INEQUALITIES FOR THE SCHATTEN p-NORM

by FUAD KITTANEH

(Received 9 February, 1984)

Let H be a separable, infinite dimensional complex Hilbert space, and let $B(H)$ denote the algebra of all bounded linear operators on H. Let $K(H)$ denote the ideal of compact operators on H. For any compact operator A let $|A|=\left(A^{*} A\right)^{1 / 2}$ and $s_{1}(A), s_{2}(A), \ldots$ be the eigenvalues of $|A|$ in decreasing order and repeated according to multiplicity. If, for some $1 \leq p \leq \infty, \sum_{i=1}^{\infty} s_{i}(A)^{p}<\infty$, we say that A is in the Schatten p-class C_{p} and $\|A\|_{p}=\left(\sum_{i=1}^{\infty} s_{i}(A)^{p}\right)^{1 / p}$ is the p-norm of A. Hence, C_{1} is the trace class, C_{2} is the Hilbert-Schmidt class, and C_{∞} is the ideal of compact operators $K(H)$.

If $A \in C_{1}$ and $\left\{e_{i}\right\}$ is any orthonormal basis of H then the trace of A, denoted by $\operatorname{tr} A=\sum_{i=1}^{\infty}\left(A e_{i}, e_{i}\right)$ is independent of the choice of $\left\{e_{i}\right\}$. If $A \in C_{p}$ and $B \in C_{q}$, then $|\operatorname{tr}(A B)| \leq\|A\|_{p}\|B\|_{q}$ whenever $1 / p+1 / q=1$. If $\left\{e_{i}\right\}$ and $\left\{f_{i}\right\}$ are two orthonormal sets in H, then for $A \in C_{p},\|A\|_{p}^{p} \geq \sum_{i=1}^{\infty}\left|\left(A e_{i}, f_{i}\right)\right|^{p}$. We refer to [2] or [4] for further properties of the Schatten p-classes.

In their investigation on the traces of commutators of integral operators J. Helton and R. Howe [1, Lemma 1.3] proved that if A is a self-adjoint operator and X is a compact operator, then $A X-X A \in C_{1}$ implies that $\operatorname{tr}(A X-X A)=0$. Our first inequality is a generalization of this result.

Theorem 1. If $X \in C_{p}(1 \leq p \leq \infty)$ and A is an operator such that $A X-X A^{*} \in C_{1}$, then $\left|\operatorname{tr}\left(A X-X A^{*}\right)\right| \leq\|X\|_{p}\left\|A-A^{*}\right\|_{q}(1 / p+1 / q=1)$.

Proof. There is nothing to prove if $A-A^{*}$ is not in C_{q}, so let us assume that $A-A^{*} \in C_{q}$. Thus $X\left(A^{*}-A\right) \in C_{1}$ and so $A X-X A=A X-X A^{*}+X\left(A^{*}-A\right) \in C_{1}$. Now $A X-X A^{*} \in C_{1}$ implies when taking adjoints that $X^{*} A^{*}-A X^{*} \in C_{1}$. Add and subtract to get $A Y-Y A^{*} \in C_{1}$ and $A Z-Z A^{*} \in C_{1}$ where $X=Y+i Z$ is the cartesian decomposition of X. Since $A-A^{*} \in C_{q}$, it follows that $A Y-Y A \in C_{1}$ and $A Z-Z A \in C_{1}$. But Y and Z being compact self-adjoint operators (diagonalizable) implies that $\operatorname{tr}(A Y-Y A)=0$ and $\operatorname{tr}(A Z-Z A)=0$ (just evaluate the traces using the eigenvectors of Y and Z respectively). Therefore $\operatorname{tr}(A X-X A)=0$ and so $\operatorname{tr}\left(A X-X A^{*}\right)=\operatorname{tr}(A X-X A)+\operatorname{tr}\left(X\left(A-A^{*}\right)\right)=$ $\operatorname{tr}\left(X\left(A-A^{*}\right)\right)$. Hence $\left|\operatorname{tr}\left(A X-X A^{*}\right)\right| \leq\|X\|_{p}\left\|A-A^{*}\right\|_{q}$ by Holder's inequality for C_{p}.

If A is an operator such that $\sigma(A) \cap \sigma\left(A^{*}\right)=\varnothing(\sigma(A)$ denotes the spectrum of $A)$ then by Rosenblum's theorem [3] no non-zero operator X can intertwine A and A^{*} i.e., $A X=X A^{*}$ implies $X=0$. The following inequality is related to this result.

Glasgow Math. J. 26 (1985) 141-143.

Theorem 2. Let $A \in B(H)$ with $\operatorname{Im} A=\frac{A-A^{*}}{2 i} \geq a \geq 0$. Then $\left\|A X-X A^{*}\right\| \geq a\|X\|$ for all $X \in B(H)$.

Proof. Let $X=Y+i Z$ be the cartesian decomposition of X. We will show that $\left\|A Y-Y A^{*}\right\| \geq 2 a\|Y\|$ and $\left\|A Z-Z A^{*}\right\| \geq 2 a\|Z\|$. Now let $\left|y_{0}\right|=\|Y\|$; then there is a sequence $\left\{f_{n}\right\}$ of unit vectors in H such that $\left\|\left(Y-y_{0}\right) f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Therefore,

$$
\begin{aligned}
\left\|A Y-Y A^{*}\right\| & \geq\left|\left(\left(A Y-Y A^{*}\right) f_{n}, f_{n}\right)\right| \\
& =\left|\left(A\left(Y-y_{0}\right) f_{n}, f_{n}\right)-\left(\left(Y-y_{0}\right) A^{*} f_{n}, f_{n}\right)+y_{0}\left(A f_{n}, f_{n}\right)-y_{0}\left(A^{*} f_{n}, f_{n}\right)\right| \\
& \geq\left|y_{0}\right|\left|\left(\left(A-A^{*}\right) f_{n}, f_{n}\right)\right|-\left|\left(A\left(Y-y_{0}\right) f_{n}, f_{n}\right)\right|-\left|\left(\left(Y-y_{0}\right) A^{*} f_{n}, f_{n}\right)\right| \\
& \geq 2\left|y_{0}\right| a-\text { term which goes to zero as } n \rightarrow \infty .
\end{aligned}
$$

Thus $\left\|A Y-Y A^{*}\right\| \geq 2 a\|Y\|$. Similarly we get $\left\|A Z-Z A^{*}\right\| \geq 2 a\|Z\|$. Since $A Y-Y A^{*}=$ $i \operatorname{Im}\left(A X-X A^{*}\right)$ and $A Z-Z A^{*}=-i \operatorname{Re}\left(A X-X A^{*}\right)$ it follows that $2\left\|A X-X A^{*}\right\| \geq$ $\left\|A Y-Y A^{*}\right\|+\left\|A Z-Z A^{*}\right\| \geq 2 a(\|Y\|+\|Z\|) \geq 2 a\|X\|$. Hence $\left\|A X-X A^{*}\right\| \geq a\|X\|$ as required.

Corollary. Let $A \in B(H)$ with $\operatorname{Im} A>a>0$. If X is an operator such that $A X=$ $X A^{*}$, then $X=0$.

Remark. The corollary above can be deduced from Rosenblum theorem, after we establish the following lemma.

Lemma. Let $A \in B(H)$ with $\operatorname{Im} A>a>0$, then $\sigma(A) \subset\{z: \operatorname{Im} z>a\}$. In particular, $\sigma(A) \cap \sigma\left(A^{*}\right)=\varnothing$.

Proof. $\operatorname{Im} A>a$ implies that $W(A) \subset\{z: \operatorname{Im} z>a\}$, where $W(A)$ denotes the numerical range of A. Thus $\sigma(A) \subset$ closure of $W(A) \subset\{z: \operatorname{Im} z \geq a\}$. It is now sufficient to show that $\sigma(A) \cap\{z: \operatorname{Im} z=a\}=\varnothing$. Let $\lambda=b+i a$, and let $A=B+i C$ be the cartesian decomposition of A. Then $A-\lambda=(B-b)+i(C-a)$. Since $C-a$ is positive and invertible, it follows that $(C-a)^{-1 / 2}(A-\lambda)(C-a)^{-1 / 2}=(C-a)^{-1 / 2}(B-b)(C-a)^{-1 / 2}+i$. Since $(C-a)^{-1 / 2}(B-b)(C-a)^{-1 / 2}$ is self-adjoint, it follows that $(C-a)^{-1 / 2}(A-\lambda)(C-a)^{-1 / 2}$ is invertible which implies that $A-\lambda$ is invertible. In fact if P is the inverse of ($C-$ $a)^{-1 / 2}(A-\lambda)(C-a)^{-1 / 2}$, then $(C-a)^{-1 / 2} P(C-a)^{-1 / 2}$ is the inverse of $A-\lambda$. Thus we conclude that $\lambda \notin \sigma(A)$ which means $\sigma(A) \subset\{z: \operatorname{Im} z>a\}$.

We conclude with the following C_{p} version of Theorem 2.
Theorem 3. Let $A \in B(H)$ with $\operatorname{Im} A \geq a \geq 0$. Then $\left\|A X-X A^{*}\right\|_{p} \geq a\|X\|_{p}$ for all $X \in B(H)$ and $1 \leq p \leq \infty$.

Proof. We assume that $A X-X A^{*} \in C_{p}$, otherwise the result is trivial. Hence $A X-X A^{*}$ is compact and so $\pi(A) \pi(X)=\pi(X) \pi(A)^{*}$ where $\pi: B(H) \rightarrow B(H) / K(H)$ is the canonical projection onto the Calkin algebra. Applying the corollary above, noting that $\sigma(\pi(A)) \subset \sigma(A)$, we get $\pi(X)=0$ (there is nothing to prove if $a=0$). Thus X is compact. Let $X=Y+i Z$. Now Y and Z are diagonalizable as they are compact and
self-adjoint. Let $Y e_{n}=\lambda_{n} e_{n}$ where $\left\{e_{n}\right\}$ is an orthonormal basis for H. Therefore

$$
\begin{aligned}
\left\|A Y-Y A^{*}\right\|_{p} & =\left(\sum_{n=1}^{\infty}\left|\left(\left(A Y-Y A^{*}\right) e_{n}, e_{n}\right)\right|^{p}\right)^{1 / p} \\
& =\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\left(\left(A-A^{*}\right) e_{n}, e_{n}\right)\right|^{p}\right)^{1 / p} \\
& \geq 2 a\left(\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{p}\right)^{1 / p} \\
& =2 a\|Y\|_{p}
\end{aligned}
$$

Similarly we obtain (using the eigenvectors of Z) that $\left\|A Z-Z A^{*}\right\|_{p} \geq 2 a\|Z\|_{p}$. Hence by an argument similar to the one in the proof of Theorem 2 we obtain that $\left\|A X-X A^{*}\right\|_{p} \geq$ $a\|X\|_{p}$ as required.

REFERENCES

1. J. Helton and R. Howe, Traces of commutators of integral operators. Acta Math. 135 (1975), 271-305.
2. J. R. Ringrose, Compact non-self-adjoint operators (Van Nostrand Reinhold Co., 1971).
3. M. Rosenblum, On the operator equation $B X-X A=Q$. Duke Math. J. 23 (1956), 263-270.
4. B. Simon, Trace ideals and their applications (Cambridge University Press, 1979).

Department of Mathematics
United Arab Emirates Univ.
P.O. Box 15551

Al-Ain, U.A.E.

