2 + j�j2

i
� j�j kTk ;

which, by (2.111) provides

vs
�
��T
�
� j�j kTk � 1

2
kT � �Ik2

that is equivalent with the second inequality in (2.118).
Utilizing the second part of the inequality (2.111) and under the assump-

tion that kT � �Ik � j�j we can also state that

vs
�
��T
�
� 1

2

"
kTk2 +

�q
j�j2 � kT � �Ik2

�2#
: (2.121)

By the arithmetic mean-geometric mean inequality we have now:

1

2

"
kTk2 +

�q
j�j2 � kT � �Ik2

�2#
(2.122)

� kTk
q
j�j2 � kT � �Ik2;

which, together with (2.121) implies the �rst inequality in (2.119).
The second part of (2.119) follows from (av).
From the proof of Theorem 67 we can state that

kTxk2 + j�j2 � 2Re


��Tx; x

�
+ r2; kxk = 1 (2.123)

where we denoted r := kT � �Ik � j�j :We also observe, from (2.123), that
Re


��Tx; x

�
> 0 for x 2 H; kxk = 1:

Now, if we divide (2.123) by Re
D
��
j�jTx; x

E
> 0; we get

kTxk2

Re
D
��
j�jTx; x

E � 2 j�j+ r2

Re
D
��
j�jTx; x

E � j�j2

Re
D
��
j�jTx; x

E (2.124)

for kxk = 1:
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If in this inequality we subtract from both sides the quantity Re
D
��
j�jTx; x

E
;

then we get

kTxk2

Re
D
��
j�jTx; x

E � Re� ��

j�jTx; x
�

� 2 j�j+ r2 � j�j2

Re
D
��
j�jTx; x

E � Re� ��

j�jTx; x
�

= 2 j�j �

0BB@
q
j�j2 � r2r

Re
D
��
j�jTx; x

E �
s
Re

� ��

j�jTx; x
�1CCA

2

� 2
q
j�j2 � r2

� 2
�
j�j �

q
j�j2 � r2

�
;

which obviously implies that

kTxk2 �
�
Re

� ��

j�jTx; x
��2

(2.125)

+ 2

�
j�j �

q
j�j2 � r2

�
Re

� ��

j�jTx; x
�

for any x 2 H; kxk = 1:
Now, taking the supremum in (2.125) over x 2 H; kxk = 1; we deduce

the second inequality in (2.120). The other inequalities are obvious and the
theorem is proved.
The following lemma is of interest in itself.

Lemma 70 (Dragomir [18], 2008) For any T 2 B (H) and ;� 2 C
we have:

vi [(T
� � �I) (�I � T )] = 1

4
j�� j2 �

T �  + �

2
� I
2 : (2.126)

Proof. We observe that, for any u; v; y 2 H we have:

Re hu� y; y � vi = 1

4
ku� vk2 �

y � u+ v

2

2 : (2.127)

Now, choosing u = �x; y = Tx; v = x with x 2 H; kxk = 1 we get

Re h�x� Tx; Tx� xi

=
1

4
j�� j2 �

Tx�  + �

2
x

2 ;
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giving

inf
kxk=1

Re h(T � � �I) (�I � T )x; xi

=
1

4
j�� j2 � sup

kxk=1

Tx�  + �

2
x

2 ;
which is equivalent with (2.126).
The following result providing a characterization for a class of operators

that will be used in the sequel is incorporated in:

Lemma 71 For T 2 B (H) ; ;� 2 C with � 6=  and q 2 R, the following
statements are equivalent:

(i) The operator (T � � �I) (�I � T ) is q2�accretive;

(ii) We have the norm inequality:T �  + �

2
� I
2 � 1

4
j�� j2 � q2: (2.128)

The proof is obvious by Lemma 70 and the details are omitted.
Since the self-adjoint operators B satisfying the condition B � mI in the

operator partial under ���, are m�accretive, then, a su¢ cient condition
for C;� (T ) := (T � � �I) (�I � T ) to be q2�accretive is that C;� (T ) is
self-adjoint and C;� (T ) � q2I:

Corollary 72 Let T 2 B (H) ; ;� 2 C with � 6= � and q 2 R. If the
operator C;� (T ) is q2�accretive, then

(0 � kTk � w (T ) �) kTk � vs
� �� + �

j� + j � T
�

(2.129)

� 1

j + �j

�
1

4
j�� j2 � q2

�
:

IfM;m are positive real numbers withM > m and the operator Cm;M (T ) =
(T � �mI) (MI � T ) is q2�accretive, then

(0 � kTk � w (T ) �) kTk � vs (T ) (2.130)

� 1

M +m

�
1

4
(M �m)2 � q2

�
:

We observe that for q = 0; i.e., if C;� (T ) respectively Cm;M (T ) are
accretive, then we obtain from (2.129) and (2.130) the inequalities:

(0 � kTk � w (T ) �) kTk � vs
� �� + �

j� + j � T
�
� j�� j2

4 j� + j (2.131)
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and

(0 � kTk � w (T ) �) kTk � vs (T ) �
(M �m)2

4 (M +m)
(2.132)

respectively, which provide re�nements of the corresponding inequalities
(2.7) and (2.34) from [13].
For any bounded linear operator T we know that w(T )

kTk � 1
2 ; therefore

(2.119) would produce a useful result only if

1

2
�

s
1�

 1�T � I
2;

which is equivalent with

kT � �Ik �
p
3

2
j�j : (2.133)

In conclusion, for T 2 B (H) n f0g and � 2 Cn f0g satisfying the condition
(2.133), the inequality (2.119) provides a re�nement of the classical result:

1

2
� w (T )

kTk ; T 2 B (H) : (2.134)

Corollary 73 Assume that � 6= 0 (or T 6= 0): If kT � �Ik � j�j, then we
have �

0 � kTk2 � w2 (T ) �
�
kTk2 � v2s

� ��

j�j � T
�

(2.135)

� kTk2 kT � �Ik2

j�j2
:

The proof follows by the inequality (2.119). The details are omitted.
The following corollary may be stated as well:

Corollary 74 Let T 2 B (H) n f0g and ;� 2 C, � 6= �; q 2 R so that
Re (��) + q2 � 0: If C;� (T ) is q2�accretive, then

2
p
Re (��) + q2

j� + j �
vs

�
��+�
j�+j � T

�
kTk

�
� w (T )

kTk � 1
�

(2.136)

and �
0 � kTk2 � w2 (T ) �

�
kTk2 � v2s

� �� + �

j� + j � T
�

(2.137)

� 2 kTk2

j� + j

�
1

4
j�� j2 � q2

� 
� kTk2 j�� j2

2 j� + j

!
:
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If ;� and q are such that j� + j � 4
p
Re (��) + q2; then (2.136) will

provide a re�nement of the classical result (2.134).
If M > m � 0 and the operator Cm;M (T ) is q2�accretive, then

2
p
Mm+ q2

m+M
� vs (T )

kTk

�
� w (T )

kTk � 1
�

(2.138)

and �
0 � kTk2 � w2 (T ) �

�
kTk2 � v2s (T ) (2.139)

� 2 kTk2

m+M

�
1

4
(M �m)2 � q2

�
:

We also observe that, for q = 0; i.e., if C;� (T ) respectively Cm;M (T )
are accretive, then we obtain:

2
p
Re (��)

j� + j �
vs

�
��+�
j�+j � T

�
kTk

�
� w (T )

kTk

�
; (2.140)

2
p
Mm

m+M
� vs (T )

kTk

�
� w (T )

kTk

�
; (2.141)

�
0 � kTk2 � w2 (T ) �

�
kTk2 � v2s

� �� + �

j� + j � T
�

(2.142)

� kTk2 j�� j2

2 j� + j

and �
0 � kTk2 � w2 (T ) �

�
kTk2 � v2s (T ) �

kTk2 (M �m)2

2 (m+M)
(2.143)

respectively, which provides re�nements of the inequalities (2.17), (2.31)
and (2.20) from [13], respectively. The inequality between the �rst and the
last term in (2.143) was not stated in [13].

Corollary 75 Let T 2 B (H) ; ;� 2 C, � 6= �; q 2 R so that Re (��) +
q2 � 0: If C;� (H) is q2�accretive, then

(0 � kTk2 � w2 (T ) �) kTk2 � v2s
� �� + �

j� + j � T
�

(2.144)

�
�
j� + j � 2

p
Re (��) + q2

�
vs

� �� + �

j� + j � T
�

�
�
�
j� + j � 2

p
Re (��) + q2

�
w (T )

�
:
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The proof follows by the last part of Theorem 69. The details are omitted.
If M > m � 0 and the operator Cm;M (T ) is q2�accretive, then

(0 � kTk2 � w2 (T ) �) kTk2 � v2s (T ) (2.145)

�
�
M +m� 2

p
Mm+ q2

�
vs (T )�

�
�
M +m� 2

p
Mm+ q2

�
w (T )

�
:

Finally, for q = 0; i.e., if C;� (T ) respectively Cm;M (T ) are accretive,
then we obtain from (2.144) and (2.145) some re�nements of the inequalities
(2.29) and (2.33) from [13].

2.4.4 Reverse Inequalities in Terms of the Numerical Radius

It is well known that the following lower bound for the numerical radius
w (T ) holds (see (av) from Introduction)

jvp (T )j � w (T ) ; p 2 fs; ig ; (2.146)

for any T a bounded linear operator, where, as in the introduction,

vs(i) (T ) = hT; Iis(i) = sup
kxk=1

�
inf

kxk=1

�
Re hTx; xi (2.147)

= �max(min) (Re (T )) :

It is then a natural problem to investigate how far the left side of (2.146)
from the numerical radius is?
We start with the following result:

Theorem 76 (Dragomir [18], 2008) For any T 2 B (H) n f0g and � 2
Cn f0g we have�

0 � w (T )�
����vs� ��

j�jT
����� ��w (T )� vs� ��

j�jT
�

(2.148)

� 1

2 j�jw
2 (T � �I)

�
� 1

2 j�j kT � �Ik
2

�
:

Moreover, if w (T � �I) � j�j ; then we have:

s
1� w2

�
1

�
T � I

�
�
vs

�
��
j�jT

�
w (T )

0@�
���vs � ��

j�jT
����

w (T )
� 1

1A (2.149)
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and

(0 �)w2 (T )� v2s
� ��

j�jT
�

(2.150)

� 2
�
j�j �

q
j�j2 � w2 (T � �I)

�
vs

� ��

j�jT
�

�
� 2

�
j�j �

q
j�j2 � w2 (T � �I)

�
w (T )

�
;

respectively

Proof. The argument is similar with the one from Theorem 69 and the
details are omitted.
The following lemma is of interest.

Lemma 77 (Dragomir [18], 2008) For any T 2 B (H) and ;� 2 C
we have

inf
kxk=1

Re [h(�I � T )x; xi hx; (T � I)xi] (2.151)

=
1

4
j�� j2 � w2

�
T �  + �

2
� I
�
:

Proof. We observe that for any u; v; y complex numbers, we have the ele-
mentary identity:

Re [(u� y) (�y � �v)] = 1

4
ju� vj2 �

����y � u+ v

2

����2 : (2.152)

If we choose in (2.152) u = �; y = hTx; xi and v =  with x 2 H; kxk = 1;
then by (2.152) we have:

Re [h(�I � T )x; xi hx; (T � I)xi] (2.153)

=
1

4
j�� j2 �

������T �  + �

2
� I
�
x; x

�����2
for any x 2 H; kxk = 1:
Now, taking the in�mum over kxk = 1 in (2.153) we deduce the desired

identity (2.151).
We observe that for any x 2 H; kxk = 1 we have

� (T ; ;�) (x) := Re [h(�I � T )x; xi hx; (T � I)xi]
= (Re�� Re hTx; xi) (Re hTx; xi � Re )

+ (Im�� Im hTx; xi) (Im hTx; xi � Im )
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and therefore a su¢ cient condition for � (T ; ;�) (x) to be nonnegative for
any x 2 H; kxk = 1 is that:8<: Re� � Re hTx; xi � Re ;

Im� � Im hTx; xi � Im ;
x 2 H; kxk = 1: (2.154)

Now, if we denote by �i (T ; ;�) := infkxk=1 � (T ; ;�) (x) ; then we can
state the following lemma.

Lemma 78 (Dragomir [18], 2008) For T 2 B (H) ; �;� 2 C, the fol-
lowing statements are equivalent:

(i) �i (T ;�; �) � 0;

(ii) w
�
T � �+�

2 � I
�
� 1

2 j�� �j :

Utilizing the above results we can provide now some particular reverse
inequalities that are of interest.

Corollary 79 Let T 2 B (H) and �;� 2 C with � 6= �� such that either
(i) or (ii) of Lemma 78 holds true. Then�

0 � w (T )�
����vs� ��+ ��

j�+�j � T
����� ��w (T )� vs� ��+ ��

j�+�j � T
�

(2.155)

� 1

4
� j�� �j

2

j�+ �j :

If N > n > 0 are such that either �i (T ;n;N) � 0 or w
�
T � n+N

2 � I
�
�

1
2 (N � n) for a given operator T 2 B (T ) ; then

(0 � w (T )� jvs (T )j �)w (T )� vs (T ) �
1

4
� (N � n)2

N + n
: (2.156)

An equivalent additive version of (2.149) is incorporated in the following:

Corollary 80 Assume that � 6= 0 (or T 6= 0): If w (T � �I) � j�j, then
we have

(0 �)w2 (T )� w2s
� ��

j�jT
�
� w2 (T )w2 (T � �I)

j�j2
(2.157)0B@�

8><>:
kTk2w2(T��I)

j�j2

w2(T )kT��Ik2
j�j2

� kTk2 kT � �Ik2

j�j2

1CA :

The following variant of (2.149) can be perhaps more convenient:
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Corollary 81 Let T 2 B (H) n f0g and �;� 2 C with � 6= ��. If Re
�
���
�
>

0 and either the statement (i) or equivalently (ii) from Lemma 78 holds
true, then:

2
q
Re
�
���
�

j�+�j �
vs

�
��+��
j�+�j � T

�
w (T )

0@�
���vs � ��+��

j�+�j � T
����

w (T )
� 1

1A (2.158)

and

(0 �)w2 (T )� v2s
� ��+ ��

j�+�j � T
�

(2.159)

� 1

4
� j�� �j

2

Re
�
���
�v2s � ��+ ��

j�+�j � T
�

 
� 1

4
� j�� �j

2

Re
�
���
�w2 (T ) � 1

4
� j�� �j

2

Re
�
���
� kTk2! :

The proof follows by Theorem 76 and the details are omitted.
If N > n > 0 are such that either �i (T ;n;N) � 0 or, equivalently

w

�
T � n+N

2
� I
�
� 1

2
(N � n) ; (2.160)

then
2
p
nN

n+N
� vs (T )

w (T )
(� 1) ; (2.161)

(0 �)w (T )� vs (T ) �

�p
N �

p
n
�2

2
p
nN

vs (T ) (2.162)0B@�
�p

N �
p
n
�2

2
p
nN

w (T )

1CA
and

(0 �)w2 (T )� v2s (T ) �
(N � n)2

4nN
v2s (T ) (2.163) 

� (N � n)2

4nN
w2 (T )

!
:

Finally, we can state the following result as well:
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Corollary 82 Let T 2 B (H) ; �;� 2 C such that Re
�
���
�
> 0: If either

�i (T ;�;�) � 0 or, equivalently

w

�
T � �+ �

2
� I
�
� 1

2
j�� �j ;

then

(0 �)w2 (T )� v2s
� ��+ ��

j�+�j � T
�

(2.164)

�
�
j�+�j � 2

q
Re
�
���
��
vs

� ��+ ��

j�+�j � T
�

�
�
�
j�+�j � 2

q
Re
�
���
��
w (T )

�
:

Moreover, if N > n > 0 are such that �i (T ;n;N) � 0 , then we have
the simpler inequality:

(0 �)w2 (T )� v2s (T ) �
�p

N �
p
n
�2
vs (T ) (2.165)�

�
�p

N �
p
n
�2
w (T )

�
:

2.5 New Inequalities of the Kantorovich Type

2.5.1 Some Classical Facts

Let (H; h�; �i) be a Hilbert space over the real or complex number �eld
K, B(H) the C�-algebra of all bounded linear operators de�ned on H and
T 2 B(H): If T is invertible, then we can de�ne the Kantorovich functional
as

K (T ;x) := hTx; xi


T�1x; x

�
(2.166)

for any x 2 H; kxk = 1:
As pointed out by Greub and Rheinboldt in their seminal paper [32], if

M > m > 0 and for the selfadjoint operator T we have

MI � T � mI (2.167)

in the partial operator order of B(H), where I is the identity operator,
then the Kantorovich operator inequality holds true

1 � K (T ;x) � (M +m)2

4mM
; (2.168)

for any x 2 H; kxk = 1:
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An equivalent additive form of this result is incorporated in:

0 � K (T ;x)� 1 � (M �m)2
4mM

; (2.169)

for any x 2 H; kxk = 1:
For results related to the Kantorovich operator inequality we recommend

the classical works of Strang [57], Diaz & Metcalf [3], Householder [35],
Mond [44], and Mond & Shisha [47]. Other results have been obtained
by Mond & Peµcaríc [45], [46], Fujii et al. [21], [22], Spain [54], Nakamoto
and Nakamura [48], Furuta [25], [26], Tsukada & Takahasi [58] and more
recently by Yamazaki [61], Furuta & Giga [27], Fujii & Nakamura [23], [24]
and others.
Due to the important applications of the original Kantorovich inequality

for matrices [36] in Statistics [37], [56], [40], [51], [59], [55], [62], [50], [60],
[41] and Numerical Analysis [29], [30], [52], [1], [28], any new inequality of
this type will have a �ow of consequences into other areas.
Motivated by interests in both pure and applied mathematics outlined

above, we establish in this section some new inequalities of Kantorovich
type. They are shown to hold for larger classes of operators and subsets
of complex numbers than considered before in the literature and provide
re�nements of the classical result in the case when the involved operator T
satis�es the usual condition (2.167). As natural tools in deriving the new
results, the recent Grüss type inequalities for vectors in inner products
obtained by the author in [5] �[7] are utilized. In the process, several new
reverse inequalities for the numerical radius of a bounded linear operator
are derived as well.

2.5.2 Some Grüss�Type Inequalities

The following lemmas, that are of interest in their own right, collect some
Grüss type inequalities for vectors in inner product spaces obtained earlier
by the author:

Lemma 83 Let (H; h�; �i) be an inner product space over the real or com-
plex number �eld K, u; v; e 2 H; kek = 1; and �; �; ; � 2 K such that

Re h�e� u; u� �ei � 0;Re h�e� v; v � ei � 0 (2.170)

or equivalently,u� �+ �

2
e

 � 1

2
j� � �j ;

v �  + �

2
e

 � 1

2
j� � j : (2.171)
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Then

jhu; vi � hu; ei he; vij (2.172)

� 1

4
j� � �j j� � j

�

8><>:
[Re h�e� u; u� �eiRe h�e� v; v � ei]

1
2 ;���hu; ei � �+�

2

��� ���hv; ei � +�
2

��� :
The �rst inequality has been obtained in [6] (see also [11, p. 44]) while

the second result was established in [8] (see also [11, p. 90]). They provide
re�nements of the earlier result from [5] where only the �rst part of the
bound, i.e., 14 j� � �j j� � j has been given. Notice that, as pointed out
in [8], the upper bounds for the Grüss functional incorporated in (2.172)
cannot be compared in general, meaning that one is better than the other
depending on appropriate choices of the vectors and scalars involved.
Another result of this type is the following one:

Lemma 84 With the assumptions in Lemma 83 and if Re (��) > 0;Re (�) >
0 then

jhu; vi � hu; ei he; vij (2.173)

�

8>>>><>>>>:
1
4

j���jj��j
[Re(��) Re(�)]

1
2
jhu; ei he; vij ;h�

j�+ �j � 2 [Re (��)]
1
2

��
j� + j � 2 [Re (�)]

1
2

�i 1
2

� [jhu; ei he; vij]
1
2 :

The �rst inequality has been established in [9] (see [11, p. 62]) while the
second one can be obtained in a canonical manner from the reverse of the
Schwarz inequality given in [15]. The details are omitted.
Finally, another inequality of Grüss type that has been obtained in [7]

(see also [11, p. 65]) can be stated as:

Lemma 85 With the assumptions in Lemma 83 and if � 6= ��; � 6= �
then

jhu; vi � hu; ei he; vij (2.174)

� 1

4

j� � �j j� � j
[j� + �j j� + j]

1
2

[(kuk+ jhu; eij) (kvk+ jhv; eij)]
1
2 :

2.5.3 Operator Inequalities of Grüss Type

For the complex numbers �; � and the bounded linear operator T we de�ne
the following transform

C�;� (T ) := (T
� � �I) (�I � T ) ; (2.175)
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where by T � we denote the adjoint of T .
We list some properties of the transform C�;� (�) that are useful in the

following:

(i) For any �; � 2 C and T 2 B(H) we have:

C�;� (I) = (1� �) (� � 1) I; (2.176)

C�;� (T ) = � (�I � T )� (�I � T ) ;

C�;� (T ) = jj2 C�
 ;

�

(T ) for each  2 Cn f0g ; (2.177)

[C�;� (T )]
�
= C�;� (T ) (2.178)

and
C�;� (T

�)� C�;� (T ) = T �T � TT �: (2.179)

(ii) The operator T 2 B(H) is normal if and only if C�;� (T �) = C�;� (T )
for each �; � 2 C.

(iii) If T 2 B(H) is invertible and �; � 2 Cn f0g ; then�
T�1

��
C�;� (T )T

�1 = ��C 1
� ;

1
�

�
T�1

�
: (2.180)

We recall that a bounded linear operator T on the complex Hilbert space
(H; h�; �i) is called accretive if Re hTy; yi � 0 for any y 2 H:
The following simple characterization result is useful in the following:

Lemma 86 For �; � 2 C and T 2 B(H) the following statements are
equivalent:
(i) The transform C�;� (T ) is accretive;
(ii) The transform C�;� (T

�) is accretive;
(iii) We have the norm inequalityT � �+ �

2
I

 � 1

2
j� � �j : (2.181)

Proof. The proof of the equivalence "(i), (iii)" is obvious by the equality

Re h(T � � �I) (�I � T )x; xi = 1

4
j� � �j2 �

�T � �+ �

2
I

�
x

2 (2.182)
which holds for any �; � 2 C, T 2 B(H) and x 2 H; kxk = 1:

Remark 87 In order to give examples of operators T 2 B(H) and num-
bers �; � 2 C such that the transform C�;� (T ) is accretive, it su¢ ces to
select a bounded linear operator T and the complex numbers z; w with the
property that kT � zIk � jwj and, by choosing T = T; � = 1

2 (z + w) and
� = 1

2 (z � w) we observe that T satis�es (2.181), i:e:; C�;� (T ) is accretive.
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For two bounded linear operators T;B 2 B(H) and the vector x 2
H; kxk = 1 de�ne the functional

G (T;B;x) := hTx;Bxi � hTx; xi hx;Bxi :

The following result concerning operator inequalities of Grüss type may be
stated:

Theorem 88 (Dragomir [19], 2008) Let T;B 2 B(H) and �; �; ; � 2
K be such that the transforms C�;� (T ) ; C;� (B) are accretive, then

jG (T;B;x)j (2.183)

� 1

4
j� � �j j� � j

�

8><>:
[Re hC�;� (T )x; xiRe hC;� (B)x; xi]

1
2���D�T � �+�

2 I
�
x; x

E��� ���D�B � +�
2 I
�
x; x

E����
� 1

4
j� � �j j� � j

�
;

for any x 2 H; kxk = 1:
If Re (��) > 0;Re (�) > 0 then

jG (T;B;x)j (2.184)

�

8>>>><>>>>:
1
4

j���jj��j
[Re(��) Re(�)]

1
2
jhTx; xi hBx; xij ;h�

j�+ �j � 2 [Re (��)]
1
2

��
j� + j � 2 [Re (�)]

1
2

�i 1
2

� [jhTx; xi hBx; xij]
1
2 ;

for any x 2 H; kxk = 1:
If � 6= ��; � 6= � then

jG (T;B;x)j (2.185)

� 1

4

j� � �j j� � j
[j� + �j j� + j]

1
2

[(kTxk+ jhTx; xij) (kBxk+ jhBx; xij)]
1
2 ;

for any x 2 H; kxk = 1:

The proof follows by Lemmas 83, 84 and 85 on choosing u = Tx; v = Bx
and e = x; x 2 H; kxk = 1:

Remark 89 In order to give examples of operators T 2 B(H) and complex
numbers �; � for which C�;� (T ) is accretive and Re (��) > 0 it is enough
to select in Remark 87 z; w 2 C with jzj > jwj > 0: This follows from
the fact that for � = 1

2 (z + w) and � = 1
2 (z � w) we have Re (��) =

1
4

�
jzj2 � jwj2

�
:
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Remark 90 We observe that

G (T;B�;x) = hBTx; xi � hTx; xi hBx; xi ; x 2 H; kxk = 1

and since, by Lemma 86 the transform C�;� (T ) is accretive if and only if
C�;� (T

�) is accretive, hence in the inequalities (2.183) � (2.185) we can
replace G (T;B;x) by G (T;B�;x) to obtain other Grüss type inequalities
that will be used in the sequel.

In some applications, the case B = T in both quantities G (T;B;x) and
G (T;B�;x) may be of interest. For the sake of simplicity, we denote

G1 (T ;x) := G (T; T ;x) = kTxk2 � jhTx; xij2 � 0

and

G2 (T ;x) := G (T; T �;x) =


T 2x; x

�
� [hTx; xi]2 ;

for x 2 H; kxk = 1: For these quantities, related to the Schwarz�s inequality,
we can state the following result which is of interest:

Corollary 91 Let T 2 B(H) and �; � 2 K be such that the transform
C�;� (T ) is accretive, then

G1 (T ;x) (2.186)

� 1

4
j� � �j2 �

8><>:
Re hC�;� (T )x; xi���D�T � �+�

2 I
�
x; x

E���2
�
� 1

4
j� � �j2

�
;

for any x 2 H; kxk = 1:
If Re (��) > 0 then

G1 (T ;x) �

8><>:
1
4
j���j2
Re(��) jhTx; xij

2
;�

j�+ �j � 2 [Re (��)]
1
2

�
jhTx; xij ;

(2.187)

for any x 2 H; kxk = 1:
If � 6= �� then

G1 (T ;x) �
1

4

j� � �j2

j� + �j (kTxk+ jhTx; xij) ; (2.188)

for any x 2 H; kxk = 1:

A similar result holds for G2 (T ;x) : The details are omitted.
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2.5.4 Reverse Inequalities for the Numerical Range

It is well known that w (�) is a norm on the Banach algebra B (H). This
norm is equivalent with the operator norm. In fact, the following more
precise result holds [33, p. 9]:

Theorem 92 (Equivalent norm) For any T 2 B (H) one has

w (T ) � kTk � 2w (T ) : (2.189)

The following reverses of the �rst inequality in (2.189), i.e., upper bounds
under appropriate conditions for the bounded linear operator T for the
nonnegative di¤erence kTk2 � w2 (T ) can be obtained:

Theorem 93 (Dragomir [19], 2008) Let T 2 B(H) and �; � 2 K be
such that the transform C�;� (T ) is accretive, then

(0 �) kTk2 � w2 (T ) � 1

4
j� � �j2 �

8><>:
#i (C�;� (T ))

w2i

�
T � �+�

2 I
� (2.190)

�
� 1

4
j� � �j2

�
;

where, for a given operator B we have denoted #i (B) := infkxk=1Re hTx; xi
and wi (B) := infkxk=1 jhTx; xij :
If Re (��) > 0 then

(0 �) kTk2 � w2 (T ) �

8><>:
1
4
j���j2
Re(��)w

2 (T ) ;�
j�+ �j � 2 [Re (��)]

1
2

�
w (T ) :

(2.191)

If � 6= �� then

(0 �) kTk2 � w2 (T ) � 1

4

j� � �j2

j� + �j (kTk+ w (T )) : (2.192)

Proof. We give a short proof for the �rst inequality. The other results
follow in a similar manner.
Utilising the inequality (2.186) we can write that

kTxk2 � jhTx; xij2 + 1
4
j� � �j2 � Re hC�;� (T )x; xi ; (2.193)

for any x 2 H; kxk = 1: Taking the supremum over x 2 H; kxk = 1 in
(2.193) we deduce the �rst inequality in (2.190).
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Remark 94 An equivalent and perhaps more useful version of (2.192) is
the inequality

(w (T ) �) kTk � 1

4
:
j� � �j2

j� + �j + w (T ) ;

provided that � and � satisfy the corresponding conditions mentioned in
Theorem 93. Similar statements can be made for the other versions of this
inequality presented below.

Corollary 95 If T 2 B(H) and M > m > 0 are such that the transform
Cm;M (T ) = (T

� �mI) (MI � T ) is accretive, then

(0 �) kTk2 � w2 (T ) �

8>>>>>>>>>>>><>>>>>>>>>>>>:

1
4 (M �m)2 � #i (Cm;M (T )) ;

1
4 (M �m)2 � w2i

�
T � m+M

2 I
�
;

1
4
(M�m)2
mM w2 (T ) ;�p
M �

p
m
�2
w (T ) ;

1
4
(M�m)2
M+m (kTk+ w (T )) :

(2.194)

The following result is well known in the literature (see for instance [49]):

w(Tn) � wn(T );

for each positive integer n and any operator T 2 B(H):
The following reverse inequalities for n = 2; can be stated:

Theorem 96 (Dragomir [19], 2008) Let T 2 B(H) and �; � 2 K be so
that the transform C�;� (T ) is accretive, then

(0 �)w2 (T )� w
�
T 2
�
� 1

4
j� � �j2 �

8><>:
#i (C�;� (T ))

w2i

�
T � �+�

2 I
� (2.195)

�
� 1

4
j� � �j2

�
:

If Re (��) > 0 then

(0 �)w2 (T )� w
�
T 2
�
�

8><>:
1
4
j���j2
Re(��)w

2 (T ) ;�
j�+ �j � 2 [Re (��)]

1
2

�
w (T ) :

(2.196)

If � 6= �� then

(0 �)w2 (T )� w
�
T 2
�
� 1

4

j� � �j2

j� + �j (kTk+ w (T )) : (2.197)
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Proof. We give a short proof for the �rst inequality only. The other in-
equalities can be proved in a similar manner.
Utilising the inequality (2.186) we can write that

jhTx; xij2 �
��
T 2x; x��� � ���
T 2x; x�� [hTx; xi]2���

� 1

4
j� � �j2 � Re hC�;� (T )x; xi ;

for any x 2 H; kxk = 1; which implies that

jhTx; xij2 �
��
T 2x; x���+ 1

4
j� � �j2 � Re hC�;� (T )x; xi (2.198)

for any x 2 H; kxk = 1: Taking the supremum over x 2 H; kxk = 1 in
(2.198) we deduce the desired inequality in (2.195).

Remark 97 If T 2 B(H) and M > m > 0 are such that the transform
Cm;M (T ) = (T � �mI) (MI � T ) is accretive, then all the inequalities in
(2.194) hold true with the left side replaced by the nonnegative quantity
w2 (T )� w

�
T 2
�
:

2.5.5 New Inequalities of Kantorovich Type

The following result comprising some inequalities for the Kantorovich func-
tional can be stated:

Theorem 98 (Dragomir [19], 2008) Let T 2 B(H) and �; � 2 K be
such that the transform C�;� (T ) is accretive. If Re (��) > 0 and the oper-
ator �i Im (��)C�;� (T ) is accretive, then

jK (T ;x)� 1j (2.199)

�

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

1
4
j���j2
j��j �

h
Re hC�;� (T )x; xiRe

D
C 1

� ;
1
�

�
(T �)

�1
�
x; x

Ei 1
2

;

1
4
j���j2
j��j �

���D�T � �+�
2 I

�
x; x

E��� ���D�T�1 � �+�
2�� I

�
x; x

E��� ;
1
4
j���j2
Re(��) jK (T ;x)j ;

j�+�j�2[Re(��)]
1
2

j��j
1
2

jK (T ;x)j
1
2 ;

1
4

j���j2

j��j
1
2 j�+�j

h
(kTxk+ jhTx; xij)

�(T �)�1 x+ ��
T�1x; x����i 12 ;
for any x 2 H; kxk = 1:
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Proof. Utilising the identity (2.180), we have for each x 2 H; kxk = 1
that

Re
D
C 1

� ;
1
�

�
T�1

�
x; x

E
=

1

j��j2
Re
h
��
D�
T�1

��
C�;� (T )T

�1x; x
Ei

=
1

j��j2
h
Re (��) � Re

D�
T�1

��
C�;� (T )T

�1x; x
E

+Im (��) � Im
D�
T�1

��
C�;� (T )T

�1x; x
Ei

=
1

j��j2
h
Re (��) � Re

D�
T�1

��
C�;� (T )T

�1x; x
E

+Re
D�
T�1

��
(�i Im (��)C�;� (T ))T�1x; x

Ei
� 0;

showing that the operator C 1
� ;

1
�

�
T�1

�
is also accretive.

Now, on applying Theorem 88 for the di¤erence hBTx; xi�hTx; xi hBx; xi
and for the choices B = T�1 and � = 1=�;  = 1=�, we get the desired
inequality (2.199). The details are omitted.

Remark 99 A su¢ cient simple condition for the second assumption to
hold in the above theorem is that �� is a positive real number.

Remark 100 The third and the fourth inequalities in (2.199) can be writ-
ten in the following equivalent forms that perhaps are more useful

��K�1 (T ;x)� 1
�� � 1

4

j� � �j2

Re (��)

and ���K1=2 (T ;x)�K�1=2 (T ;x)
��� � j� + �j � 2 [Re (��)]

1
2

j��j
1
2

;

provided that � and � satisfy the assumptions in Theorem 98. Similar com-
ments apply for the other related results listed below.

However, for practical applications the following even more particular
case is of interest:
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Corollary 101 Let T 2 B(H) andM > m > 0 are such that the transform
Cm;M (T ) = (T

� �mI) (MI � T ) is accretive. Then

jK (T ;x)� 1j (2.200)

�

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

1
4
(M�m)2
mM �

h
Re hCm;M (T )x; xiRe

D
C 1

m ;
1
M

�
(T �)

�1
�
x; x

Ei 1
2

;

1
4
(M�m)2
mM �

��
�T � m+M
2 I

�
x; x

��� ��
�T�1 � m+M
2mM I

�
x; x

��� ;
1
4
(M�m)2
mM jK (T ;x)j ;

(
p
M�

p
m)

2

p
mM

jK (T ;x)j
1
2 ;

1
4

(M�m)2p
mM(m+M)

h
(kTxk+ jhTx; xij)

�(T �)�1 x+ ��
T�1x; x����i 12 ;
for any x 2 H; kxk = 1:

Finally, on returning to the original assumptions, we can state the fol-
lowing results which provide re�nements for the additive version of the op-
erator Kantorovich inequality (2.169) as well as other similar results that
apparently are new:

Corollary 102 Let T be a selfadjoint operator on H and M > m > 0 such
that MI � T � mI in the partial operator order of B(H): Then

0 � K (T ;x)� 1 (2.201)

�

8>>>>>>>>>><>>>>>>>>>>:

1
4
(M�m)2
mM �

h
Re hCm;M (T )x; xiRe

D
C 1

m ;
1
M

�
T�1

�
x; x

Ei 1
2

;

1
4
(M�m)2
mM �

��
�T � m+M
2 I

�
x; x

��� ��
�T�1 � m+M
2mM I

�
x; x

��� ;
(
p
M�

p
m)

2

p
mM

[K (T ;x)]
1
2 ;

1
4

(M�m)2p
mM(m+M)

�
(kTxk+ hTx; xi)

�T�1x+ 
T�1x; x��� 12 ;
for any x 2 H; kxk = 1:

The proof is obvious by Corollary 102 on noticing the fact thatMI � T �
mI for a selfadjoint operator T implies that Cm;M (T ) = (T � �mI) (MI � T )
is accretive. The reverse is not true in general.
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3
Inequalities for Two Operators

In this chapter we present recent results obtained by the author concerning
the norms and the numerical radii of two bounded linear operators. The
proofs of the results are elementary. Some vector inequalities in inner prod-
uct spaces as well as inequalities for means of nonnegative real numbers are
also employed.

3.1 General Inequalities for Numerical Radius

3.1.1 Preliminary Facts

The following result may be stated:

Theorem 103 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on the Hilbert space (H; h�; �i) : If r > 0 and

kA�Bk � r; (3.1)

then A�A+B�B2

 � w (B�A) +
1

2
r2: (3.2)

Proof. For any x 2 H; kxk = 1; we have from (3.1) that

kAxk2 + kBxk2 � 2Re hAx;Bxi+ r2: (3.3)

However
kAxk2 + kBxk2 = h(A�A+B�B)x; xi
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and by (3.3) we obtain

h(A�A+B�B)x; xi � 2 jh(B�A)x; xij+ r2 (3.4)

for any x 2 H; kxk = 1:
Taking the supremum over x 2 H; kxk = 1 in (3.4) we get

w (A�A+B�B) � 2w (B�A) + r2 (3.5)

and since the operator A�A+B�B is self-adjoint, hence w (A�A+B�B) =
kA�A+B�Bk and by (3.5) we deduce the desired inequality (3.2).

Remark 104 We observe that, from the proof of the above theorem, we
have the inequalities

0 �
A�A+B�B2

� w (B�A) � 1

2
kA�Bk2 ; (3.6)

provided that A;B are bounded linear operators in H:
The second inequality in (3.6) is obvious while the �rst inequality follows

by the fact that

h(A�A+B�B)x; xi = kAxk2 + kBxk2 � 2 jh(B�A)x; xij

for any x 2 H:

The inequality (3.2) is obviously a rich source of particular inequalities
of interest.
Indeed, if we assume, for � 2 C and a bounded linear operator T; that

we have kT � �T �k � r; for a given positive number r; then by (3.6) we
deduce the inequality

0 �
T �T + j�j2 TT �2

� j�jw �T 2� � 1

2
r2: (3.7)

Now, if we assume that for � 2 C and a bounded linear operator V we
have that kV � �Ik � r; where I is the identity operator on H; then by
(3.2) we deduce the inequality

0 �
V �V + j�j2 I2

� j�jw (V ) � 1

2
r2:

As a dual approach, the following result may be noted as well:

Theorem 105 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on the Hilbert space H: ThenA+B2

2 � 1

2

�A�A+B�B2

+ w (B�A)� : (3.8)
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Proof. We obviously have

kAx+Bxk2 = kAxk2 + 2Re hAx;Bxi+ kBxk2

� h(A�A+B�B)x; xi+ 2 jh(B�A)x; xij

for any x 2 H:
Taking the supremum over x 2 H; kxk = 1; we get kA+Bk2 � kA�A+B�Bk+

2w (B�A) ; from where we get the desired inequality (3.8).

Remark 106 The inequality (3.8) can generate some interesting particu-
lar results such as the following inequalityT + T �2

2 � 1

2

�T �T + TT �2

+ w �T 2�� ; (3.9)

holding for each bounded linear operator T : H ! H:

The following result may be stated as well.

Theorem 107 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on the Hilbert space H and p � 2: ThenA�A+B�B2


p
2

� 1

4
[kA�Bkp + kA+Bkp] : (3.10)

Proof. We use the following inequality for vectors in inner product spaces
obtained by Dragomir and Sándor in [19]:

2 (kakp + kbkp) � ka+ bkp + ka� bkp (3.11)

for any a; b 2 H and p � 2:
Utilising (3.11) we may write

2 (kAxkp + kBxkp) � kAx+Bxkp + kAx�Bxkp (3.12)

for any x 2 H:
Now, observe that kAxkp+kBxkp =

�
kAxk2

� p
2

+
�
kBxk2

� p
2

and by the

elementary inequality �q+�q

2 �
�
�+�
2

�q
; �; � � 0 and q � 1 we have�

kAxk2
� p
2

+
�
kBxk2

� p
2 � 21�

p
2 [h(A�A+B�B)x; xi]

p
2 : (3.13)

Combining (3.12) with (3.13) we get

1

4
[kAx�Bxkp + kAx+Bxkp] �

������A�A+B�B2

�
x; x

�����
p
2

(3.14)

for any x 2 H; kxk = 1: Taking the supremum over x 2 H; kxk = 1;

and taking into account that w
�
A�A+B�B

2

�
=
A�A+B�B

2

 ; we deduce the
desired result (3.10).
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Remark 108 If p = 2; then we have the inequality:A�A+B�B2

 � A�B2
2 + A+B2

2 ;
for any A;B bounded linear operators. This result can be obtained directly
on utilizing the parallelogram identity as well. We also should observe that
for A = T and B = T �; T a normal operator, the inequality (3.10) becomes

kTkp � 1

4
[kT � T �kp + kT + T �kp] ;

where p � 2:

The following result may be stated as well.

Theorem 109 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on the Hilbert space H and r � 1: If A�A � B�B in the
operator order or, equivalently, kAxk � kBxk for any x 2 H; thenA�A+B�B2

r (3.15)

� kAkr�1 kBkr�1 w (B�A) + 1
2
r2 kAk2r�2 kA�Bk2 :

Proof. We use the following inequality for vectors in inner product spaces
due to Goldstein, Ry¤ and Clarke [20]:

kak2r + kbk2r � 2 kakr�1 kbkr�1Re ha; bi+ r2 kak2r�2 ka� bk2 ; (3.16)

where r � 1; a; b 2 H and kak � kbk :
Utilising (3.16) we can state that:

kAxk2r + kBxk2r (3.17)

� 2 kAxkr�1 kBxkr�1 jhAx;Bxij+ r2 kAxk2r�2 kAx�Bxk2 ;

for any x 2 H: As in the proof of Theorem 107, we also have

21�r [h(A�A+B�B)x; xi]r � kAxk2r + kBxk2r ; (3.18)

for any x 2 H: Therefore, by (3.17) and (3.18) we deduce���
A�A+B�B

2

�
x; x

��r
(3.19)

� kAxkr�1 kBxkr�1 jhAx;Bxij+ 1
2
r2 kAk2r�2 kAx�Bxk2

for any x 2 H:
Taking the supremum in (3.19) we obtain the desired result (3.15).
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Remark 110 Following [21, p. 156], we recall that the bounded linear op-
erator V is hyponormal, if kV �xk � kV xk for all x 2 H: Now, if we choose
in (3.15) A = V and B = V �; then, on taking into account that for hypo-
normal operators w

�
V 2
�
= kV k2 ; we get the inequalityV �V + V V �2

r � kV k2r�2 �kV k2 + 12r2 kV � V �k2
�
; (3.20)

holding for any hyponormal operator V and any r � 1:

3.1.2 Further Inequalities for an Invertible Operator

In this section we assume that B : H ! H is an invertible bounded linear
operator and let B�1 : H ! H be its inverse. Then, obviously,

kBxk � 1

kB�1k kxk for any x 2 H; (3.21)

where
B�1 denotes the norm of the inverse B�1:

Theorem 111 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on H and B is invertible such that, for a given r > 0;

kA�Bk � r: (3.22)

Then

kAk �
B�1 �w (B�A) + 1

2
r2
�
: (3.23)

Proof. The condition (3.22) is obviously equivalent to:

kAxk2 + kBxk2 � 2Re h(B�A)x; xi+ r2 (3.24)

for any x 2 H; kxk = 1: Since, by (3.21), kBxk2 � 1
kB�1k2 kxk

2
; x 2 H

and
Re h(B�A)x; xi � jh(B�A)x; xij ;

hence by (3.24) we get

kAxk2 + kxk2

kB�1k2
� 2 jh(B�A)x; xij+ r2 (3.25)

for any x 2 H; kxk = 1: Taking the supremum over x 2 H; kxk = 1 in
(3.25), we have

kAk2 + 1

kB�1k2
� 2w (B�A) + r2: (3.26)
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By the elementary inequality

2 kAk
kB�1k � kAk

2
+

1

kB�1k2
(3.27)

and by (3.26) we then deduce the desired result (3.23).

Remark 112 If we choose above B = �I; � 6= 0; then we get the inequality

(0 �) kAk � w (A) � 1

2 j�jr
2; (3.28)

provided kA� �Ik � r: This result has been obtained in the earlier paper
[9].
Also, if we assume that B = �A�; A is invertible, then we obtain

kAk �
A�1 �w �A2�+ 1

2 j�jr
2

�
; (3.29)

provided kA� �A�k � r; � 6= 0:

The following result may be stated as well:

Theorem 113 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on H: If B is invertible and for r > 0;

kA�Bk � r; (3.30)

then

(0 �) kAk kBk � w (B�A) � 1

2
r2 +

kBk2
B�12 � 1
2 kB�1k2

: (3.31)

Proof. The condition (3.30) is obviously equivalent to

kAxk2 + kBxk2 � 2Re hAx;Bxi+ r2

for any x 2 H; which is clearly equivalent to

kAxk2 + kBk2 � 2Re hB�Ax; xi+ r2 + kBk2 � kBxk2 : (3.32)

Since
Re hB�Ax; xi � jhB�Ax; xij ; kBxk2 � 1

kB�1k2
kxk2

and
kAxk2 + kBk2 � 2 kBk kAxk

for any x 2 H; hence by (3.32) we get

2 kBk kAxk � 2 jhB�Ax; xij+ r2 +
kBk2

B�12 � 1
kB�1k2

(3.33)

for any x 2 H; kxk = 1: Taking the supremum over x 2 H; kxk = 1 we
deduce the desired result (3.31).
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Remark 114 If we choose in Theorem 113, B = �A�; � 6= 0; A is invert-
ible, then we get the inequality:

(0 �) kAk2 � w
�
A2
�
� 1

2 j�jr
2 + j�j �

kAk2
A�12 � 1
2 kA�1k2

(3.34)

provided kA� �A�k � r:

The following result may be stated as well.

Theorem 115 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators on H: If B is invertible and for r > 0 we have

kA�Bk � r < kBk ; (3.35)

then

kAk � 1q
kBk2 � r2

 
w (B�A) +

kBk2
B�12 � 1
2 kB�1k2

!
: (3.36)

Proof. The �rst part of condition (3.35) is obviously equivalent to

kAxk2 + kBxk2 � 2Re hAx;Bxi+ r2

for any x 2 H; which is clearly equivalent to

kAxk2 + kBk2 � r2 � 2Re hB�Ax; xi+ kBk2 � kBxk2 : (3.37)

Since
Re hB�Ax; xi � jhB�Ax; xij ; kBxk2 � 1

kB�1k2
kxk2

and, by the second part of (3.35),

kAxk2 + kBk2 � r2 � 2
q
kBk2 � r2 kAxk ;

for any x 2 H; hence by (3.37) we get

2 kAxk
q
kBk2 � r2 � 2 jhB�Ax; xij+

kBk2
B�12 � 1
kB�1k2

(3.38)

for any x 2 H; kxk = 1: Taking the supremum over x 2 H; kxk = 1 in
(3.38), we deduce the desired inequality (3.36).

Remark 116 The above Theorem 115 has some particular cases of inter-
est. For instance, if we choose B = �I; with j�j > r; then (3.35) is obviously
ful�lled and by (3.36) we get

kAk � w (A)r
1�

�
r
j�j

�2 ; (3.39)
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provided kA� �Ik � r: This result has been obtained in the earlier paper
[9].
On the other hand, if in the above we choose B = �A� with kAk � r

j�j
(� 6= 0) ; then by (3.36) we get

kAk � 1r
kAk2 �

�
r
j�j

�2
"
w
�
A2
�
+ j�j �

kAk2
A�12 � 1
2 kA�1k2

#
; (3.40)

provided kA� �A�k � r:

The following result may be stated as well.

Theorem 117 (Dragomir [7], 2005) Let A;B and r be as in Theorem
111. Moreover, if B�1 < 1

r
; (3.41)

then

kAk �
B�1q

1� r2 kB�1k2
w (B�A) : (3.42)

Proof. Observe that, by (2.21) we have

kAk2 +
1� r2

B�12
kB�1k2

� 2w (B�A) : (3.43)

Utilising the elementary inequality

2
kAk
kB�1k

q
1� r2 kB�1k2 � kAk2 +

1� r2
B�12

kB�1k2
; (3.44)

which can be stated since (3.41) is assumed to be true, hence by (3.43) and
(3.44) we deduce the desired result (3.42).

Remark 118 If we assume that B = �A� with � 6= 0 and A an invertible
operator, then, by applying Theorem 117, we get the inequality:

kAk �
A�1w �A2�q
j�j2 � r2 kA�1k2

; (3.45)

provided kA� �A�k � r and
A�1 � j�j

r :

The following result may be stated as well.
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Theorem 119 (Dragomir [7], 2005) Let A;B : H ! H be two bounded
linear operators. If r > 0 and B is invertible with the property that kA�Bk �
r and

1p
r2 + 1

�
B�1 < 1

r
; (3.46)

then

kAk2 � w2 (B�A) + 2w (B�A) �
B�1�q1� r2 kB�1k2

kB�1k : (3.47)

Proof. Let x 2 H; kxk = 1: Then by (2.20) we have

kAxk2 + 1

kB�1k2
� 2 jhB�Ax; xij+ r2; (3.48)

and since 1
kB�1k2 � r2 > 0; we can conclude that jhB�Ax; xij > 0 for any

x 2 H; kxk = 1:
Dividing (3.48) throughout by jhB�Ax; xij > 0; we obtain

kAxk2

jhB�Ax; xij � 2 +
r2

jhB�Ax; xij �
1

kB�1k2 jhB�Ax; xij
: (3.49)

Subtracting jhB�Ax; xij from both sides of (3.49), we get

kAxk2

jhB�Ax; xij � jhB
�Ax; xij (3.50)

� 2� jhB�Ax; xij �
1� r2

B�12
jhB�Ax; xij kB�1k2

= 2�
2

q
1� r2 kB�1k2

kB�1k

�

0@pjhB�Ax; xij �
q
1� r2 kB�1k2

kB�1k
p
jhB�Ax; xij

1A2

� 2

0@B�1�
q
1� r2 kB�1k2

kB�1k

1A ;

which gives:

kAxk2 � jhB�Ax; xij2 (3.51)

+ 2 jhB�Ax; xij
B�1�q1� r2 kB�1k2

kB�1k :
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We also remark that, by (3.46) the quantityB�1�q1� r2 kB�1k2 � 0;
hence, on taking the supremum in (3.51) over x 2 H; kxk = 1; we deduce
the desired inequality.

Remark 120 It is interesting to remark that if we assume � 2 C with
0 < r � j�j �

p
r2 + 1 and kA� �Ik � r; then by (2.17) we can state the

following inequality:

kAk2 � j�j2 w
�
A2
�
+ 2 j�j

�
1�

q
j�j2 � r2

�
w (A) : (3.52)

Also, if kA�A�k � r; A is invertible and 1p
r2+1

�
A�1 � 1

r ; then, by
(3.47) we also have

kAk2 � w2
�
A2
�
+ 2w

�
A2
�
�
A�1�q1� r2 kA�1k2

kA�1k : (3.53)

One can also prove the following result.

Theorem 121 Let A;B : H ! H be two bounded linear operators. If r > 0
and B is invertible with the property that kA�Bk � r and

B�1 � 1
r ;

then

(0 �) kAk2 kBk2 � w2 (B�A) (3.54)

� 2w (B�A) � kBk
kB�1k

�
kBk

B�1�q1� r2 kB�1k2� :
Proof. We subtract the quantity jhB�Ax;xij

kBk2 from both sides of (3.49) to
obtain

0 � kAxk2

jhB�Ax; xij �
jhB�Ax; xij
kBk2

(3.55)

� 2� 2 �

q
1� r2 kB�1k2

kBk kB�1k

�

0@pjhB�Ax; xij
kBk �

q
1� r2 kB�1k2p

jhB�Ax; xij kB�1k

1A2

� 2 �

�
kBk

B�1�q1� r2 kB�1k2�
kBk kB�1k ;
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which is equivalent with

(0 �) kAxk2 kBk2 � jhB�Ax; xij2 (3.56)

� 2 kBk
kB�1k jhB

�Ax; xij
�
kBk

B�1�q1� r2 kB�1k2�
for any x 2 H; kxk = 1:
The inequality (3.56) also shows that kBk

B�1 �q1� r2 kB�1k2 and
then, by (3.56), we get

kAxk2 kBk2 � jhB�Ax; xij2 (3.57)

+ 2
kBk
kB�1k jhB

�Ax; xij
�
kBk

B�1�q1� r2 kB�1k2�
for any x 2 X; kxk = 1: Taking the supremum in (3.57) we deduce the
desired inequality (3.54).

Remark 122 The above Theorem 121 has some particular instances of
interest as follows. If, for instance, we choose B = �I with j�j � r > 0 and
kA� �Ik � r; then by (3.54) we obtain the inequality

(0 �) kAk2 � w2 (A) � 2 j�jw (A)
 
1�

s
1� r2

j�j2

!
: (3.58)

Also, if A is invertible, kA� �A�k � r and
A�1 � j�j

r ; then by (3.54)
we can state:

(0 �) kAk4 � w2
�
A2
�

(3.59)

� 2 j�jw
�
A2
�
� kAk
kA�1k

 
kAk

A�1�s1� r2

j�j2
kA�1k2

!
:

3.2 Other Norm and Numerical Radius Inequalities

3.2.1 Other Norm and Numerical Radius Inequalities

For the complex numbers �; � and the bounded linear operator T we de�ne
the following transform (see [14]):

C�;� (T ) := (T
� � �I) (�I � T ) ; (3.60)

where by T � we denote the adjoint of T .
In light of the above results it is then natural to compare the quantities

kABk and w (A)w (B)+w (A) kBk + kAkw (B) provided that some infor-
mation about the transforms C�;� (A) and C;� (B) are available, where
�; �; ; � 2 K.
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Theorem 123 (Dragomir [13], 2009) Let A;B 2 B(H) and �; �; ; � 2
K be such that the transforms C�;� (A) and C;� (B) are accretive, then

kBAk � w (A)w (B) + w (A) kBk+ kAkw (B) + 1
4
j� � �j j � �j : (3.61)

Proof. Since C�;� (A) and C;� (B) are accretive, then we have thatAx� �+ �

2
x

 � 1

2
j� � �j and

B�x� � + ��

2
x

 � 1

2

��� � ���� ;
for any x 2 H; kxk = 1:
Utilizing the Schwarz inequality we may write that

jhAx� hAx; xix;B�y � hB�y; yi yij (3.62)

� kAx� hAx; xixk kB�y � hB�y; yi yk ;

for any x; y 2 H; with kxk = kyk = 1:
Since for any vectors u; f 2 H with kfk = 1 we have ku� hu; fi fk =

inf�2K ku� �fk, then obviously

kAx� hAx; xixk �
Ax� �+ �

2
x

 � 1

2
j� � �j

and

kB�y � hB�y; yi yk �
B�y � � + ��

2
y

 � 1

2
j � �j

producing the inequality

kAx� hAx; xixk kB�y � hB�y; yi yk � 1

4
j� � �j j � �j : (3.63)

Now, observe that

hAx� hAx; xix;B�y � hB�y; yi yi
= hBAx; yi+ hAx; xi hBy; yi hx; yi � hAx; xi hBx; yi � hAx; yi hBy; yi ;

for any x; y 2 H; with kxk = kyk = 1:
Taking the modulus in the equality and utilizing its properties we have

successively

jhAx� hAx; xix;B�y � hB�y; yi yij
� jhBAx; yij � jhAx; xi hBx; yi+ hAx; yi hBy; yi � hAx; xi hBy; yi hx; yij
� jhBAx; yij � jhAx; xi hBx; yij
� jhAx; yi hBy; yij � jhAx; xi hBy; yi hx; yij
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which is equivalent with

jhAx� hAx; xix;B�y � hB�y; yi yij (3.64)

+ jhAx; xi hBx; yij+ jhAx; yi hBy; yij+ jhAx; xi hBy; yi hx; yij
� jhBAx; yij ;

for any x; y 2 H; with kxk = kyk = 1:
Finally, on making use of the inequalities (3.62)-(3.64) we can state that

1

4
j� � �j j � �j (3.65)

+ jhAx; xi hBx; yij+ jhAx; yi hBy; yij+ jhAx; xi hBy; yi hx; yij
� jhBAx; yij ;

for any x; y 2 H; with kxk = kyk = 1:
Taking the supremum in (3.65) over kxk = kyk = 1 and noticing that

sup
kxk=1

jhAx; xij = w (A) ; sup
kxk=kyk=1

jhAx; yij = kAk ; sup
kyk=1

jhBy; yij = w (B) ;

sup
kxk=kyk=1

jhBx; yij = kBk ; sup
kxk=kyk=1

jhx; yij = 1

and
sup

kxk=kyk=1
jhBAx; yij = kBAk ;

we deduce the desired result (3.61).

Remark 124 It is an open problem whether or not the constant 14 is best
possible in the inequality (3.61).

A di¤erent approach is considered in the following result:

Theorem 125 (Dragomir [13], 2009) With the assumptions from The-
orem 123 we have the inequality

kBAk � w (A) kBk+ 1
4
j� � �j (j + �j+ j � �j) : (3.66)

Proof. By the Schwarz inequality and taking into account the assumptions
for the operators A and B we may state that�����Ax� hAx; xix;B�y � � + ��

2
y

����� (3.67)

� kAx� hAx; xixk
B�y � � + ��

2
y


�
Ax� �+ �

2
x

B�y � � + ��

2
y

 � 1

4
j� � �j j � �j ;
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for any x; y 2 H; with kxk = kyk = 1:
Now, since�

Ax� hAx; xix;B�y � � + ��

2
y

�
= hBAx; yi � hAx; xi hBx; yi �  + �

2
hAx� hAx; xix; yi ;

on taking the modulus in this equality we have�����Ax� hAx; xix;B�y � � + ��

2
y

����� (3.68)

� jhBAx; yij � jhAx; xi hBx; yij �
���� + �2

���� jhAx� hAx; xix; yij ;
for any x; y 2 H; with kxk = kyk = 1:
On making use of (3.67) and (3.68) we get

jhBAx; yij (3.69)

� jhAx; xi hBx; yij+
���� + �2

���� jhAx� hAx; xix; yij+ 14 j� � �j j � �j
� jhAx; xi hBx; yij+

���� + �2
���� Ax� �+ �

2
x

+ 14 j� � �j j � �j
� jhAx; xi hBx; yij+ 1

4
j� � �j (j + �j+ j � �j) ;

for any x; y 2 H; with kxk = kyk = 1:
Taking the supremum over kxk = kyk = 1 in (3.69) we deduce the desired

inequality (3.66).
In a similar manner we can state the following results as well:

Theorem 126 (Dragomir [13], 2009) With the assumptions from The-
orem 123 we have the inequality

kBAk � w (A) kBk+ 1
2
j + �j (w (A) + kAk) + 1

4
j� � �j j � �j : (3.70)

Indeed, we observe that�
Ax� hAx; xix;B�y � � + ��

2
y

�
= hBAx; yi � hAx; xi hBx; yi �  + �

2
hAx; yi+  + �

2
hAx; xi hx; yi

which produces the inequality�����Ax� hAx; xix;B�y � � + ��

2
y

�����+ jhAx; xi hBx; yij
+

���� + �2
���� jhAx; yij+ ���� + �2

���� jhAx; xij jhx; yij � jhBAx; yij ;
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for any x; y 2 H; with kxk = kyk = 1:
On utilizing the same argument as in the proof of the above theorem, we

get the desired result (3.70). The details are omitted.

3.2.2 Related Results

The following result concerning an upper bound for the norm of the oper-
ator product may be stated.

Theorem 127 (Dragomir [13], 2009) With the assumptions from The-
orem 123 we have the inequality

kBAk � 1

4
j� � �j j � �j+

�+ �2 �B +  + �

2
�A (3.71)

� �+ �

2
�  + �

2
� I


� 1

4
j� � �j j � �j+min

������+ �2
���� (kBk+ 12 j� � �j) ;���� + �2

���� (kAk+ 12 j � �j)
�
:

Proof. By the Schwarz inequality and utilizing the assumptions about A
and B we have�����Ax� �+ �

2
x;B�y � � + ��

2
y

����� (3.72)

�
Ax� �+ �

2
x

B�y � � + ��

2
y

 � 1

4
j� � �j j � �j ;

for any x; y 2 H; with kxk = kyk = 1:
Also, the following identity is of interest in itself�

Ax� �+ �

2
x;B�y � � + ��

2
y

�
(3.73)

= hBAx; yi+ �+ �

2
�  + �

2
hx; yi � �+ �

2
hBx; yi �  + �

2
hAx; yi ;

for any x; y 2 H; with kxk = kyk = 1:
This identity gives�

Ax� �+ �

2
x;B�y � � + ��

2
y

�
+

�
�+ �

2
�Bx+  + �

2
�Ax� �+ �

2
�  + �

2
x; y

�
= hBAx; yi ;

for any x; y 2 H; with kxk = kyk = 1:
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Taking the modulus and utilizing (3.72) we get

jhBAx; yij �
�����Ax� �+ �

2
x;B�y � � + ��

2
y

�����
+

������+ �2 �Bx+  + �

2
�Ax� �+ �

2
�  + �

2
x; y

�����
� 1

4
j� � �j j � �j

+

�+ �2 �Bx+  + �

2
�Ax� �+ �

2
�  + �

2
x

 ;
for any x; y 2 H; with kxk = kyk = 1:
Finally, taking the supremum over kxk = kyk = 1 we deduce the �rst

part of the desired inequality (3.71). The second part is obvious by the
triangle inequality and by the assumptions on A and B:
The following particular case also holds

Corollary 128 Let A 2 B(H) and �; � 2 K be such that the transforms
C�;� (A) is accretive. ThenA2 � 1

4
j� � �j2 +

�����+ �2
���� 2 �A� �+ �

2
� I
 (3.74)�

� 1

4
j� � �j2 +

�����+ �2
���� �kAk+ 12 j� � �j

��
and

kAk2 � 1

4
j� � �j2 (3.75)

+

 ��+ ��2 �A� + �+ �

2
�A�

�����+ �2
����2 � I

�
� 1

4
j� � �j2 +

�����+ �2
���� �kAk+ 12 j� � �j

��
;

respectively.

The following result provides an approximation for the operator product
in terms of some simpler quantities:

Theorem 129 (Dragomir [13], 2009) With the assumptions from The-
orem 123 we have the inequalityBA� �+ �

2
�B �  + �

2
�A+ �+ �

2
�  + �

2
� I
 (3.76)

� 1

4
j� � �j j � �j :
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Proof. The identity (3.73) can written in an equivalent form as�
Ax� �+ �

2
x;B�y � � + ��

2
y

�
(3.77)

=

��
BA� �+ �

2
�B �  + �

2
�A+ �+ �

2
�  + �

2
� I
�
x; y

�
;

for any x; y 2 H; with kxk = kyk = 1:
Taking the modulus and making use of the inequality (3.72) we get������BA� �+ �

2
�B �  + �

2
�A+ �+ �

2
�  + �

2
� I
�
x; y

�����
� 1

4
j� � �j j � �j ;

for any x; y 2 H; with kxk = kyk = 1; which implies the desired result
(3.76).

Corollary 130 Let A 2 B(H) and �; � 2 K be such that the transform
C�;� (A) is accretive, thenA2 � (�+ �) �A+

�
�+ �

2

�2
� I
 � 1

4
j� � �j2 (3.78)

andA�A� �+ �

2
�A� � ��+ ��

2
�A+

�����+ �2
����2 � I

 � 1

4
j� � �j2 ; (3.79)

respectively.

The following theorem provides an approximation for the operator

1

2
(U�U + UU�)

when some information about the real or imaginary part of the operator U
are given.
We recall that U = Re (U) + i Im (U), i.e., Re (U) = 1

2 (U + U
�) and

Im (U) = 1
2i (U � U

�) : For simplicity, we denote by A the real part of U
and by B its imaginary part.

Theorem 131 (Dragomir [13], 2009) Suppose that a; b; c; d 2 R are such
that Ca;c (A) and Cb;d (B) are accretive. Denote � := a+ib and � := c+id 2
C, then12 (U�U + UU�)� ��+ ��

2
� U � �+ �

2
� U� +

�����+ �2
����2 � I

 (3.80)

� 1

4
j�� �j2 :
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Proof. It is well known that for any operator T with the Cartesian decom-
position T = C + iD we have

1

2
(T �T + TT �) = C2 +D2: (3.81)

For any z 2 C we also have the identity
1

2
[(U � zI) (U� � �zI) + (U� � �zI) (U � zI)] (3.82)

=
1

2
(U�U + UU�)� �z � U � z � U� + jzj2 � I:

For z = �+�
2 we observe that

Re (U � zI) = A� a+ c

2
� I and Im (U � zI) = B � b+ d

2
� I

and utilizing the identities (3.81) and (3.82) we deduce12 (U�U + UU�)� �z � U � z � U� + jzj2 � I


=


�
A� a+ c

2
� I
�2
+

�
B � b+ d

2
� I
�2

�
A� a+ c

2
� I
2 + B � b+ d

2
� I
2

� 1

4

h
(c� a)2 + (d� b)2

i
=
1

4
j�� �j2 ;

where for the last inequality we have used the fact that Ca;c (A) and
Cb;d (B) are accretive.

3.3 Power Inequalities for the Numerical Radius

3.3.1 Inequalities for a Product of Two Operators

Theorem 132 (Dragomir [17], 2009) For any A;B 2 B (H) and r �
1, we have the inequality:

wr (B�A) � 1

2
k(A�A)r + (B�B)rk : (3.83)

The constant 12 is best possible.

Proof. By the Schwarz inequality in the Hilbert space (H; h�; �i) we have:

jhB�Ax; xij = jhAx;Bxij (3.84)

� kAxk � kBxk

= hA�Ax; xi
1
2 � hB�Bx; xi

1
2 ; x 2 H:
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Utilising the arithmetic mean - geometric mean inequality and then the
convexity of the function f (t) = tr; r � 1; we have successively,

hA�Ax; xi
1
2 � hB�Bx; xi

1
2 � hA�Ax; xi+ hB�Bx; xi

2
(3.85)

�
�
hA�Ax; xir + hB�Bx; xir

2

� 1
r

for any x 2 H:
It is known that if P is a positive operator then for any r � 1 and x 2 H

with kxk = 1 we have the inequality (see for instance [24])

hPx; xir � hP rx; xi : (3.86)

Applying this property to the positive operator A�A and B�B; we deduce
that �

hA�Ax; xir + hB�Bx; xir

2

� 1
r

(3.87)

�
�
h(A�A)r x; xi+ h(B�B)r x; xi

2

� 1
r

=

�
h[(A�A)r + (B�B)r]x; xi

2

� 1
r

for any x 2 H; kxk = 1:
Now, on making use of the inequalities (3.84), (3.85) and (3.87), we get

the inequality:

jh(B�A)r x; xijr � 1

2
h[(A�A)r + (B�B)r]x; xi (3.88)

for any x 2 H; kxk = 1.
Taking the supremum over x 2 H; kxk = 1 in (3.88) and since the

operator [(A�A)r + (B�B)r] is self-adjoint, we deduce the desired inequality
(3.83).
For r = 1 and B = A; we get on both sides of (3.83) the same quantity

kAk2 which shows that the constant 1
2 is best possible in general in the

inequality (3.83).

Corollary 133 For any A 2 B (H) and r � 1 we have the inequalities:

wr (A) � 1

2
k(A�A)r + Ik (3.89)

and
wr
�
A2
�
� 1

2
k(A�A)r + (AA�)rk ; (3.90)

respectively.
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A di¤erent approach is considered in the following result:

Theorem 134 (Dragomir [17], 2009) For any A;B 2 B (H) and any
� 2 (0; 1) and r � 1, we have the inequality:

w2r (B�A) �
� (A�A) r� + (1� �) (B�B) r

1��

 : (3.91)

Proof. By Schwarz�s inequality, we have:

jh(B�A)x; xij2 � h(A�A)x; xi � h(B�B)x; xi (3.92)

=
Dh
(A�A)

1
�

i�
x; x

E
�
�h
(B�B)

1
1��
i1��

x; x

�
;

for any x 2 H:
It is well known that (see for instance [24]) if P is a positive operator

and q 2 (0; 1] then for any u 2 H; kuk = 1; we have

hP qu; ui � hPu; uiq : (3.93)

Applying this property to the positive operators (A�A)
1
� and (B�B)

1
1��

(� 2 (0; 1)) ; we haveDh
(A�A)

1
�

i�
x; x

E
�
�h
(B�B)

1
1��
i1��

x; x

�
(3.94)

�
D
(A�A)

1
� x; x

E�
�
D
(B�B)

1
1�� x; x

E1��
;

for any x 2 H; kxk = 1.
Now, utilizing the weighted arithmetic mean - geometric mean inequality,

i.e., a�b1�� � �a+ (1� �) b; � 2 (0; 1) ; a; b � 0; we getD
(A�A)

1
� x; x

E�
�
D
(B�B)

1
1�� x; x

E1��
(3.95)

� �
D
(A�A)

1
� x; x

E
+ (1� �)

D
(B�B)

1
1�� x; x

E
for any x 2 H; kxk = 1.
Moreover, by the elementary inequality following from the convexity of

the function f (t) = tr; r � 1; namely

�a+ (1� �) b � (�ar + (1� �) br)
1
r ; � 2 (0; 1) ; a; b � 0;

we deduce that

�
D
(A�A)

1
� x; x

E
+ (1� �)

D
(B�B)

1
1�� x; x

E
(3.96)

�
h
�
D
(A�A)

1
� x; x

Er
+ (1� �)

D
(B�B)

1
1�� x; x

Eri 1r
�
h
�
D
(A�A)

r
� x; x

E
+ (1� �)

D
(B�B)

r
1�� x; x

Ei 1
r

;
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for any x 2 H; kxk = 1, where, for the last inequality we used the inequality
(3.86) for the positive operators (A�A)

1
� and (B�B)

1
1�� :

Now, on making use of the inequalities (3.92), (3.94), (3.95) and (3.96),
we get

jh(B�A)x; xij2r �
Dh
� (A�A)

r
� + (1� �) (B�B)

r
1��
i
x; x

E
(3.97)

for any x 2 H; kxk = 1. Taking the supremum over x 2 H; kxk = 1 in
(3.97) produces the desired inequality (3.91).

Remark 135 The particular case � = 1
2 produces the inequality

w2r (B�A) � 1

2

(A�A)2r + (B�B)2r ; (3.98)

for r � 1. Notice that 12 is best possible in (3.98) since for r = 1 and B = A

we get on both sides of (3.98) the same quantity kAk4 :

Corollary 136 For any A 2 B (H) and � 2 (0; 1) ; r � 1; we have the
inequalities

w2r (A) �
� (A�A) r� + (1� �) I (3.99)

and

w2r
�
A2
�
�
� (A�A) r� + (1� �) (AA�) r

1��

 ; (3.100)

respectively.
Moreover, we have

kAk4r �
� (A�A) r� + (1� �) (A�A) r

1��

 : (3.101)

3.3.2 Inequalities for the Sum of Two Products

The following result may be stated:

Theorem 137 (Dragomir [17], 2009) For any A;B;C;D 2 B (H) and
r; s � 1 we have:

B�A+D�C

2

2 �  (A�A)r + (C�C)r2

 1
r

(3.102)

�
 (B�B)s + (D�D)

s

2

 1
s

:
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Proof. By the Schwarz inequality in the Hilbert space (H; h�; �i) we have:

jh(B�A+D�C)x; yij2 (3.103)

= jhB�Ax; yi+ hD�Cx; yij2

� [jhB�Ax; yij+ jhD�Cx; yij]2

�
h
hA�Ax; xi

1
2 � hB�By; yi

1
2 + hC�Cx; xi

1
2 � hD�Dy; yi

1
2

i2
;

for any x; y 2 H:
Now, on utilizing the elementary inequality:

(ab+ cd)
2 �

�
a2 + c2

� �
b2 + d2

�
; a; b; c; d 2 R;

we then conclude that:h
hA�Ax; xi

1
2 � hB�By; yi

1
2 + hC�Cx; xi

1
2 � hD�Dy; yi

1
2

i2
(3.104)

� (hA�Ax; xi+ hC�Cx; xi) � (hB�By; yi+ hD�Dy; yi) ;

for any x; y 2 H:
Now, on making use of a similar argument to the one in the proof of

Theorem 132, we have for r; s � 1 that

(hA�Ax; xi+ hC�Cx; xi) � (hB�By; yi+ hD�Dy; yi) (3.105)

� 4
��
(A�A)

r
+ (C�C)

r

2

�
x; x

� 1
r

�
��
(B�B)

s
+ (D�D)

s

2

�
y; y

� 1
s

for any x; y 2 H; kxk = kyk = 1.
Consequently, by (3.103) �(3.105) we have:������B�A+D�C

2

�
x; y

�����2 (3.106)

�
��
(A�A)

r
+ (C�C)

r

2

�
x; x

� 1
r

�
��
(B�B)

s
+ (D�D)

s

2

�
y; y

� 1
s

for any x; y 2 H; kxk = kyk = 1.
Taking the supremum over x; y 2 H; kxk = kyk = 1 we deduce the

desired inequality (3.102).

Remark 138 If s = r; then the inequality (3.102) is equivalent with:B�A+D�C

2

2r �  (A�A)r + (C�C)r2

 �  (B�B)r + (D�D)
r

2

 : (3.107)
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Corollary 139 For any A;C 2 B (H) we have:A+ C2
2r �  (A�A)r + (C�C)r2

 ; (3.108)

where r � 1: Also, we haveA2 + C22

2 �  (A�A)r + (C�C)r2

 1
r

�
 (AA�)s + (CC�)s2

 1
s

(3.109)

for all r; s � 1; and in particularA2 + C22

2r �  (A�A)r + (C�C)r2

 �  (AA�)r + (CC�)r2

 (3.110)

for r � 1:

The inequality (3.108) follows from (3.102) for B = D = I; while the
inequality (3.109) is obtained from the same inequality (3.102) for B = A�

and D = C�:
Another particular result of interest is the following one:

Corollary 140 For any A;B 2 B (H) we have:B�A+A�B2

2 �  (A�A)r + (B�B)r2

 1
r

�
 (A�A)s + (B�B)s2

 1
s

(3.111)

for r; s � 1 and, in particular,B�A+A�B2

r �  (A�A)r + (B�B)r2

 (3.112)

for any r � 1:

The inequality (3.110) follows from (3.102) for D = A and C = B.
Another particular case that might be of interest is the following one.

Corollary 141 For any A;D 2 B (H) we have:A+D2
2 �  (A�A)r + I2

 1
r

�
 (DD�)

s
+ I

2

 1
s

; (3.113)

where r; s � 1: In particular

kAk2 �
 (A�A)r + I2

 1
r

�
 (AA�)s + I2

 1
s

: (3.114)

Moreover, for any r � 1 we have

kAk2r �
 (A�A)r + I2

 �  (AA�)r + I2

 :
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The proof is obvious by the inequality (3.102) on choosing B = I; C = I
and writing the inequality for D� instead of D:

Remark 142 If T 2 B (H) and T = A+iC; i.e., A and C are its Cartesian
decomposition, then we get from (3.108) that

kTk2r � 22r�1
A2r + C2r ;

for any r � 1:
Also, since A = Re (T ) = T+T�

2 and C = Im (T ) = T�T�
2i ; then from

(3.108) we get the following inequalities as well:

kRe (T )k2r �
 (T �T )r + (TT �)r2


and

kIm (T )k2r �
 (T �T )r + (TT �)r2


for any r � 1:

In terms of the Euclidean radius of two operators we (�; �) ; where, as in
[8],

we (T;U) := sup
kxk=1

�
jhTx; xij2 + jhUx; xij2

� 1
2

;

we have the following result as well.

Theorem 143 (Dragomir [17], 2009) For any A;B;C;D 2 B (H) and
p; q > 1 with 1

p +
1
q = 1; we have the inequality:

w2e (B
�A;D�C) � k(A�A)p + (C�C)pk1=p (3.115)

� k(B�B)q + (D�D)
qk1=q :

Proof. For any x 2 H; kxk = 1 we have the inequalities

jhB�Ax; xij2 + jhD�Cx; xij2

� hA�Ax; xi � hB�Bx; xi+ hC�Cx; xi � hD�Dx; xi

� (hA�Ax; xip + hC�Cx; xip)1=p � (hB�Bx; xiq + hD�Dx; xiq)1=q

� (h(A�A)p x; xi+ h(C�C)p x; xi)1=p � (h(B�B)q x; xi+ h(D�D)
q
x; xi)1=q

� h[(A�A)p + (C�C)p]x; xi1=p � h[(B�B)q + (D�D)
q
]x; xi1=q :

Taking the supremum over x 2 H; kxk = 1 and noticing that the operators
(A�A)

p
+ (C�C)

p and (B�B)q + (D�D)
q are self-adjoint, we deduce the

desired inequality (3.115).
The following particular case is of interest.
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Corollary 144 For any A;C 2 B (H) and p; q > 1 with 1
p +

1
q = 1; we

have:
w2e (A;C) � 2

1
q k(A�A)p + (C�C)pk

1
p :

The proof follows from (3.115) for B = D = I:

Corollary 145 For any A;D 2 B (H) and p; q > 1 with 1
p +

1
q = 1; we

have:
w2e (A;D) � k(A�A)

p
+ Ik

1
p � k(D�D)

q
+ Ik

1
q :

3.3.3 Vector Inequalities for the Commutator

The commutator of two bounded linear operators T and U is the operator
TU � UT: For the usual norm k�k and for any two operators T and U; by
using the triangle inequality and the submultiplicity of the norm, we can
state the following inequality:

kTU � UTk � 2 kUk kTk : (3.116)

In [16], the following result has been obtained as well

kTU � UTk � 2min fkTk ; kUkgmin fkT � Uk ; kT + Ukg : (3.117)

By utilizing Theorem 137 we can state the following result for the numerical
radius of the commutator.

Proposition 146 (Dragomir [17], 2009) For any T;U 2 B (H) and
r; s � 1 we have

kTU � UTk2 � 22� 1
r�

1
s k(T �T )r + (U�U)rk

1
r (3.118)

� k(TT �)s + (UU�)sk
1
s :

Proof. Follows by Theorem 137 on choosing B = T �; A = U; D = �U�
and C = T:

Remark 147 In particular, for r = s we get from (3.118) that

kTU � UTk2r � 22r�2 k(T �T )r + (U�U)rk � k(TT �)r + (UU�)rk (3.119)

and for r = 1 we get

kTU � UTk2 � kT �T + U�Uk � kTT � + UU�k : (3.120)

For a bounded linear operator T 2 B (H) ; the self-commutator is the
operator T �T � TT �: Observe that the operator V := �i (T �T � TT �) is
self-adjoint and w (V ) = kV k ; i.e.,

w (T �T � TT �) = kT �T � TT �k :

Now, utilizing (3.118) for U = T � we can state the following corollary.
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Corollary 148 For any T 2 B (H) we have the inequality:

kT �T � TT �k2 � 22� 1
r�

1
s k(T �T )r + (TT �)rk

1
r (3.121)

� k(T �T )s + (TT �)sk
1
s :

In particular, we have

kT �T � TT �kr � 2r�1 k(T �T )r + (TT �)rk ; (3.122)

for any r � 1:
Moreover, for r = 1 we have

kT �T � TT �k � kT �T + TT �k : (3.123)

3.4 A Functional Associated with Two Operators

3.4.1 Some Basic Facts

For two bounded linear operators A;B in the Hilbert space (H; h�; �i) ; we
de�ne the functional [18]

� (A;B) := sup
kxk=1

fkAxk kBxkg (� 0) : (3.124)

It is obvious that � is symmetric and sub-additive in each variable,
� (A;A) = kAk2 ; � (A; I) = kAk ; where I is the identity operator,

� (�A; �B) = j��j� (A;B)

and
� (A;B) � kAk kBk :

We also have the following inequalities

� (A;B) � w (B�A) (3.125)

and
� (A;B) kAk kBk � � (AB;BA) : (3.126)

The inequality (3.125) follows by the Schwarz inequality kAxk kBxk �
jhAx;Bxij ; x 2 H; while (3.126) can be obtained by multiplying the in-
equalities kABxk � kAk kBxk and kBAxk � kBk kAxk :
From (3.125) we also get

kAk2 � � (A;A�) � w
�
A2
�

(3.127)

for any A:
Motivated by the above results we establish in this paper several inequal-

ities for the functional � (�; �) under various assumptions for the operators
involved, including operators satisfying the uniform (�; �)�property and
operators for which the transform C�;� (�; �) is accretive.
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3.4.2 General Inequalities

The following result concerning some general power operator inequalities
may be stated:

Theorem 149 (Dragomir [18], 2010) For any A;B 2 B (H) and r � 1
we have the inequality

�r (A;B) � 1

2
k(A�A)r + (B�B)rk : (3.128)

The constant 12 is best possible.

Proof. Utilising the arithmetic mean - geometric mean inequality and the
convexity of the function f (t) = tr for r � 1 and t � 0 we have successively

kAxk kBxk � 1

2
[hA�Ax; xi+ hB�Bx; xi] (3.129)

�
�
hA�Ax; xir + hB�Bx; xir

2

� 1
r

for any x 2 H:
It is well known that if P is a positive operator, then for any r � 1 and

x 2 H with kxk = 1 we have the inequality (see for instance [23])

hPx; xir � hP rx; xi : (3.130)

Applying this inequality to the positive operators A�A and B�B we deduce
that�

hA�Ax; xir + hB�Bx; xir

2

� 1
r

�
�
[(A�A)

r
+ (B�B)

r
]x

2
; x

� 1
r

(3.131)

for any x 2 H with kxk = 1:
Now, on making use of the inequalities (3.129) and (3.131) we get

kAxk kBxk �
�
[(A�A)

r
+ (B�B)

r
]x

2
; x

� 1
r

(3.132)

for any x 2 H with kxk = 1: Taking the supremum over x 2 H with
kxk = 1 we obtain the desired result (3.128).
For r = 1 and B = A we get on both sides of (3.128) the same quantity

kAk2 which shows that the constant 1
2 is best possible in general in the

inequality (3.128).

Corollary 150 For any A 2 B (H) and r � 1 we have the inequalities

�r (A;A�) � 1

2
k(A�A)r + (AA�)rk (3.133)
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and

kAkr � 1

2
k(A�A)r + Ik ; (3.134)

respectively.

The following similar result for powers of operators can be stated as well:

Theorem 151 (Dragomir [18], 2010) For any A;B 2 B (H) ; any � 2
(0; 1) and r � 1 we have the inequality

�2r (A;B) �
� � (A�A) r� + (1� �) � (B�B) r

1��

 : (3.135)

The inequality is sharp.

Proof. Observe that, for any � 2 (0; 1) we have

kAxk2 kBxk2 = h(A�A)x; xi h(B�B)x; xi (3.136)

=
Dh
(A�A)

1
�

i�
x; x

E�h
(B�B)

1
1��
i1��

x; x

�
;

where x 2 H:
It is well known that, if P is a positive operator and q 2 (0; 1) ; then

hP qx; xi � hPx; xiq : (3.137)

Applying this property to the positive operators (A�A)1=� and (B�B)1=(1��) ;
where � 2 (0; 1) ; we haveDh

(A�A)
1
�

i�
x; x

E�h
(B�B)

1
1��
i1��

x; x

�
(3.138)

�
D
(A�A)

1
� x; x

E� D
(B�B)

1
1�� x; x

E1��
for any x 2 H with kxk = 1:
Now, on utilizing the weighted arithmetic mean-geometric mean inequal-

ity, i.e.,

a�b1�� � �a+ (1� �) b; where � 2 (0; 1) and a; b � 0;

we get D
(A�A)

1
� x; x

E� D
(B�B)

1
1�� x; x

E1��
(3.139)

� � �
D
(A�A)

1
� x; x

E
+ (1� �) �

D
(B�B)

1
1�� x; x

E
for any x 2 H with kxk = 1:
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Moreover, by the elementary inequality

�a+ (1� �) b � (�ar + (1� �) br)
1
r ; where � 2 (0; 1) and a; b � 0;

we have successively

� �
D
(A�A)

1
� x; x

E
+ (1� �) �

D
(B�B)

1
1�� x; x

E
(3.140)

�
h
� �
D
(A�A)

1
� x; x

Er
+ (1� �) �

D
(B�B)

1
1�� x; x

Eri 1r
�
h
� �
D
(A�A)

r
� x; x

E
+ (1� �) �

D
(B�B)

r
1�� x; x

Ei 1
r

;

for any x 2 H with kxk = 1; where for the last inequality we have used the
property (3.130) for the positive operators (A�A)1=� and (B�B)1=(1��) :
Now, on making use of the identity (3.136) and the inequalities (3.138)-

(3.140) we get

kAxk2 kBxk2 �
hDh

� � (A�A)
r
� + (1� �) � (B�B)

r
1��
i
x; x

Ei 1
r

for any x 2 H with kxk = 1: Taking the supremum over x 2 H with
kxk = 1 we deduce the desired result (3.135).
Notice that the inequality is sharp since for r = 1 and B = A we get on

both sides of (3.135) the same quantity kAk4 :

Corollary 152 For any A 2 B (H) ; any � 2 (0; 1) and r � 1; we have
the inequalities

�2r (A;A�) �
� � (A�A) r� + (1� �) � (AA�) r

1��

 ;
kAk2r �

� � (A�A) r� + (1� �) � I
and

kAk4r �
� � (A�A) r� + (1� �) � (A�A) r

1��

 ;
respectively.

The following reverse of the inequality (3.125) may be stated as well:

Theorem 153 (Dragomir [18], 2010) For any A;B 2 B (H) we have
the inequalities

(0 �)� (A;B)� w (B�A) � 1

2
kA�Bk2 (3.141)

and

�

�
A+B

2
;
A�B
2

�
� 1

2
w (B�A) +

1

4
kA�Bk2 ; (3.142)

respectively.
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Proof. We have

kAx�Bxk2 = kAxk2 + kBxk2 � 2Re hB�Ax; xi (3.143)

� 2 kAxk kBxk � 2 jhB�Ax; xij ;

for any x 2 H; kxk = 1; which gives the inequality

kAxk kBxk � jhB�Ax; xij+ 1
2
kAx�Bxk2 ;

for any x 2 H; kxk = 1:
Taking the supremum over kxk = 1 we deduce the desired result (3.141).
By the parallelogram identity in the Hilbert space H we also have

kAxk2 + kBxk2 = 1

2

�
kAx+Bxk2 + kAx�Bxk2

�
� kAx+Bxk kAx�Bxk ;

for any x 2 H:
Combining this inequality with the �rst part of (3.143) we get

kAx+Bxk kAx�Bxk � kAx�Bxk2 + 2 jhB�Ax; xij ;

for any x 2 H: Taking the supremum in this inequality over kxk = 1 we
deduce the desired result (3.142).

Corollary 154 Let A 2 B (H) : If Re (A) := A+A�

2 and Im (A) := A�A�

2i
are the real and imaginary parts of A; then we have the inequalities

(0 �)� (A;A�)� w
�
A2
�
� 2 � kIm (A)k2

and

� (Re (A) ; Im (A)) � 1

2
w
�
A2
�
+ kIm (A)k2 ;

respectively.
Moreover, we have

(0 �)� (Re (A) ; Im (A))� w (Re (A) Im (A)) � 1

2
kAk2 :

Corollary 155 For any A 2 B (H) and � 2 C with � 6= 0 we have the
inequality (see also [10])

(0 �) kAk � w (A) � 1

2 j�j kA� �Ik
2
: (3.144)

For a bounded linear operator T consider the quantity ` (T ) := infkxk=1 kTxk :
We can state the following result as well.
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Theorem 156 (Dragomir [18], 2010) For any A;B 2 B (H) with A 6=
B and such that ` (B) � kA�Bk we have

(0 �)�2 (A;B)� w2 (B�A) � kAk2 kA�Bk2 : (3.145)

Proof. Denote r := kA�Bk > 0: Then for any x 2 H with kxk = 1 we
have kBxk � r and by the �rst part of (3.143) we can write that

kAxk2 +
�q

kBxk2 � r2
�2
� 2 jhB�Ax; xij (3.146)

for any x 2 H with kxk = 1:
On the other hand we have

kAxk2 +
�q

kBxk2 � r2
�2
� 2 � kAxk

q
kBxk2 � r2 (3.147)

for any x 2 H with kxk = 1:
Combining (3.146) with (3.147) we deduce

kAxk
q
kBxk2 � r2 � jhB�Ax; xij

which is clearly equivalent to

kAxk2 kBxk2 � jhB�Ax; xij2 + kAxk2 kA�Bk2 (3.148)

for any x 2 H with kxk = 1: Taking the supremum in (3.148) over x 2 H
with kxk = 1; we deduce the desired inequality (3.145).

Corollary 157 For any A 2 B (H) a non-self-adjoint operator in B (H)
and such that ` (A�) � kIm (A)k we have

(0 �)�2 (A;A�)� w2
�
A2
�
� 4 � kAk2 kIm (A)k2 : (3.149)

Corollary 158 For any A 2 B (H) and � 2 C with � 6= 0 and j�j �
kA� �Ik we have the inequality (see also [10])

(0 �) kAk2 � w2 (A) � 1

j�j2
� kAk2 kA� �Ik2

or, equivalently,

(0 �)

s
1� kA� �Ik

2

j�j2
� w (A)

kAk (� 1) :
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3.4.3 Operators Satisfying the Uniform (�; �)-property

The following result that may be of interest in itself holds:

Lemma 159 (Dragomir [18], 2010) Let T 2 B (H) and �; � 2 C with
� 6= �: The following statements are equivalent:

(i) We have
Re h�y � Tx; Tx� �yi � 0 (3.150)

for any x; y 2 H with kxk = kyk = 1;

(ii) We have Tx� �+ �

2
� y
 � 1

2
j�� �j (3.151)

for any x; y 2 H with kxk = kyk = 1:

Proof. This follows by the following identity

Re h�y � Tx; Tx� �yi = 1

4
j�� �j2 �

Tx� �+ �

2
� y
2 ;

that holds for any x; y 2 H with kxk = kyk = 1:

Remark 160 For any operator T 2 B (H) if we choose � = a kTk (1 + 2i)
and � = a kTk (1� 2i) with a � 1; then

�+ �

2
= a kTk and

j�� �j
2

= 2a kTk

showing thatTx� �+ �

2
� y
 � kTxk+ �����+ �2

���� � kTk+ a kTk
� 2a kTk = 1

2
� j�� �j ;

that holds for any x; y 2 H with kxk = kyk = 1; i.e., T satis�es the
condition (3.150) with the scalars � and � given above.

De�nition 161 For given �; � 2 C with � 6= � and y 2 H with kyk = 1;
we say that the operator T 2 B (H) has the (�; �; y)-property if either
(3.150) or, equivalently, (3.151) holds true for any x 2 H with kxk = 1:
Moreover, if T has the (�; �; y)-property for any y 2 H with kyk = 1; then
we say that this operator has the uniform (�; �)-property.

The following results may be stated:
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Theorem 162 (Dragomir [18], 2010) Let A;B 2 B(H) and �; �; ; � 2
K with � 6= � and  6= � . For y 2 H with kyk = 1 assume that A� has the
(�; �; y)-property while B� has the (; �; y)-property. Then

jkAyk kByk � kBA�kj � 1

4
j� � �j j � �j : (3.152)

Moreover, if A� has the uniform (�; �)-property and B� has the uniform
(; �)-property, then

j� (A;B)� kBA�kj � 1

4
j� � �j j � �j : (3.153)

Proof. A� has the (�; �; y)-property while B� has the (; �; y)-property,
then on making use of Lemma 159 we have thatA�x� �+ �

2
� y
 � 1

2
j� � �j

and B�z �  + �

2
� y
 � 1

2
j � �j

for any x; z 2 H with kxk = kzk = 1:
Now, we make use of the following Grüss type inequality for vectors in

inner product spaces obtained by the author in [1] (see also [2] or [6, p.
43]):
Let (H; h�; �i) be an inner product space over the real or complex number

�eld K, u; v; e 2 H; kek = 1; and �; �; ; � 2 K such that

Re h�e� u; u� �ei � 0; Re h�e� v; v � ei � 0 (3.154)

or, equivalently,u� �+ �

2
e

 � 1

2
j� � �j ;

v �  + �

2
e

 � 1

2
j� � j : (3.155)

Then
jhu; vi � hu; ei he; vij � 1

4
j� � �j j� � j : (3.156)

Applying (3.156) for u = A�x; v = B�z and e = y we deduce

jhBA�x; zi � hx;Ayi hBy; zij � 1

4
j� � �j j� � j ; (3.157)

for any x; z 2 H; kxk = kzk = 1; which is an inequality of interest in itself.
Observing that

jjhBA�x; zij � jhx;Ayi hz;Byijj � jhBA�x; zi � hx;Ayi hBy; zij ;
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then by (3.157) we deduce the inequality

jjhBA�x; zij � jhx;Ayi hz;Byijj � 1

4
j� � �j j� � j

for any x; z 2 H; kxk = kzk = 1: This is equivalent to the following two
inequalities

jhBA�x; zij � jhx;Ayi hz;Byij+ 1
4
j� � �j j� � j (3.158)

and
jhx;Ayi hz;Byij � jhBA�x; zij+ 1

4
j� � �j j� � j (3.159)

for any x; z 2 H; kxk = kzk = 1:
Taking the supremum over x; z 2 H; kxk = kzk = 1; in (3.158) and

(3.159) we get the inequalities

kBA�k � kAyk kByk+ 1
4
j� � �j j� � j (3.160)

and
kAyk kByk � kBA�k+ 1

4
j� � �j j� � j ; (3.161)

which are clearly equivalent to (3.152).
Now, if A� has the uniform (�; �)-property and B� has the uniform (; �)-

property, then the inequalities (3.160) and (3.161) hold for any y 2 H
with kyk = 1: Taking the supremum over y 2 H with kyk = 1 in these
inequalities we deduce

kBA�k � � (A;B) +
1

4
j� � �j j� � j

and
� (A;B) � kBA�k+ 1

4
j� � �j j� � j ;

which are equivalent to (3.153).

Corollary 163 Let A 2 B(H) and �; �; ; � 2 K with � 6= � and  6= �.
For y 2 H with kyk = 1 assume that A has the (�; �; y)-property while A�

has the (; �; y)-property. Then��kA�yk kAyk � A2�� � 1

4
j� � �j j � �j :

Moreover, if A has the uniform (�; �)-property and A� has the uniform
(; �)-property, then��� (A;A�)� A2�� � 1

4
j� � �j j � �j :
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The following results may be stated as well:

Theorem 164 (Dragomir [18], 2010) Let A;B 2 B(H) and �; �; ; � 2
K with �+ � 6= 0 and  + � 6= 0. For y 2 H with kyk = 1 assume that A�
has the (�; �; y)-property while B� has the (; �; y)-property. Then

jkAyk kByk � kBA�kj

� 1

4
� j� � �j j� � jp

j� + �j j� + j
p
(kAk+ kAyk) (kBk+ kByk): (3.162)

Moreover, if A� has the uniform (�; �)-property and B� has the uniform
(; �)-property, then

j� (A;B)� kBA�kj � 1

2
� j� � �j j� � jp

j� + �j j� + j
p
kAk kBk: (3.163)

Proof. We make use of the following inequality obtained by the author in
[3] (see also [6, p. 65]):
Let (H; h�; �i) be an inner product space over the real or complex number

�eld K, u; v; e 2 H; kek = 1; and �; �; ; � 2 K with �+� 6= 0 and +� 6= 0
such that

Re h�e� u; u� �ei � 0; Re h�e� v; v � ei � 0

or, equivalently,u� �+ �

2
e

 � 1

2
j� � �j ;

v �  + �

2
e

 � 1

2
j� � j :

Then

jhu; vi � hu; ei he; vij (3.164)

� 1

4
� j� � �j j� � jp

j� + �j j� + j
p
(kuk+ jhu; eij) (kvk+ jhv; eij):

Applying (3.164) for u = A�x; v = B�z and e = y we deduce

jhBA�x; zi � hx;Ayi hBy; zij

� 1

4
� j� � �j j� � jp

j� + �j j� + j
p
(kA�xk+ jhx;Ayij) (kB�zk+ jhz;Byij)

for any x; y; z 2 H; kxk = kyk = kzk = 1:
Now, on making use of a similar argument to the one from the proof

of Theorem 162, we deduce the desired results (3.162) and (3.163). The
details are omitted.
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Corollary 165 Let A 2 B(H) and �; �; ; � 2 K with � + � 6= 0 and
+� 6= 0. For y 2 H with kyk = 1 assume that A has the (�; �; y)-property
while A� has the (; �; y)-property. Then��kA�yk kAyk � A2��

� 1

4
� j� � �j j� � jp

j� + �j j� + j
p
(kAk+ kA�yk) (kAk+ kAyk):

Moreover, if A has the uniform (�; �)-property and A� has the uniform
(; �)-property, then��� (A;A�)� A2�� � 1

2
� j� � �j j� � jp

j� + �j j� + j
kAk :

3.4.4 The Transform C�;� (�; �) and Other Inequalities
For two given operators T;U 2 B (H) and two given scalars �; � 2 C
consider the transform

C�;� (T;U) = (T
� � ��U�) (�U � T ) :

This transform generalizes the transform C�;� (T ) := (T
� � ��I) (�I � T ) =

C�;� (T; I) ; where I is the identity operator, which has been introduced be-
fore in order to provide some generalizations of the well known Kantorovich
inequality for operators in Hilbert spaces.
We recall that a bounded linear operator T on the complex Hilbert space

(H; h�; �i) is called accretive if Re hTy; yi � 0 for any y 2 H:
Utilizing the following identity

Re hC�;� (T;U)x; xi = Re hC�;� (T;U)x; xi (3.165)

=
1

4
j� � �j2 kUxk2 �

Tx� �+ �

2
� Ux

2 ;
that holds for any scalars �; � and any vector x 2 H; we can give a simple
characterization result that is useful in the following:

Lemma 166 (Dragomir [18], 2010) For �; � 2 C and T;U 2 B(H) the
following statements are equivalent:

(i) The transform C�;� (T;U) (or, equivalently, C�;� (T;U)) is accretive;

(ii) We have the norm inequalityTx� �+ �

2
� Ux

 � 1

2
j� � �j kUxk (3.166)

for any x 2 H:
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As a consequence of the above lemma we can state

Corollary 167 Let �; � 2 C and T;U 2 B(H): If C�;� (T;U) is accretive,
then T � �+ �

2
� U
 � 1

2
j� � �j kUk : (3.167)

Remark 168 In order to give examples of linear operators T;U 2 B(H)
and numbers �; � 2 C such that the transform C�;� (T;U) is accretive,
it su¢ ces to select two bounded linear operators S and V and the com-
plex numbers z; w (w 6= 0) with the property that kSx� zV xk � jwj kV xk
for any x 2 H; and, by choosing T = S; U = V; � = 1

2 (z + w) and
� = 1

2 (z � w) we observe that T and U satisfy (3.166), i.e., C�;� (T;U) is
accretive.

We are able now to give the following result concerning other reverse
inequalities for the case when the involved operators satisfy the accretivity
property described above.

Theorem 169 (Dragomir [18], 2010) Let �; � 2 C and A;B 2 B(H):
If C�;� (A;B) is accretive, then

(0 �)�2 (A;B)� w2 (B�A) � 1

4
� j� � �j2 kBk4 : (3.168)

Moreover, if �+ � 6= 0; then

(0 �)� (A;B)� w (B�A) � 1

4
� j� � �j

2

j� + �j kBk
2
: (3.169)

In addition, if Re
�
���
�
> 0 and B�A 6= 0; then also

(1 �) � (A;B)
w (B�A)

� 1

2
� j� + �jq

Re
�
���
� (3.170)

and

(0 �)�2 (A;B)� w2 (B�A) (3.171)

�
�
j� + �j � 2 �

q
Re
�
���
��

w (B�A) kBk2 ;

respectively.

Proof. By Lemma 166, since C�;� (A;B) is accretive, thenAx� �+ �

2
�Bx

 � 1

2
j� � �j kBxk (3.172)

for any x 2 H:
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We utilize the following reverse of the Schwarz inequality in inner product
spaces obtained by the author in [5] (see also [6, p. 4]):
If ;� 2 K (K = C, R) and u; v 2 H are such that

Re h�v � u; u� vi � 0 (3.173)

or, equivalently, u�  + �

2
� v
 � 1

2
j�� j kvk ; (3.174)

then
0 � kuk2 kvk2 � jhu; vij2 � 1

4
j�� j2 kvk4 : (3.175)

Now, on making use of (3.175) for u = Ax; v = Bx; x 2 H; kxk = 1 and
 = �; � = � we can write the inequality

kAxk2 kBxk2 � jhB�Ax; xij2 + 1
4
j� � �j2 kBxk4 ;

for any x 2 H; kxk = 1: Taking the supremum over kxk = 1 in this
inequality produces the desired result (3.168).
Now, by utilizing the result from [3] (see also [6, p. 29]) namely:
If ;� 2 K with  + � 6= 0 and u; v 2 H are such that either (3.173) or,

equivalently, (3.174) holds true, then

0 � kuk kvk � jhu; vij � 1

4
� j�� j

2

j� + j kvk
2
: (3.176)

Now, on making use of (3.176) for u = Ax; v = Bx; x 2 H; kxk = 1 and
 = �;� = � and using the same procedure outlined above, we deduce the
second inequality (3.169).
The inequality (3.170) follows from the result presented below obtained

in [4] (see also [6, p. 21]):
If ;� 2 K with Re (��) > 0 and u; v 2 H are such that either (3.173)

or, equivalently, (3.174) holds true, then

kuk kvk � 1

2
� j� + jp

Re (��)
jhu; vij ; (3.177)

by choosing u = Ax; v = Bx; x 2 H; kxk = 1 and  = �;� = � and taking
the supremum over kxk = 1:
Finally, on making use of the inequality (see [10])

kuk2 kvk2 � jhu; vij2 �
�
j� + j � 2

p
Re (��)

�
jhu; vij kvk2 (3.178)

that is valid provided ;� 2 K with Re (��) > 0 and u; v 2 H are such
that either (3.173) or, equivalently, (3.174) holds true, we obtain the last
inequality (3.171). The details are omitted.
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Remark 170 Let M;m > 0 and A;B 2 B(H): If Cm;M (A;B) is accre-
tive, then

(0 �)�2 (A;B)� w2 (B�A) � 1

4
� (M �m)2 kBk4 ;

(0 �)� (A;B)� w (B�A) � 1

4
� (M �m)2

m+M
kBk2 ;

(1 �) � (A;B)
w (B�A)

� 1

2
� m+Mp

mM

and

(0 �)�2 (A;B)� w2 (B�A) �
�p

M �
p
m
�2
w (B�A) kBk2 ;

respectively.

Corollary 171 Let �; � 2 C and A 2 B(H): If C�;� (A;A�) is accretive,
then

(0 �)�2 (A;A�)� w2
�
A2
�
� 1

4
� j� � �j2 kAk4 :

Moreover, if �+ � 6= 0; then

(0 �)� (A;A�)� w
�
A2
�
� 1

4
� j� � �j

2

j� + �j kAk
2
:

In addition, if Re
�
���
�
> 0 and A2 6= 0; then also

(1 �) � (A;A
�)

w (A2)
� 1

2
� j� + �jq

Re
�
���
�

and

(0 �)�2 (A;A�)� w2
�
A2
�
�
�
j� + �j � 2 �

q
Re
�
���
��

w
�
A2
�
kAk2 ;

respectively.

Remark 172 In a similar manner, if N;n > 0; A 2 B(H) and Cn;N (A;A�)
is accretive, then

(0 �)�2 (A;A�)� w2
�
A2
�
� 1

4
� (N � n)2 kAk4 ;

(0 �)� (A;A�)� w
�
A2
�
� 1

4
� (N � n)2

n+N
kAk2 ;

(1 �) � (A;A
�)

w (A2)
� 1

2
� n+Np

nN
(for A2 6= 0)

and

(0 �)�2 (A;A�)� w2
�
A2
�
�
�p

N �
p
n
�2
w
�
A2
�
kAk2 ;

respectively.
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3.5 Some Inequalities of the Grüss Type

3.5.1 Additive and Multiplicative Grüss�Type Inequalities

Motivated by the natural questions that arise, in order to compare the
quantity w (AB) with other expressions comprising the norm or the nu-
merical radius of the involved operators A and B (or certain expressions
constructed with these operators), we establish in this paper some natural
inequalities of the form

w (BA) � w (A)w (B) +K1 (additive Grüss�type inequality)

or
w (BA)

w (A)w (B)
� K2 (multiplicative Grüss�type inequality)

where K1 and K2 are speci�ed and desirably simple constants (depending
on the given operators A and B):
Applications in providing upper bounds for the non negative quantities

kAk2 � w2 (A) and w2 (A)� w(A2)

and the super unitary quantities

kAk2

w2 (A)
and

w2 (A)

w(A2)

are also given.

3.5.2 Numerical Radius Inequalities of Grüss Type

For the complex numbers �; � and the bounded linear operator T we de�ne
the following transform

C�;� (T ) := (T
� � �I) (�I � T ) ; (3.179)

where by T � we denote the adjoint of T .
The following results compare the quantities w (AB) and w (A)w (B)

provided that some information about the transforms C�;� (A) and C;� (B)
are available, where �; �; ; � 2 K.

Theorem 173 (Dragomir [15], 2008) Let A;B 2 B(H) and �; �; ; � 2
K be such that the transforms C�;� (A) and C;� (B) are accretive, then

w (BA) � w (A)w (B) +
1

4
j� � �j j � �j : (3.180)
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Proof. Since C�;� (A) and C;� (B) are accretive, then we have thatAx� �+ �

2
x

 � 1

2
j� � �j

and B�x� � + ��

2
x

 � 1

2

��� � ����
for any x 2 H; kxk = 1:
Now, we make use of the following Grüss type inequality for vectors in

inner product spaces obtained by the author in [1] (see also [2] or [6, p.
43]):
Let (H; h�; �i) be an inner product space over the real or complex number

�eld K, u; v; e 2 H; kek = 1; and �; �; ; � 2 K such that

Re h�e� u; u� �ei � 0; Re h�e� v; v � ei � 0 (3.181)

or equivalently,u� �+ �

2
e

 � 1

2
j� � �j ;

v �  + �

2
e

 � 1

2
j� � j ; (3.182)

then
jhu; vi � hu; ei he; vij � 1

4
j� � �j j� � j : (3.183)

Applying (3.183) for u = Ax; v = B�x and e = x we deduce

jhBAx; xi � hAx; xi hBx; xij � 1

4
j� � �j j� � j ; (3.184)

for any x 2 H; kxk = 1; which is an inequality of interest in itself.
Observing that

jhBAx; xij � jhAx; xi hBx; xij � jhBAx; xi � hAx; xi hBx; xij ;

then by (3.183) we deduce the inequality

jhBAx; xij � jhAx; xi hBx; xij+ 1
4
j� � �j j� � j ; (3.185)

for any x 2 H; kxk = 1: On taking the supremum over kxk = 1 in (3.185)
we deduce the desired result (3.180).
The following particular case provides a upper bound for the nonnegative

quantity kAk2 � w (A)
2 when some information about the operator A is

available:

Corollary 174 Let A 2 B(H) and �; � 2 K be such that the transform
C�;� (A) is accretive, then

(0 �) kAk2 � w2 (A) � 1

4
j� � �j2 : (3.186)
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Proof. Follows on applying Theorem 173 above for the choice B = A�;
taking into account that C�;� (A) is accretive implies that C�;� (A

�) is the

same and w (A�A) = kAk2 :

Remark 175 Let A 2 B(H) and M > m > 0 are such that the transform
Cm;M (A) = (A

� �mI) (MI �A) is accretive. Then

(0 �) kAk2 � w2 (A) � 1

4
(M �m)2 : (3.187)

A su¢ cient simple condition for Cm;M (A) to be accretive is that A is a
selfadjoint operator on H and such that MI � A � mI in the partial
operator order of B(H):

The following result may be stated as well:

Theorem 176 (Dragomir [15], 2008) Let A;B 2 B(H) and �; �; ; � 2
K be such that Re (��) > 0;Re (�) > 0 and the transforms C�;� (A) ; C;� (B)
are accretive, then

w (BA)

w (A)w (B)
� 1 + 1

4
� j� � �j j� � j
[Re (��)Re (�)]

1
2

(3.188)

and

w (BA) � w (A)w (B) +
h�
j�+ �j � 2 [Re (��)]

1
2

�
(3.189)

�
�
j� + j � 2 [Re (�)]

1
2

�i 1
2 � [w (A)w (B)]

1
2

respectively.

Proof.With the assumptions (3.181) (or, equivalently, (3.182) in the proof
of Theorem 173) and if Re (��) > 0;Re (�) > 0 then

jhu; vi � hu; ei he; vij (3.190)

�

8>>>><>>>>:
1
4

j���jj��j
[Re(��) Re(�)]

1
2
jhu; ei he; vij ;h�

j�+ �j � 2 [Re (��)]
1
2

��
j� + j � 2 [Re (�)]

1
2

�i 1
2

� [jhu; ei he; vij]
1
2 :

The �rst inequality has been established in [4] (see [6, p. 62]) while the
second one can be obtained in a canonical manner from the reverse of the
Schwarz inequality given in [10]. The details are omitted.
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Applying (3.183) for u = Ax; v = B�x and e = x we deduce

jhBAx; xi � hAx; xi hBx; xij (3.191)

�

8>>>><>>>>:
1
4

j���jj��j
[Re(��) Re(�)]

1
2
jhA; xi hBx; xij ;h�

j�+ �j � 2 [Re (��)]
1
2

��
j� + j � 2 [Re (�)]

1
2

�i 1
2

� [jhA; xi hBx; xij]
1
2

for any x 2 H; kxk = 1; which are of interest in themselves.
A similar argument to that in the proof of Theorem 173 yields the desired

inequalities (3.188) and (3.189). The details are omitted.

Corollary 177 Let A 2 B(H) and �; � 2 K be such that Re (��) > 0 and
the transform C�;� (A) is accretive, then

(1 �) kAk
2

w2 (A)
� 1 + 1

4
� j� � �j

2

Re (��)
(3.192)

and

(0 �) kAk2 � w2 (A) �
�
j�+ �j � 2 [Re (��)]

1
2

�
w (A) (3.193)

respectively.

The proof is obvious from Theorem 176 on choosing B = A� and the
details are omitted.

Remark 178 Let A 2 B(H) and M > m > 0 are such that the transform
Cm;M (A) = (A� �mI) (MI �A) is accretive. Then, on making use of
Corollary 177, we may state the following simpler results

(1 �) kAk
w (A)

� 1

2
� M +mp

Mm
(3.194)

and

(0 �) kAk2 � w2 (A) �
�p

M �
p
m
�2
w (A) (3.195)

respectively. These two inequalities were obtained earlier by the author using
a di¤erent approach, see [13].

3.5.3 Some Particular Cases of Interest

The following result is well known in the literature (see for instance [26]):

w(An) � wn(A);

for each positive integer n and any operator A 2 B(H):
The following reverse inequalities for n = 2; can be stated:
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Proposition 179 Let A 2 B(H) and �; � 2 K be such that the transform
C�;� (A) is accretive, then

(0 �)w2 (A)� w(A2) � 1

4
j� � �j2 : (3.196)

Proof. On applying the inequality (3.184) from Theorem 173 for the choice
B = A; we get the following inequality of interest in itself:���hAx; xi2 � 
A2x; x���� � 1

4
j� � �j2 ; (3.197)

for any x 2 H; kxk = 1: Since obviously,

jhAx; xij2 �
��
A2x; x��� � ���hAx; xi2 � 
A2x; x���� ;

then by (3.197) we get

jhAx; xij2 �
��
A2x; x���+ 1

4
j� � �j2 ; (3.198)

for any x 2 H; kxk = 1: Taking the supremum over kxk = 1 in (3.198) we
deduce the desired result (3.196).

Remark 180 Let A 2 B(H) and M > m > 0 are such that the transform
Cm;M (A) = (A

� �mI) (MI �A) is accretive. Then

(0 �)w2 (A)� w(A2) � 1

4
(M �m)2 : (3.199)

If MI � A � mI in the partial operator order of B(H); then (3.199) is
valid.

Finally, we also have

Proposition 181 Let A 2 B(H) and �; � 2 K be such that Re (��) > 0
and the transform C�;� (A) is accretive, then

(1 �) w
2 (A)

w(A2)
� 1 + 1

4
� j� � �j

2

Re (��)
(3.200)

and

(0 �)w2 (A)� w(A2) �
�
j�+ �j � 2 [Re (��)]

1
2

�
w (A) (3.201)

respectively.

Proof. On applying the inequality (3.191) from Theorem 176 for the choice
B = A; we get the following inequality of interest in itself:

���hAx; xi2 � 
A2x; x���� �
8><>:

1
4 �

j���j2
Re(��) jhA; xij

2
;�

j�+ �j � 2 [Re (��)]
1
2

�
jhA; xij :

(3.202)
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for any x 2 H; kxk = 1:
Now, on making use of a similar argument to the one in the proof of

Proposition 179 we deduce the desired results (3.200) and (3.201). The
details are omitted.

Remark 182 Let A 2 B(H) and M > m > 0 are such that the transform
Cm;M (A) = (A� �mI) (MI �A) is accretive. Then, on making use of
Proposition 181 we may state the following simpler results

(1 �) w
2 (A)

w (A2)
� 1

4
� (M +m)

2

Mm
(3.203)

and

(0 �)w2 (A)� w
�
A2
�
�
�p

M �
p
m
�2
w (A) (3.204)

respectively.

3.6 Some Inequalities for the Euclidean Operator
Radius

3.6.1 Preliminary Facts

Let B (H) denote the C��algebra of all bounded linear operators on a
complex Hilbert space H with inner product h�; �i. For A 2 B (H) ; let
w (A) and kAk denote the numerical radius and the usual operator norm
of A; respectively. It is well known that w (�) de�nes a norm on B (H) ; and
for every A 2 B (H) ;

1

2
kAk � w (A) � kAk : (3.205)

For other results concerning the numerical range and radius of bounded
linear operators on a Hilbert space, see [21] and [22].
In [25], F. Kittaneh has improved (3.205) in the following manner:

1

4
kA�A+AA�k � w2 (A) � 1

2
kA�A+AA�k ; (3.206)

with the constants 1
4 and

1
2 as best possible.

Following Popescu�s work [27], we consider the Euclidean operator radius
of a pair (C;D) of bounded linear operators de�ned on a Hilbert space
(H; h�; �i) : Note that in [27], the author has introduced the concept for an
n�tuple of operators and pointed out its main properties.
Let (C;D) be a pair of bounded linear operators on H: The Euclidean

operator radius is de�ned by:

we (C;D) := sup
kxk=1

�
jhCx; xij2 + jhDx; xij2

� 1
2

: (3.207)
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As pointed out in [27], we : B2 (H)! [0;1) is a norm and the following
inequality holds:

p
2

4
kC�C +D�Dk

1
2 � we (C;D) � kC�C +D�Dk

1
2 ; (3.208)

where the constants
p
2
4 and 1 are best possible in (3.208).

We observe that, if C and D are self-adjoint operators, then (3.208)
becomes p

2

4

C2 +D2
 1
2 � we (C;D) �

C2 +D2
 1
2 : (3.209)

We observe also that if A 2 B (H) and A = B + iC is the Cartesian
decomposition of A; then

w2e (B;C) = sup
kxk=1

h
jhBx; xij2 + jhCx; xij2

i
= sup

kxk=1
jhAx; xij2 = w2 (A) :

By the inequality (3.209) and since (see [25])

A�A+AA� = 2
�
B2 + C2

�
; (3.210)

then we have

1

16
kA�A+AA�k � w2 (A) � 1

2
kA�A+AA�k : (3.211)

We remark that the lower bound for w2 (A) in (3.211) provided by Popescu�s
inequality (3.208) is not as good as the �rst inequality of Kittaneh from
(3.206). However, the upper bounds for w2 (A) are the same and have been
proved using di¤erent arguments.
The main aim of this paper is to extend Kittaneh�s result to the Euclidean

radius of two operators and investigate other particular instances of inter-
est. Related results connecting the Euclidean operator radius, the usual
numerical radius of a composite operator and the operator norm are also
provided.

3.6.2 Some Inequalities for the Euclidean Operator Radius

The following result concerning a sharp lower bound for the Euclidean
operator radius may be stated:

Theorem 183 (Dragomir [8], 2006) Let B;C : H ! H be two bounded
linear operators on the Hilbert space (H; h�; �i) : Then

p
2

2

�
w
�
B2 + C2

�� 1
2 � we (B;C)

�
� kB�B + C�Ck

1
2

�
: (3.212)
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The constant
p
2
2 is best possible in the sense that it cannot be replaced by

a larger constant.

Proof. We follow a similar argument to the one from [25].
For any x 2 H; kxk = 1; we have

jhBx; xij2 + jhCx; xij2 � 1

2
(jhBx; xij+ jhCx; xij)2 (3.213)

� 1

2
jh(B � C)x; xij2 :

Taking the supremum in (3.213), we deduce

w2e (B;C) �
1

2
w2 (B � C) : (3.214)

Utilising the inequality (3.214) and the properties of the numerical radius,
we have successively:

2w2e (B;C) �
1

2

�
w2 (B + C) + w2 (B � C)

�
� 1

2

n
w
h
(B + C)

2
i
+ w

h
(B � C)2

io
� 1

2

n
w
h
(B + C)

2
+ (B � C)2

io
= w

�
B2 + C2

�
;

which gives the desired inequality (3.212).
The sharpness of the constant will be shown in a particular case, later

on.

Corollary 184 For any two self-adjoint bounded linear operators B;C on
H; we have

p
2

2

B2 + C2 1
2 � we (B;C)

�
�
B2 + C2 1

2

�
: (3.215)

The constant
p
2
2 is sharp in (3.215).

Remark 185 The inequality (3.215) is better than the �rst inequality in
(3.209) which follows from Popescu�s �rst inequality in (3.208). It also pro-
vides, for the case that B;C are the self-adjoint operators in the Cartesian
decomposition of A; exactly the lower bound obtained by Kittaneh in (3.206)
for the numerical radius w (A) : Moreover, since 1

4 is a sharp constant in

Kittaneh�s inequality (3.206), it follows that
p
2
2 is also the best possible

constant in (3.215) and (3.212), respectively.

The following particular case may be of interest:
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Corollary 186 For any bounded linear operator A : H ! H and �; � 2 C
we have:

1

2
w
h
�2A2 + �2 (A�)

2
i
�
�
j�j2 + j�j2

�
w2 (A) (3.216)�

�
j�j2A�A+ j�j2AA�� :

Proof. If we choose in Theorem 183, B = �A and C = �A�; we get

w2e (B;C) =
�
j�j2 + j�j2

�
w2 (A)

and
w
�
B2 + C2

�
= w

h
�2A2 + �2 (A�)

2
i
;

which, by (3.212) implies the desired result (3.216).

Remark 187 If we choose in (3.216) � = � 6= 0; then we get the inequality

1

4

A2 + (A�)2 � w2 (A)

�
� 1

2
kA�A+AA�k

�
; (3.217)

for any bounded linear operator A 2 B (H) :
If we choose in (3.216), � = 1; � = i; then we get

1

4
w
h
A2 � (A�)2

i
� w2 (A) ; (3.218)

for every bounded linear operator A : H ! H:

The following result may be stated as well.

Theorem 188 (Dragomir [8], 2006) For any two bounded linear oper-
ators B;C on H we have:

p
2

2
max fw (B + C) ; w (B � C)g � we (B;C) (3.219)

�
p
2

2

�
w2 (B + C) + w2 (B � C)

� 1
2 :

The constant
p
2
2 is sharp in both inequalities.

Proof. The �rst inequality follows from (3.214).
For the second inequality, we observe that

jhCx; xi � hBx; xij2 � w2 (C �B) (3.220)

for any x 2 H; kxk = 1:
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The inequality (3.220) and the parallelogram identity for complex num-
bers give:

2
h
jhBx; xij2 + jhCx; xij2

i
(3.221)

= jhBx; xi � hCx; xij2 + jhBx; xi+ hCx; xij2

� w2 (B + C) + w2 (B � C) ;

for any x 2 H; kxk = 1:
Taking the supremum in (3.220) we deduce the desired result (3.219).
The fact that

p
2
2 is the best possible constant follows from the fact that

for B = C 6= 0 one would obtain the same quantity
p
2w (B) in all terms

of (3.219).

Corollary 189 For any two self-adjoint operators B;C on H we have:

p
2

2
max fkB + Ck ; kB � Ckg

� we (B;C) �
p
2

2

h
kB + Ck2 + kB � Ck2

i 1
2

: (3.222)

The constant
p
2
2 is best possible in both inequalities.

Corollary 190 Let A be a bounded linear operator on H: Then
p
2

2
max

� (1� i)A+ (1 + i)A�2

 ; (1 + i)A+ (1� i)A�2

� (3.223)

� w (A)

�
p
2

2

" (1� i)A+ (1 + i)A�2

2 +  (1 + i)A+ (1� i)A�2

2
# 1
2

:

Proof. Follows from (3.222) applied for the Cartesian decomposition of A.

The following result may be stated as well:

Corollary 191 For any A a bounded linear operator on H and �; � 2 C,
we have:

p
2

2
max fw (�A+ �A�) ; w (�A� �A�)g (3.224)

�
�
j�j2 + j�j2

� 1
2

w (A)

�
p
2

2

�
w2 (�A+ �A�) + w2 (�A� �A�)

� 1
2 :
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Remark 192 The above inequality (3.224) contains some particular cases
of interest. For instance, if � = � 6= 0; then by (3.224) we get

1

2
max fkA+A�k ; kA�A�kg (3.225)

� w (A) � 1

2

h
kA+A�k2 + kA�A�k2

i 1
2

;

since, obviously w (A+A�) = kA+A�k and w (A�A�) = kA�A�k ; A�
A� being a normal operator.
Now, if we choose in (3.224), � = 1 and � = i; and taking into account

that A+ iA� and A� iA� are normal operators, then we get
1

2
max fkA+ iA�k ; kA� iA�kg (3.226)

� w (A) � 1

2

h
kA+ iA�k2 + kA� iA�k2

i 1
2

:

The constant 12 is best possible in both inequalities (3.225) and (3.226).

The following simple result may be stated as well.

Proposition 193 (Dragomir [8], 2006) For any two bounded linear op-
erators B and C on H; we have the inequality:

we (B;C) �
�
w2 (C �B) + 2w (B)w (C)

� 1
2 : (3.227)

Proof. For any x 2 H; kxk = 1; we have

jhCx; xij2 � 2Re
h
hCx; xi hBx; xi

i
+ jhBx; xij2

= jhCx; xi � hBx; xij2 � w2 (C �B) ; (3.228)

giving

jhCx; xij2 + jhBx; xij2 � w2 (C �B) + 2Re
h
hCx; xi hBx; xi

i
(3.229)

� w2 (C �B) + 2 jhCx; xij jhBx; xij

for any x 2 H; kxk = 1:
Taking the supremum in (3.229) over kxk = 1; we deduce the desired

inequality (3.227).
In particular, if B and C are self-adjoint operators, then

we (B;C) �
�
kB � Ck2 + 2 kBk kCk

� 1
2

: (3.230)

Now, if we apply the inequality (3.230) for B = A+A�

2 and C = A�A�

2i ;
where A 2 B (H) ; then we deduce:

w (A) �
" (1 + i)A+ (1� i)A�2

2 + 2 � A+A�2

A�A�2


# 1
2

:
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The following result provides a di¤erent upper bound for the Euclidean
operator radius than (3.227).

Proposition 194 (Dragomir [8], 2006) For any two bounded linear op-
erators B and C on H; we have

we (B;C) �
�
2min

�
w2 (B) ; w2 (C)

	
+ w (B � C)w (B + C)

� 1
2 : (3.231)

Proof. Utilising the parallelogram identity (3.221), we have, by taking the
supremum over x 2 H; kxk = 1; that

2w2e (B;C) = w2e (B � C;B + C) : (3.232)

Now, if we apply Proposition 193 for B � C;B + C instead of B and C,
then we can state

w2e (B � C;B + C) � 4w2 (C) + 2w (B � C)w (B + C)

giving
w2e (B;C) � 2w2 (C) + w (B � C)w (B + C) : (3.233)

Now, if in (3.233) we swap the C with B then we also have

w2e (B;C) � 2w2 (B) + w (B � C)w (B + C) : (3.234)

The conclusion follows now by (3.233) and (3.234).

3.6.3 Other Results

A di¤erent upper bound for the Euclidean operator radius is incorporated
in the following

Theorem 195 (Dragomir [8], 2006) Let (H; h�; �i) be a Hilbert space and
B;C two bounded linear operators on H: Then

w2e (B;C) � max
n
kBk2 ; kCk2

o
+ w (C�B) : (3.235)

The inequality (3.235) is sharp.

Proof. Firstly, let us observe that for any y; u; v 2 H we have successively

khy; uiu+ hy; vi vk2 (3.236)

= jhy; uij2 kuk2 + jhy; vij2 kvk2 + 2Re
h
hy; ui hy; vi hu; vi

i
� jhy; uij2 kuk2 + jhy; vij2 kvk2 + 2 jhy; uij jhy; vij jhu; vij

� jhy; uij2 kuk2 + jhy; vij2 kvk2 +
�
jhy; uij2 + jhy; vij2

�
jhu; vij

�
�
jhy; uij2 + jhy; vij2

��
max

n
kuk2 ; kvk2

o
+ jhu; vij

�
:
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On the other hand,�
jhy; uij2 + jhy; vij2

�2
= [hy; ui hu; yi+ hy; vi hv; yi]2 (3.237)

= [hy; hy; uiu+ hy; vi vi]2

� kyk2 khy; uiu+ hy; vi vk2

for any y; u; v 2 H:
Making use of (3.236) and (3.237) we deduce that

jhy; uij2 + jhy; vij2 � kyk2
h
max

n
kuk2 ; kvk2

o
+ jhu; vij

i
(3.238)

for any y; u; v 2 H; which is a vector inequality of interest in itself.
Now, if we apply the inequality (3.238) for y = x; u = Bx; v = Cx;

x 2 H; kxk = 1; then we can state that

jhBx; xij2 + jhCx; xij2 � max
n
kBxk2 ; kCxk2

o
+ jhBx;Cxij (3.239)

for any x 2 H; kxk = 1, which is of interest in itself.
Taking the supremum over x 2 H; kxk = 1; we deduce the desired result

(3.235).
To prove the sharpness of the inequality (3.235) we choose C = B; B

a self-adjoint operator on H: In this case, both sides of (3.235) become
2 kBk2 :
If information about the sum and the di¤erence of the operators B and

C is available, then one may use the following result:

Corollary 196 For any two operators B;C 2 B(H) we have

w2e (B;C) (3.240)

� 1

2

n
max

n
kB � Ck2 ; kB + Ck2

o
+ w [(B� � C�) (B + C)]

o
:

The constant 12 is best possible in (3.240).

Proof. Follows by the inequality (3.235) written for B + C and B � C
instead of B and C and by utilizing the identity (3.232).
The fact that 1

2 is best possible in (3.240) follows by the fact that for
C = B, B a self-adjoint operator, we get in both sides of the inequality
(3.240) the quantity 2 kBk2 :

Corollary 197 Let A : H ! H be a bounded linear operator on the Hilbert
space H: Then:

w2 (A) (3.241)

� 1

4

h
max

n
kA+A�k2 ; kA�A�k2

o
+ w [(A� �A) (A+A�)]

i
:

The constant 14 is best possible.
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Proof. If B = A+A�

2 ; C = A�A�

2i is the Cartesian decomposition of A; then

w2e (B;C) = w2 (A)

and
w (C�B) =

1

4
w [(A� �A) (A+A�)] :

Utilising (3.235) we deduce (3.241).

Remark 198 If we choose in (3.235), B = A and C = A�; A 2 B(H)
then we can state that

w2 (A) � 1

2

h
kAk2 + w

�
A2
�i
: (3.242)

The constant 12 is best possible in (3.242).
Note that this inequality has been obtained in [11] by the use of a di¤erent

argument based on the Buzano�s inequality.

Finally, the following upper bound for the Euclidean radius involving
di¤erent composite operators also holds:

Theorem 199 (Dragomir [8], 2006) With the assumptions of Theorem
195, we have

w2e (B;C) �
1

2
[kB�B + C�Ck+ kB�B � C�Ck] + w (C�B) : (3.243)

The inequality (3.243) is sharp.

Proof. We use (3.239) to write that

jhBx; xij2 + jhCx; xij2 (3.244)

� 1

2

h
kBxk2 + kCxk2 +

���kBxk2 � kCxk2���i+ jhBx;Cxij
for any x 2 H; kxk = 1:
Since kBxk2 = hB�Bx; xi ; kCxk2 = hC�Cx; xi ; then (3.244) can be

written as

jhBx; xij2 + jhCx; xij2 (3.245)

� 1

2
[h(B�B + C�C)x; xi+ jh(B�B � C�C)x; xij] + jhBx;Cxij

x 2 H; kxk = 1:
Taking the supremum in (3.245) over x 2 H; kxk = 1 and noting that

the operators B�B � C�C are self-adjoint, we deduce the desired result
(3.243).
The sharpness of the constant will follow from that of (3.248) pointed

out below.
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Corollary 200 For any two operators B;C 2 B(H); we have

w2e (B;C) (3.246)

� 1

2
fkB�B + C�Ck+ kB�C + C�Bk+ w [(B� � C�) (B + C)]g :

The constant 12 is best possible.
Proof. If we write (3.243) for B + C;B � C instead of B;C and perform
the required calculations then we get

w2e (B + C;B � C)
� kB�B + C�Ck+ kB�C + C�Bk+ w [(B� � C�) (B + C)] ;

which, by the identity (3.232) is clearly equivalent with (3.246).
Now, if we choose in (3.246) B = C; then we get the inequality w (B) �

kBk ; which is a sharp inequality.

Corollary 201 If B;C are self-adjoint operators on H then

w2e (B;C) �
1

2

�B2 + C2+ B2 � C2�+ w (CB) : (3.247)

We observe that, ifB and C are chosen to be the Cartesian decomposition
for the bounded linear operator A; then we can get from (3.247) that

w2 (A) (3.248)

� 1

4

n
kA�A+AA�k+

A2 + (A�)2+ w [(A� �A) (A+A�)]o :
The constant 1

4 is best possible. This follows by the fact that for A a self-
adjoint operator, we obtain on both sides of (3.248) the same quantity
kAk2 :
Now, if we choose in (3.243) B = A and C = A�; A 2 B(H); then we

get

w2 (A) � 1

4
fkA�A+AA�k+ kA�A�AA�kg+ 1

2
w
�
A2
�
: (3.249)

This inequality is sharp. The equality holds if, for instance, we assume that
A is normal, i.e., A�A = AA�: In this case we get on both sides of (3.249)
the quantity kAk2 ; since for normal operators, w

�
A2
�
= w2 (A) = kAk2 :
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