INEQUALITIES FOR THE SCHATTEN p-NORM

by FUAD KITTANEH

(Received 9 February, 1984)

Let *H* be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on *H*. Let K(H) denote the ideal of compact operators on *H*. For any compact operator *A* let $|A| = (A^*A)^{1/2}$ and $s_1(A), s_2(A), \ldots$ be the eigenvalues of |A| in decreasing order and repeated according to multiplicity. If, for some $1 \le p \le \infty$, $\sum_{i=1}^{\infty} s_i(A)^p < \infty$, we say that *A* is in the Schatten *p*-class C_p and $||A||_p = \left(\sum_{i=1}^{\infty} s_i(A)^p\right)^{1/p}$ is the *p*-norm of *A*. Hence, C_1 is the trace class, C_2 is the Hilbert-Schmidt class, and C_{∞} is the ideal of compact operators K(H). If $A \in C_1$ and $\{e_i\}$ is any orthonormal basis of *H* then the trace of *A*, denoted by

If $A \in C_1$ and $\{e_i\}$ is any orthonormal basis of H then the trace of A, denoted by tr $A = \sum_{i=1}^{\infty} (Ae_i, e_i)$ is independent of the choice of $\{e_i\}$. If $A \in C_p$ and $B \in C_q$, then $|\text{tr}(AB)| \leq ||A||_p ||B||_q$ whenever 1/p + 1/q = 1. If $\{e_i\}$ and $\{f_i\}$ are two orthonormal sets in H, then for $A \in C_p$, $||A||_p \geq \sum_{i=1}^{\infty} |(Ae_i, f_i)|^p$. We refer to [2] or [4] for further properties of the Schatten p-classes.

In their investigation on the traces of commutators of integral operators J. Helton and R. Howe [1, Lemma 1.3] proved that if A is a self-adjoint operator and X is a compact operator, then $AX - XA \in C_1$ implies that tr(AX - XA) = 0. Our first inequality is a generalization of this result.

THEOREM 1. If $X \in C_p$ $(1 \le p \le \infty)$ and A is an operator such that $AX - XA^* \in C_1$, then $|\operatorname{tr}(AX - XA^*)| \le ||X||_p ||A - A^*||_q (1/p + 1/q = 1).$

Proof. There is nothing to prove if $A - A^*$ is not in C_q , so let us assume that $A - A^* \in C_q$. Thus $X(A^* - A) \in C_1$ and so $AX - XA = AX - XA^* + X(A^* - A) \in C_1$. Now $AX - XA^* \in C_1$ implies when taking adjoints that $X^*A^* - AX^* \in C_1$. Add and subtract to get $AY - YA^* \in C_1$ and $AZ - ZA^* \in C_1$ where X = Y + iZ is the cartesian decomposition of X. Since $A - A^* \in C_q$, it follows that $AY - YA \in C_1$ and $AZ - ZA \in C_1$. But Y and Z being compact self-adjoint operators (diagonalizable) implies that tr(AY - YA) = 0 and tr(AZ - ZA) = 0 (just evaluate the traces using the eigenvectors of Y and Z respectively). Therefore tr(AX - XA) = 0 and so $tr(AX - XA^*) = tr(AX - XA) + tr(X(A - A^*)) = tr(X(A - A^*))$. Hence $|tr(AX - XA^*)| \le ||X||_p ||A - A^*||_q$ by Holder's inequality for C_p .

If A is an operator such that $\sigma(A) \cap \sigma(A^*) = \emptyset(\sigma(A))$ denotes the spectrum of A) then by Rosenblum's theorem [3] no non-zero operator X can intertwine A and A^* i.e., $AX = XA^*$ implies X = 0. The following inequality is related to this result.

Glasgow Math. J. 26 (1985) 141-143.

THEOREM 2. Let $A \in B(H)$ with $\operatorname{Im} A = \frac{A - A^*}{2i} \ge a \ge 0$. Then $||AX - XA^*|| \ge a ||X||$ for all $X \in B(H)$.

Proof. Let X = Y + iZ be the cartesian decomposition of X. We will show that $||AY - YA^*|| \ge 2a ||Y||$ and $||AZ - ZA^*|| \ge 2a ||Z||$. Now let $|y_0| = ||Y||$; then there is a sequence $\{f_n\}$ of unit vectors in H such that $||(Y - y_0)f_n|| \to 0$ as $n \to \infty$. Therefore,

$$\begin{aligned} \|AY - YA^*\| &\ge |((AY - YA^*)f_n, f_n)| \\ &= |(A(Y - y_0)f_n, f_n) - ((Y - y_0)A^*f_n, f_n) + y_0(Af_n, f_n) - y_0(A^*f_n, f_n)| \\ &\ge |y_0| |((A - A^*)f_n, f_n)| - |(A(Y - y_0)f_n, f_n)| - |((Y - y_0)A^*f_n, f_n)| \\ &\ge 2 |y_0| a - \text{term which goes to zero as } n \to \infty. \end{aligned}$$

Thus $||AY-YA^*|| \ge 2a ||Y||$. Similarly we get $||AZ-ZA^*|| \ge 2a ||Z||$. Since $AY-YA^* = i \operatorname{Im}(AX-XA^*)$ and $AZ-ZA^* = -i \operatorname{Re}(AX-XA^*)$ it follows that $2 ||AX-XA^*|| \ge ||AY-YA^*|| + ||AZ-ZA^*|| \ge 2a(||Y|| + ||Z||) \ge 2a ||X||$. Hence $||AX-XA^*|| \ge a ||X||$ as required.

COROLLARY. Let $A \in B(H)$ with Im A > a > 0. If X is an operator such that $AX = XA^*$, then X = 0.

REMARK. The corollary above can be deduced from Rosenblum theorem, after we establish the following lemma.

LEMMA. Let $A \in B(H)$ with Im A > a > 0, then $\sigma(A) \subset \{z : \text{Im } z > a\}$. In particular, $\sigma(A) \cap \sigma(A^*) = \emptyset$.

Proof. Im A > a implies that $W(A) \subset \{z : \text{Im } z > a\}$, where W(A) denotes the numerical range of A. Thus $\sigma(A) \subset \text{closure of } W(A) \subset \{z : \text{Im } z \ge a\}$. It is now sufficient to show that $\sigma(A) \cap \{z : \text{Im } z = a\} = \emptyset$. Let $\lambda = b + ia$, and let A = B + iC be the cartesian decomposition of A. Then $A - \lambda = (B - b) + i(C - a)$. Since C - a is positive and invertible, it follows that $(C - a)^{-1/2}(A - \lambda)(C - a)^{-1/2} = (C - a)^{-1/2}(B - b)(C - a)^{-1/2} + i$. Since $(C - a)^{-1/2}(B - b)(C - a)^{-1/2}$ is self-adjoint, it follows that $(C - a)^{-1/2}(A - \lambda)(C - a)^{-1/2}$ is invertible. In fact if P is the inverse of $(C - a)^{-1/2}(A - \lambda)(C - a)^{-1/2}$, then $(C - a)^{-1/2}P(C - a)^{-1/2}$ is the inverse of $A - \lambda$. Thus we conclude that $\lambda \notin \sigma(A)$ which means $\sigma(A) \subset \{z : \text{Im } z > a\}$.

We conclude with the following C_p version of Theorem 2.

THEOREM 3. Let $A \in B(H)$ with $\text{Im } A \ge a \ge 0$. Then $||AX - XA^*||_p \ge a ||X||_p$ for all $X \in B(H)$ and $1 \le p \le \infty$.

Proof. We assume that $AX-XA^* \in C_p$, otherwise the result is trivial. Hence $AX-XA^*$ is compact and so $\pi(A)\pi(X) = \pi(X)\pi(A)^*$ where $\pi: B(H) \to B(H)/K(H)$ is the canonical projection onto the Calkin algebra. Applying the corollary above, noting that $\sigma(\pi(A)) \subset \sigma(A)$, we get $\pi(X) = 0$ (there is nothing to prove if a = 0). Thus X is compact. Let X = Y + iZ. Now Y and Z are diagonalizable as they are compact and

self-adjoint. Let $Ye_n = \lambda_n e_n$ where $\{e_n\}$ is an orthonormal basis for H. Therefore

$$\|AY - YA^*\|_p = \left(\sum_{n=1}^{\infty} |((AY - YA^*)e_n, e_n)|^p\right)^{1/p}$$

= $\left(\sum_{n=1}^{\infty} |\lambda_n((A - A^*)e_n, e_n)|^p\right)^{1/p}$
 $\ge 2a \left(\sum_{n=1}^{\infty} |\lambda_n|^p\right)^{1/p}$
= $2a \|Y\|_p.$

Similarly we obtain (using the eigenvectors of Z) that $||AZ - ZA^*||_p \ge 2a ||Z||_p$. Hence by an argument similar to the one in the proof of Theorem 2 we obtain that $||AX - XA^*||_p \ge a ||X||_p$ as required.

REFERENCES

1. J. Helton and R. Howe, Traces of commutators of integral operators. Acta Math. 135 (1975), 271-305.

2. J. R. Ringrose, Compact non-self-adjoint operators (Van Nostrand Reinhold Co., 1971).

3. M. Rosenblum, On the operator equation BX - XA = Q. Duke Math. J. 23 (1956), 263-270.

4. B. Simon, Trace ideals and their applications (Cambridge University Press, 1979).

DEPARTMENT OF MATHEMATICS UNITED ARAB EMIRATES UNIV. P.O. BOX 15551 AL-AIN, U.A.E.