Inequalities from Two Rows of a Simplex Tableau*

Kent Andersen ${ }^{1}$, Quentin Louveaux ${ }^{2}$, Robert Weismantel ${ }^{3}$, and Laurence A. Wolsey ${ }^{4}$
${ }^{1}$ Institute for Mathematical Sciences, University of Copenhagen, Denmark kha@math.ku.dk
${ }^{2}$ CORE and INMA, Université catholique de Louvain, Belgium louveaux@core.ucl.ac.be
${ }^{3}$ Department of Mathematics, Otto-von-Guericke Universität, Magdeburg, Germany
weismant@mail.math.uni-magdeburg.de
${ }^{4}$ CORE and INMA, Université catholique de Louvain, Belgium
wolsey@core.ucl.ac.be

Abstract

In this paper we explore the geometry of the integer points in a cone rooted at a rational point. This basic geometric object allows us to establish some links between lattice point free bodies and the derivation of inequalities for mixed integer linear programs by considering two rows of a simplex tableau simultaneously.

1 Introduction

Throughout this paper we investigate a mixed integer linear program (MIP) with rational data defined for a set I of integer variables and a set C of continuous variables

$$
\begin{equation*}
\max c^{T} x \text { subject to } A x=b, x \geq 0, x_{i} \in \mathbb{Z} \text { for } i \in I \tag{MIP}
\end{equation*}
$$

Let LP denote the linear programming relaxation of MIP. From the theory of linear programming it follows that a vertex x^{*} of the LP corresponds to a basic feasible solution of a simplex tableau associated with subsets B and N of basic and nonbasic variables

$$
x_{i}+\sum_{j \in N} \bar{a}_{i, j} x_{j}=\bar{b}_{i} \text { for } i \in B .
$$

Any row associated with an index $i \in B \cap I$ such that $\bar{b}_{i} \notin \mathbb{Z}$ gives rise to a set

$$
X(i):=\left\{x \in \mathbb{R}^{|N|} \mid \bar{b}_{i}-\sum_{j \in N} \bar{a}_{i, j} x_{j} \in \mathbb{Z}, x_{j} \geq 0 \text { for all } j \in N\right\}
$$

[^0]whose analysis provides inequalities that are violated by x^{*}. Indeed, Gomory's mixed integer cuts 4] and mixed integer rounding cuts [6] are derived from such a basic set $X(i)$ using additional information about integrality of some of the variables. Interestingly, unlike in the pure integer case, no finite convergence proof of a cutting plane algorithm is known when Gomory's mixed integer cuts or mixed integer rounding cuts are applied only. More drastically, in [3], an interesting mixed integer program in three variables is presented, and it is shown that applying split cuts iteratively does not suffice to generate the cut that is needed to solve this problem.

Example 1: 3 Consider the mixed integer set

$$
\begin{gathered}
t \leq x_{1}, \\
t \leq x_{2}, \\
x_{1}+x_{2}+t \leq 2, \\
x \in \mathbb{Z}^{2} \text { and } t \in \mathbb{R}_{+}^{1} .
\end{gathered}
$$

The projection of this set onto the space of x_{1} and x_{2} variables is given by $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}: x_{1}+x_{2} \leq 2\right\}$ and is illustrated in Fig. 1. A simple analysis shows that the inequality $x_{1}+x_{2} \leq 2$, or equivalently $t \leq 0$, is valid. In [3 it is, however, shown that with the objective function $z=\max t$, a cutting plane algorithm based on split cuts does not converge finitely.

Fig. 1. The Instance in [3]

The analysis given in this paper will allow us to explain the cut $t \leq 0$ of Example 1. To this end we consider two indices $i_{1}, i_{2} \in B \cap I$ simultaneously. It turns out that the underlying basic geometric object is significantly more complex than its one-variable counterpart. The set that we denote by $X\left(i_{1}, i_{2}\right)$ is described as
$X\left(i_{1}, i_{2}\right):=\left\{x \in \mathbb{R}^{|N|} \mid \bar{b}_{i}-\sum_{j \in N} \bar{a}_{i, j} x_{j} \in \mathbb{Z}\right.$ for $i=i_{1}, i_{2}, x_{j} \geq 0$ for all $\left.j \in N\right\}$.

Setting

$$
\begin{aligned}
f & :=\left(\bar{b}_{i_{1}}, \bar{b}_{i_{2}}\right)^{T} \in \mathbb{R}^{2}, \text { and } \\
r^{j} & :=\left(\bar{a}_{i_{1}, j}, \bar{a}_{i_{2}, j}\right)^{T} \in \mathbb{R}^{2},
\end{aligned}
$$

the set obtained from two rows of a simplex tableau can be represented as

$$
P_{I}:=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} s_{j} r^{j}\right\}
$$

where f is fractional and $r^{j} \in \mathbb{R}^{2}$ for all $j \in N$. Valid inequalities for the set P_{I} was studied in 5 by using superadditive functions related to the group problem associated with two rows. In this paper, we give a characterization of the facets of $\operatorname{conv}\left(P_{I}\right)$ based on its geometry.

Example 1 (revisited): For the instance of Example 1, introduce slack variables, s_{1}, s_{2} and y_{1} in the three constraints. Then, solving as a linear program, the constraints of the optimal simplex tableau are

$$
t \begin{aligned}
+\frac{1}{3} s_{1}+\frac{1}{3} s_{2}+\frac{1}{3} y_{1} & =\frac{2}{3} \\
x_{1}-\frac{2}{3} s_{1}+\frac{1}{3} s_{2}+\frac{1}{3} y_{1} & =\frac{2}{3} \\
x_{2}+\frac{1}{3} s_{1}-\frac{2}{3} s_{2}+\frac{1}{3} y_{1} & =\frac{2}{3}
\end{aligned}
$$

Taking the last two rows, and rescaling using $s_{i}^{\prime}=s_{i} / 3$ for $i=1,2$, we obtain the set P_{I}

$$
\begin{aligned}
& x_{1} \begin{array}{l}
-2 s_{1}^{\prime}+1 s_{2}^{\prime}+\frac{1}{3} y_{1}=+\frac{2}{3} \\
+1 s_{1}^{\prime}-2 s_{2}^{\prime}+\frac{1}{3} y_{1}=+\frac{2}{3} \\
x \in \mathbb{Z}^{2}, s \in \mathbb{R}_{+}^{2}, y_{1} \in \mathbb{R}_{+}^{1} .
\end{array} .
\end{aligned}
$$

Letting $f=\left(\frac{2}{3}, \frac{2}{3}\right)^{T}, r^{1}=(2,-1)^{T}, r^{2}=(-1,2)^{T}$ and $r_{3}=\left(-\frac{1}{3},-\frac{1}{3}\right)^{T}$ (see Fig. (1), one can derive a cut for $\operatorname{conv}\left(P_{I}\right)$ of the form

$$
x_{1}+x_{2}+y_{1} \geq 2 \text { or equivalently } t \leq 0
$$

which, when used in a cutting plane algorithm, yields immediate termination.

Our main contribution is to characterize geometrically all facets of $\operatorname{conv}\left(P_{I}\right)$. All facets are intersection cuts [2], i.e., they can be obtained from a (twodimensional) convex body that does not contain any integer points in its interior. Our geometric approach is based on two important facts that we prove in this paper

- every facet is derivable from at most four nonbasic variables.
- with every facet F one can associate three or four particular vertices of $\operatorname{conv}\left(P_{I}\right)$. The classification of F depends on how the corresponding $k=3,4$ integer points in \mathbb{Z}^{2} can be partitioned into k sets of cardinality at most two.

More precisely, the facets of $\operatorname{conv}\left(P_{I}\right)$ can be distinguished with respect to the number of sets that contain two integer points. Since $k=3$ or $k=4$, the following interesting situations occur

- no sets with cardinality two: all the $k \in\{3,4\}$ sets contain exactly one tight integer point. We call cuts of this type disection cuts.
- exactly one set has cardinality two: in this case we show that the inequality can be derived from lifting a cut associated with a two-variable subproblem to k variables. We call these cuts lifted two-variable cuts.
- two sets have cardinality two. In this case we show that the corresponding cuts are split cuts.

Furthermore, we show that inequalities of the first two families are not split cuts. Our geometric approach allows us to generalize the cut introduced in Example 1. More specifically, the cut of Example 1 is a degenerate case in the sense that it is "almost" a disection cut and "almost" a lifted two-variable cut: by perturbing the vectors r^{1}, r^{2} and r^{3} slightly, the cut in Example 1 can become both a disection cut and a lifted two-variable cut.

We review some basic facts about the structure of $\operatorname{conv}\left(P_{I}\right)$ in Section 2. In Section 3 we explore the geometry of all the feasible points that are tight for a given facet of conv $\left(P_{I}\right)$, explain our main result and presents the classification of all the facets of $\operatorname{conv}\left(P_{I}\right)$.

2 Basic Structure of $\operatorname{conv}\left(P_{I}\right)$

The basic mixed-integer set considered in this paper is

$$
\begin{equation*}
P_{I}:=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} s_{j} r^{j}\right\} \tag{1}
\end{equation*}
$$

where $N:=\{1,2, \ldots, n\}, f \in \mathbb{Q}^{2} \backslash \mathbb{Z}^{2}$ and $r^{j} \in \mathbb{Q}^{2}$ for all $j \in N$. The set $P_{L P}:=\left\{(x, s) \in \mathbb{R}^{2} \times \mathbb{R}_{+}^{n}: x=f+\sum_{j \in N} s_{j} r^{j}\right\}$ denotes the LP relaxation of P_{I}. The $j^{\text {th }}$ unit vector in \mathbb{R}^{n} is denoted e_{j}. In this section, we describe some basic properties of $\operatorname{conv}\left(P_{I}\right)$. The vectors $\left\{r^{j}\right\}_{j \in N}$ are called rays, and we assume $r^{j} \neq 0$ for all $j \in N$.

In the remainder of the paper we assume $P_{I} \neq \emptyset$. The next lemma gives a characterization of $\operatorname{conv}\left(P_{I}\right)$ in terms of vertices and extreme rays.

Lemma 1.

(i) The dimension of $\operatorname{conv}\left(P_{I}\right)$ is n.
(ii) The extreme rays of $\operatorname{conv}\left(P_{I}\right)$ are $\left(r^{j}, e_{j}\right)$ for $j \in N$.
(iii) The vertices $\left(x^{I}, s^{I}\right)$ of $\operatorname{conv}\left(P_{I}\right)$ take the following two forms:
(a) $\left(x^{I}, s^{I}\right)=\left(x^{I}, s_{j}^{I} e_{j}\right)$, where $x^{I}=f+s_{j}^{I} r^{j} \in \mathbb{Z}^{2}$ and $j \in N$
(an integer point on the ray $\left\{f+s_{j} r^{j}: s_{j} \geq 0\right\}$).
(b) $\left(x^{I}, s^{I}\right)=\left(x^{I}, s_{j}^{I} e_{j}+s_{k}^{I} e_{k}\right)$, where $x^{I}=f+s_{j}^{I} r^{j}+s_{k}^{I} r^{k} \in \mathbb{Z}^{2}$ and $j, k \in N$ (an integer point in the set $f+\operatorname{cone}\left(\left\{r^{j}, r^{k}\right\}\right)$).

Using Lemman we now give a simple form for the valid inequalities for $\operatorname{conv}\left(P_{I}\right)$ considered in the remainder of the paper.

Corollary 1. Every non-trivial valid inequality for P_{I} that is tight at a point $(\bar{x}, \bar{s}) \in P_{I}$ can be written in the form

$$
\begin{equation*}
\sum_{j \in N} \alpha_{j} s_{j} \geq 1 \tag{2}
\end{equation*}
$$

where $\alpha_{j} \geq 0$ for all $j \in N$.
For an inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ of the form (2), let $N_{\alpha}^{0}:=\left\{j \in N: \alpha_{j}=0\right\}$ denote the variables with coefficient zero, and let $N_{\alpha}^{\neq 0}:=N \backslash N_{\alpha}^{0}$ denote the remainder of the variables. We now introduce an object that is associated with the inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$. We will use this object to obtain a two dimensional representation of the facets of $\operatorname{conv}\left(P_{I}\right)$.

Lemma 2. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a valid inequality for $\operatorname{conv}\left(P_{I}\right)$ of the form (2). Define $v^{j}:=f+\frac{1}{\alpha_{j}} r^{j}$ for $j \in N_{\alpha}^{\neq 0}$. Consider the convex polyhedron in \mathbb{R}^{2}

$$
L_{\alpha}:=\left\{x \in \mathbb{R}^{2}: \text { there exists } s \in \mathbb{R}_{+}^{n} \text { s.t. }(x, s) \in P_{L P} \text { and } \sum_{j \in N} \alpha_{j} s_{j} \leq 1\right\}
$$

(i) $L_{\alpha}=\operatorname{conv}\left(\{f\} \cup\left\{v^{j}\right\}_{j \in N_{\alpha}^{\neq 0}}\right)+\operatorname{cone}\left(\left\{r^{j}\right\}_{j \in N_{\alpha}^{0}}\right)$.
(ii) interior $\left(L_{\alpha}\right)$ does not contain any integer points.
(iii) If cone $\left(\left\{r^{j}\right\}_{j \in N}\right)=\mathbb{R}^{2}$, then $f \in \operatorname{interior}\left(L_{\alpha}\right)$.

Example 2: Consider the set

$$
P_{I}=\left\{(x, s): x=f+\binom{2}{1} s_{1}+\binom{1}{1} s_{2}+\binom{-3}{2} s_{3}+\binom{0}{-1} s_{4}+\binom{1}{-2} s_{5}\right\},
$$

where $f=\binom{\frac{1}{4}}{\frac{1}{2}}$, and consider the inequality

$$
\begin{equation*}
2 s_{1}+2 s_{2}+4 s_{3}+s_{4}+\frac{12}{7} s_{5} \geq 1 \tag{3}
\end{equation*}
$$

The corresponding set L_{α} is shown in Fig. 2. As can be seen from the figure, L_{α} does not contain any integer points in its interior. It follows that (3) is valid for $\operatorname{conv}\left(P_{I}\right)$. Note that, conversely, the coefficients α_{j} for $j=1,2, \ldots, 5$ can be obtained from the polygon L_{α} as follows: α_{j} is the ratio between the length of r^{j} and the distance between f and v^{j}. In particular, if the length of r^{j} is 1 , then α_{j} is the inverse of the distance from f to v^{j}.

The interior of L_{α} gives a two-dimensional representation of the points $x \in$ \mathbb{R}^{2} that are affected by the addition of the inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ to the LP relaxation $P_{L P}$ of P_{I}. In other words, for any $(x, s) \in P_{L P}$ that satisfies $\sum_{j \in N} \alpha_{j} s_{j}<1$, we have $x \in \operatorname{interior}\left(L_{\alpha}\right)$. Furthermore, for a facet defining inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ of $\operatorname{conv}\left(P_{I}\right)$, there exist n affinely independent points

Fig. 2. The set L_{α} for a valid inequality for $\operatorname{conv}\left(P_{I}\right)$
$\left(x^{i}, s^{i}\right) \in P_{I}, i=1,2, \ldots, n$, such that $\sum_{j \in N} \alpha_{j} s_{j}^{i}=1$. The integer points $\left\{x^{i}\right\}_{i \in N}$ are on the boundary of L_{α}, i.e., they belong to the integer set:

$$
X_{\alpha}:=\left\{x \in \mathbb{Z}^{2}: \exists s \in \mathbb{R}_{+}^{n} \text { s.t. }(x, s) \in P_{L P} \text { and } \sum_{j \in N} \alpha_{j} s_{j}=1\right\}
$$

We have $X_{\alpha}=L_{\alpha} \cap \mathbb{Z}^{2}$, and $X_{\alpha} \neq \emptyset$ whenever $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ defines a facet of $\operatorname{conv}\left(P_{I}\right)$. We first characterize the facets of $\operatorname{conv}\left(P_{I}\right)$ that have zero coefficients.

Lemma 3. Any facet defining inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ for $\operatorname{conv}\left(P_{I}\right)$ of the form (2) that has zero coefficients is a split cut. In other words, if $N_{\alpha}^{0} \neq \emptyset$, there exists $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{2} \times \mathbb{Z}$ such that $L_{\alpha} \subseteq\left\{\left(x_{1}, x_{2}\right): \pi_{0} \leq \pi_{1} x_{1}+\pi_{2} x_{2} \leq \pi_{0}+1\right\}$.

Proof: Let $k \in N_{\alpha}^{0}$ be arbitrary. Then the line $\left\{f+\mu r^{k}: \mu \in \mathbb{R}\right\}$ does not contain any integer points. Furthermore, if $j \in N_{\alpha}^{0}, j \neq k$, is such that r^{k} and r^{j} are not parallel, then $f+\operatorname{cone}\left(\left\{r^{k}, r^{j}\right\}\right)$ contains integer points. It follows that all rays $\left\{r^{j}\right\}_{j \in N_{\alpha}^{0}}$ are parallel. By letting $\pi^{\prime}:=\left(r^{k}\right)^{\perp}=\left(-r_{2}^{k}, r_{1}^{k}\right)^{T}$ and $\pi_{0}^{\prime}:=\left(\pi^{\prime}\right)^{T} f$, we have that $\left\{f+\mu r^{k}: \mu \in \mathbb{R}\right\}=\left\{x \in \mathbb{R}^{2}: \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2}=\pi_{0}^{\prime}\right\}$. Now define:

$$
\begin{aligned}
& \pi_{0}^{1}:=\max \left\{\pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2}: \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2} \leq \pi_{0}^{\prime} \text { and } x \in \mathbb{Z}^{2}\right\}, \text { and } \\
& \pi_{0}^{2}:=\min \left\{\pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2}: \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2} \geq \pi_{0}^{\prime} \text { and } x \in \mathbb{Z}^{2}\right\} .
\end{aligned}
$$

We have $\pi_{0}^{1}<\pi_{0}^{\prime}<\pi_{0}^{2}$, and the set $S_{\pi}:=\left\{x \in \mathbb{R}^{2}: \pi_{0}^{1} \leq \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2} \leq \pi_{0}^{2}\right\}$ does not contain any integer points in its interior. We now show $L_{\alpha} \subseteq S_{\pi}$ by showing that every vertex $v^{m}=f+\frac{1}{\alpha_{m}} r^{m}$ of L_{α}, where $m \in N_{\alpha}^{\neq 0}$, satisfies $v^{m} \in S_{\pi}$. Suppose v^{m} satisfies $\pi_{1}^{\prime} v_{1}^{m}+\pi_{2}^{\prime} v_{2}^{m}<\pi_{0}^{1}$ (the case $\pi_{1}^{\prime} v_{1}^{m}+\pi_{2}^{\prime} v_{2}^{m}>\pi_{0}^{2}$ is symmetric). By definition of π_{0}^{1}, there exists $x^{I} \in \mathbb{Z}^{2}$ such that $\pi_{1}^{\prime} x_{1}^{I}+\pi_{2}^{\prime} x_{2}^{I}=\pi_{0}^{1}$, and $x^{I}=\lambda v^{m}+(1-\lambda)\left(f+\delta r^{k}\right)$, where $\left.\lambda \in\right] 0,1[$, for some $\delta>0$. We then have
$x^{I}=f+\frac{\lambda}{\alpha_{m}} r^{m}+\delta(1-\lambda) r^{k}$. Inserting this representation of x^{I} into the inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ then gives $\alpha_{m} \frac{\lambda}{\alpha_{m}}+\alpha_{k} \delta(1-\lambda)=\lambda<1$, which contradicts the validity of $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ for P_{I}^{m}. Hence $L_{\alpha} \subseteq S_{\pi}$.

To finish the proof, we show that we may write $S_{\pi}=\left\{x \in \mathbb{R}^{2}: \pi_{0} \leq \pi_{1} x_{1}+\right.$ $\left.\pi_{2} x_{2} \leq \pi_{0}+1\right\}$ for some $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{2} \times \mathbb{Z}$. First observe that we can assume (by scaling) that $\pi^{\prime}, \pi_{0}^{1}$ and π_{0}^{2} are integers. Next observe that any common divisor of π_{1}^{\prime} and π_{2}^{\prime} also divides both π_{0}^{1} and π_{0}^{2} (this follows from the fact that there exists $x^{1}, x^{2} \in \mathbb{Z}^{2}$ such that $\pi_{1}^{\prime} x_{1}^{1}+\pi_{2}^{\prime} x_{2}^{1}=\pi_{0}^{1}$ and $\left.\pi_{1}^{\prime} x_{1}^{2}+\pi_{2}^{\prime} x_{2}^{2}=\pi_{0}^{2}\right)$. Hence we can assume that π_{1}^{\prime} and π_{2}^{\prime} are relative prime. Now the Integral Farkas Lemma (see [8) implies that the set $\left\{x \in \mathbb{Z}^{2}: \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2}=1\right\}$ is non-empty. It follows that we must have $\pi_{0}^{2}=\pi_{0}^{1}+1$, since otherwise the point $\bar{y}:=x^{\prime}+x^{1} \in \mathbb{Z}^{2}$, where $x^{\prime} \in\left\{x \in \mathbb{Z}^{2}: \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2}=1\right\}$ and $x^{1} \in\left\{x \in \mathbb{Z}^{2}: \pi_{1}^{\prime} x_{1}+\pi_{2}^{\prime} x_{2}=\pi_{0}^{1}\right\}$, satisfies $\pi_{0}^{1}<\pi_{1}^{\prime} \bar{y}_{1}+\pi_{2}^{\prime} \bar{y}_{2}<\pi_{0}^{2}$, which contradicts that S_{π} does not contain any integer points in its interior.

3 A Characterization of $\operatorname{conv}\left(X_{\alpha}\right)$ and $\operatorname{conv}\left(P_{I}\right)$

As a preliminary step of our analysis, we first characterize the set $\operatorname{conv}\left(X_{\alpha}\right)$. We assume $\alpha_{j}>0$ for all $j \in N$. Clearly conv $\left(X_{\alpha}\right)$ is a convex polygon with only integer vertices, and since $X_{\alpha} \subseteq L_{\alpha}, \operatorname{conv}\left(X_{\alpha}\right)$ does not have any integer points in its interior. We first limit the number of vertices of $\operatorname{conv}\left(X_{\alpha}\right)$ to four (see [1] and [7] for this and related results).

Lemma 4. Let $P \subset \mathbb{R}^{2}$ be a convex polygon with integer vertices that has no integer points in its interior.
(i) P has at most four vertices
(ii) If P has four vertices, then at least two of its four facets are parallel.
(iii) If P is not a triangle with integer points in the interior of all three facets (see Fig. 3. (c)), then there exists parallel lines $\pi x=\pi_{0}$ and $\pi x=\pi_{0}+1$, $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{3}$, such that P is contained in the corresponding split set, i.e., $P \subseteq\left\{x \in \mathbb{R}^{2}: \pi_{0} \leq \pi x \leq \pi_{0}+1\right\}$.

Lemma 4 shows that the polygons in Fig. 3 include all possible polygons that can be included in the set L_{α} in the case when L_{α} is bounded and of dimension 2. The dashed lines in Fig. 3 indicate the possible split sets that include P. We excluded from Fig. 3 the cases when X_{α} is of dimension 1. We note that Lemma 4(iii) (existence of split sets) proves that there cannot be any triangles where two facets have interior integer points, and also that no quadrilateral can have more than two facets that have integer points in the interior.

Next, we focus on the set L_{α}. As before we assume $\alpha_{j}>0$ for all $j \in N$. Due to the direct correspondence between the set L_{α} and a facet defining inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ for $\operatorname{conv}\left(P_{I}\right)$, this gives a characterization of the facets

(a) A triangle: no facet has interior integer points

(d) A quadrilateral: no facet has interior integer points

(c) A triangle: all facets have interior integer points
(f) A quadrilateral: two facets have interior integer points
(e) A quadrilateral: one facet has interior integer points
(b) A triangle: one facet has interior integer points

Fig. 3. All integer polygons that do not have interior integer points
of $\operatorname{conv}\left(P_{I}\right)$. The main result in this section is that L_{α} can have at most four vertices. In other words, we prove

Theorem 1. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality for $\operatorname{conv}\left(P_{I}\right)$ that satisfies $\alpha_{j}>0$ for all $j \in N$. Then L_{α} is a polygon with at most four vertices.

Theorem 1 shows that there exists a set $S \subseteq N$ such that $|S| \leq 4$ and $\sum_{j \in S} \alpha_{j} s_{j} \geq$ 1 is facet defining for $\operatorname{conv}\left(P_{I}(S)\right)$, where

$$
P_{I}(S):=\left\{(x, s) \in \mathbb{Z}^{2} \times \mathbb{R}_{+}^{|S|}: x=f+\sum_{j \in S} s_{j} r^{j}\right\}
$$

Throughout this section we assume that no two rays point in the same direction. If two variables $j_{1}, j_{2} \in N$ are such that $j_{1} \neq j_{2}$ and $r^{j_{1}}=\delta r^{j_{2}}$ for some $\delta>0$, then the halflines $\left\{x \in \mathbb{R}^{2}: x=f+s_{j_{1}} r^{j_{1}}, s_{j_{1}} \geq 0\right\}$ and $\left\{x \in \mathbb{R}^{2}: x=f+s_{j_{2}} r^{j_{2}}, s_{j_{2}} \geq 0\right\}$ intersect the boundary of L_{α} at the same point, and therefore $L_{\alpha}=\operatorname{conv}\left(\{f\} \cup\left\{v^{j}\right\}_{j \in N}\right)=\operatorname{conv}\left(\{f\} \cup\left\{v^{j}\right\}_{j \in N \backslash\left\{j_{2}\right\}}\right)$, where $v^{j}:=f+\frac{1}{\alpha_{j}} r^{j}$ for $j \in N$. This assumption does therefore not affect the validity of Theorem 1

The proof of Theorem 1 is based on characterizing the vertices $\operatorname{conv}\left(P_{I}\right)$ that are tight for $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$. We show that there exists a subset $S \subseteq N$ of variables and a set of $|S|$ affinely independent vertices of $\operatorname{conv}\left(P_{I}\right)$ such that
$|S| \leq 4$ and $\left\{\alpha_{j}\right\}_{j \in S}$ is the unique solution to the equality system of the polar defined by these vertices. The following notation will be used intensively in the remainder of this section.

Notation 1

(i) The number $k \leq 4$ denotes the number of vertices of $\operatorname{conv}\left(X_{\alpha}\right)$.
(ii) The set $\left\{x^{v}\right\}_{v \in K}$ denotes the vertices of $\operatorname{conv}\left(X_{\alpha}\right)$, where $K:=\{1,2, \ldots, k\}$.

Recall that Lemma 1 (iii) demonstrates that for a vertex (\bar{x}, \bar{s}) of $\operatorname{conv}\left(P_{I}\right), \bar{s}$ is positive on at most two coordinates $j_{1}, j_{2} \in N$, and in that case $\bar{x} \in f+$ cone ($\left\{r^{j_{1}}, r^{j_{2}}\right\}$). If \bar{s} is positive on only one coordinate $j \in N$, then $\bar{x}=f+\bar{s}_{j} r^{j}$, and the inequality of the polar corresponding to (\bar{x}, \bar{s}) is $\alpha_{j} \bar{s}_{j} \geq 1$, which simply states $\alpha_{j} \geq \frac{1}{\bar{s}_{j}}$. A point $\bar{x} \in \mathbb{Z}^{2}$ that satisfies $\bar{x} \in\left\{x \in \mathbb{R}^{2}: x=f+s_{j} r^{j}, s_{j} \geq 0\right\}$ for some $j \in N$ is called a ray point in the remainder of the paper. In order to characterize the tight inequalities of the polar that correspond to vertices x^{v} of $\operatorname{conv}\left(X_{\alpha}\right)$ that are not ray points, we introduce the following concepts.

Definition 1. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be valid for $\operatorname{conv}\left(P_{I}\right)$. Suppose $\bar{x} \in \mathbb{Z}^{2}$ is not a ray point, and that $\bar{x} \in f+\operatorname{cone}\left(\left\{r^{j_{1}}, r^{j_{2}}\right\}\right)$, where $j_{1}, j_{2} \in N$. This implies $\bar{x}=f+s_{j_{1}} r^{j_{1}}+s_{j_{2}} r^{j_{2}}$, where $s_{j_{1}}, s_{j_{1}}>0$ are unique.
(a) The pair $\left(j_{1}, j_{2}\right)$ is said to give a representation of \bar{x}.
(b) If $\alpha_{j_{1}} s_{j_{1}}+\alpha_{j_{2}} s_{j_{2}}=1,\left(j_{1}, j_{2}\right)$ is said to give a tight representation of \bar{x} wrt. $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$.
(c) If $\left(i_{1}, i_{2}\right) \in N \times N$ satisfies cone $\left(\left\{r^{i_{1}}, r^{i_{2}}\right\}\right) \subseteq \operatorname{cone}\left(\left\{r^{j_{1}}, r^{j_{2}}\right\}\right)$, the pair $\left(i_{1}, i_{2}\right)$ is said to define a subcone of $\left(j_{1}, j_{2}\right)$.

Example 2 (continued): Consider again the set

$$
P_{I}=\left\{(x, s): x=f+\binom{2}{1} s_{1}+\binom{1}{1} s_{2}+\binom{-3}{2} s_{3}+\binom{0}{-1} s_{4}+\binom{1}{-2} s_{5}\right\}
$$

where $f=\binom{\frac{1}{4}}{\frac{1}{2}}$, and the valid inequality $2 s_{1}+2 s_{2}+4 s_{3}+s_{4}+\frac{12}{7} s_{5} \geq 1$ for $\operatorname{conv}\left(P_{I}\right)$. The point $\bar{x}=(1,1)$ is on the boundary of L_{α} (see Fig. (2). We have that \bar{x} can be written in any of the following forms

$$
\begin{aligned}
& \bar{x}=f+\frac{1}{4} r^{1}+\frac{1}{4} r^{2}, \\
& \bar{x}=f+\frac{3}{7} r^{1} \quad+\frac{1}{28} r^{3}, \\
& \bar{x}=f \quad+\frac{3}{4} r^{2} \quad+\frac{1}{4} r^{4} .
\end{aligned}
$$

It follows that $(1,2),(1,3)$ and $(2,4)$ all give representations of \bar{x}. Note that $(1,2)$ and $(1,3)$ give tight representations of \bar{x} wrt. the inequality $2 s_{1}+2 s_{2}+$
$4 s_{3}+s_{4}+\frac{12}{7} s_{5} \geq 1$, whereas $(2,4)$ does not. Finally note that $(1,5)$ defines a subcone of $(2,4)$.

Observe that, for a vertex x^{v} of $\operatorname{conv}\left(X_{\alpha}\right)$ which is not a ray point, and a tight representation $\left(j_{1}, j_{2}\right)$ of x^{v}, the corresponding inequality of the polar satisfies $\alpha_{j_{1}} t_{j_{1}}+\alpha_{j_{2}} t_{j_{2}}=1$, where $t_{j_{1}}, t_{j_{2}}>0$. We now characterize the set of tight representations of an integer point $\bar{x} \in \mathbb{Z}^{2}$, which is not a ray point
$T_{\alpha}(\bar{x}):=\left\{\left(j_{1}, j_{2}\right):\left(j_{1}, j_{2}\right)\right.$ gives a tight representation of \bar{x} wrt. $\left.\sum_{j \in N} \alpha_{j} s_{j} \geq 1\right\}$.
We show that $T_{\alpha}(\bar{x})$ contains a unique maximal representation $\left(j_{1}^{\bar{x}}, j_{2}^{\bar{x}}\right) \in$ $T_{\alpha}(\bar{x})$ with the following properties.
Lemma 5. There exists a unique maximal representation $\left(j_{1}^{\bar{x}}, j_{2}^{\bar{x}}\right) \in T_{\alpha}(\bar{x})$ of \bar{x} that satisfies:
(i) Every subcone $\left(j_{1}, j_{2}\right)$ of $\left(j_{1}^{\bar{x}}, j_{2}^{\bar{x}}\right)$ that gives a representation of \bar{x} satisfies $\left(j_{1}, j_{2}\right) \in T_{\alpha}(\bar{x})$.
(ii) Conversely, every $\left(j_{1}, j_{2}\right) \in T_{\alpha}(\bar{x})$ defines a subcone of $\left(j_{1}^{\bar{x}}, j_{2}^{\bar{x}}\right)$.

To prove Lemma 5 there are two cases to consider. For two representations $\left(i_{1}, i_{2}\right)$ and $\left(j_{1}, j_{2}\right)$ of \bar{x}, either one of the two cones $\left(i_{1}, i_{2}\right)$ and $\left(j_{1}, j_{2}\right)$ is contained in the other (Lemma 6), or their intersection defines a subcone of both $\left(i_{1}, i_{2}\right)$ and $\left(j_{1}, j_{2}\right)$ (Lemma (7). Note that we cannot have that their intersection is empty, since they both give a representation of \bar{x}.
Lemma 6. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality for $\operatorname{conv}\left(P_{I}\right)$ that satisfies $\alpha_{j}>0$ for all $j \in N$, and let $\bar{x} \in \mathbb{Z}^{2}$. Then $\left(j_{1}, j_{2}\right) \in T_{\alpha}(\bar{x})$ implies $\left(i_{1}, i_{2}\right) \in T_{\alpha}(\bar{x})$ for every subcone $\left(i_{1}, i_{2}\right)$ of $\left(j_{1}, j_{2}\right)$ that gives a representation of \bar{x}.

Proof: Suppose $\left(j_{1}, j_{2}\right) \in T_{\alpha}(\bar{x})$. Observe that it suffices to prove the following: for any $j_{3} \in N$ such that $r^{j_{3}} \in \operatorname{cone}\left(\left\{r^{j_{1}}, r^{j_{2}}\right\}\right)$ and $\left(j_{1}, j_{3}\right)$ gives a representation of \bar{x}, the representation $\left(j_{1}, j_{3}\right)$ is tight wrt. $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$. The result for all remaining subcones of $\left(j_{1}, j_{2}\right)$ follows from repeated application of this result. For simplicity we assume $j_{1}=1, j_{2}=2$ and $j_{3}=3$.

Since $\bar{x} \in f+\operatorname{cone}\left(\left\{r^{1}, r^{2}\right\}\right), \bar{x} \in f+\operatorname{cone}\left(\left\{r^{1}, r^{3}\right\}\right)$ and $r^{3} \in \operatorname{cone}\left(\left\{r^{1}, r^{2}\right\}\right)$, we may write $\bar{x}=f+u_{1} r^{1}+u_{2} r^{2}, \bar{x}=f+v_{1} r^{1}+v_{3} r^{3}$ and $r^{3}=w_{1} r^{1}+w_{2} r^{2}$, where $u_{1}, u_{2}, v_{1}, v_{3}, w_{1}, w_{2} \geq 0$. Furthermore, since $(1,2)$ gives a tight representation of \bar{x} wrt. $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$, we have $\alpha_{1} u_{1}+\alpha_{2} u_{2}=1$. Finally we have $\alpha_{1} v_{1}+\alpha_{3} v_{3} \geq 1$, since $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is valid for P_{I}. If also $\alpha_{1} v_{1}+\alpha_{3} v_{3}=1$, we are done, so suppose $\alpha_{1} v_{1}+\alpha_{3} v_{3}>1$.

We first argue that this implies $\alpha_{3}>\alpha_{1} w_{1}+\alpha_{2} w_{2}$. Since $\bar{x}=f+u_{1} r^{1}+u_{2} r^{2}=$ $f+v_{1} r^{1}+v_{3} r^{3}$, it follows that $\left(u_{1}-v_{1}\right) r^{1}=v_{3} r^{3}-u_{2} r^{2}$. Now, using the representation $r^{3}=w_{1} r^{1}+w_{2} r^{2}$, we get $\left(u_{1}-v_{1}-v_{3} w_{1}\right) r^{1}+\left(u_{2}-v_{3} w_{2}\right) r^{2}=0$. Since r^{1} and r^{2} are linearly independent, we obtain:

$$
\left(u_{1}-v_{1}\right)=v_{3} w_{1} \text { and } u_{2}=v_{3} w_{2}
$$

Now we have $\alpha_{1} v_{1}+\alpha_{3} v_{3}>1=\alpha_{1} u_{1}+\alpha_{2} u_{2}$, which implies $\left(v_{1}-u_{1}\right) \alpha_{1}-\alpha_{2} u_{2}+$ $\alpha_{3} v_{3}>0$. Using the identities derived above, we get $-v_{3} w_{1} \alpha_{1}-\alpha_{2} v_{3} w_{2}+\alpha_{3} v_{3}>$ 0 , or equivalently $v_{3}\left(-w_{1} \alpha_{1}-\alpha_{2} w_{2}+\alpha_{3}\right)>0$. It follows that $\alpha_{3}>\alpha_{1} w_{1}+\alpha_{2} w_{2}$.

We now derive a contradiction to the identity $\alpha_{3}>\alpha_{1} w_{1}+\alpha_{2} w_{2}$. Since $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ defines a facet of $\operatorname{conv}\left(P_{I}\right)$, there must exist $x^{\prime} \in \mathbb{Z}^{2}$ and $k \in N$ such that $(3, k)$ gives a tight representation of x^{\prime} wrt. $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$. In other words, there exists $x^{\prime} \in \mathbb{Z}^{2}, k \in N$ and $\delta_{3}, \delta_{k} \geq 0$ such that $x^{\prime}=f+\delta_{3} r^{3}+\delta_{k} r^{k}$ and $\alpha_{3} \delta_{3}+\alpha_{k} \delta_{k}=1$. Furthermore, we can choose x^{\prime}, δ_{3} and δ_{k} such that r^{3} is used in the representation of x^{\prime}, i.e., we can assume $\delta_{3}>0$.

Now, using the representation $r^{3}=w_{1} r^{1}+w_{2} r^{2}$ then gives $x^{\prime}=f+\delta_{3} r^{3}+$ $\delta_{k} r^{k}=f+\delta_{3} w_{1} r^{1}+\delta_{3} w_{2} r^{2}+\delta_{k} r^{k}$. Since $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is valid for P_{I}, we have $\alpha_{1} \delta_{3} w_{1}+\alpha_{2} \delta_{3} w_{2}+\alpha_{k} \delta_{k} \geq 1=\alpha_{3} \delta_{3}+\alpha_{k} \delta_{k}$. This implies $\delta_{3}\left(\alpha_{3}-\alpha_{1} w_{1}-\alpha_{2} w_{2}\right) \leq$ 0 , and therefore $\alpha_{3} \leq \alpha_{1} w_{1}-\alpha_{2} w_{2}$, which is a contradiction.

Lemma 7. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality for $\operatorname{conv}\left(P_{I}\right)$ satisfying $\alpha_{j}>0$ for $j \in N$, and suppose $\bar{x} \in \mathbb{Z}^{2}$ is not a ray point. Also suppose the intersection between the cones $\left(j_{1}, j_{2}\right),\left(j_{3}, j_{4}\right) \in T_{\alpha}(\bar{x})$ is given by the subcone $\left(j_{2}, j_{3}\right)$ of both $\left(j_{1}, j_{2}\right)$ and $\left(j_{3}, j_{4}\right)$. Then $\left(j_{1}, j_{4}\right) \in T_{\alpha}(\bar{x})$, i.e., $\left(j_{1}, j_{4}\right)$ also gives a tight representation of \bar{x}.

Proof: For simplicity assume $j_{1}=1, j_{2}=2, j_{3}=3$ and $j_{4}=4$. Since the cones $(1,2)$ and $(3,4)$ intersect in the subcone $(2,3)$, we have $r^{3} \in \operatorname{cone}\left(\left\{r^{1}, r^{2}\right\}\right), r^{2} \in$ cone $\left(\left\{r^{3}, r^{4}\right\}\right), r^{4} \notin \operatorname{cone}\left(\left\{r^{1}, r^{2}\right\}\right)$ and $r^{1} \notin \operatorname{cone}\left(\left\{r^{3}, r^{4}\right\}\right)$. We first represent \bar{x} in the translated cones in which we have a tight representation of \bar{x}. In other words, we can write

$$
\begin{align*}
& \bar{x}=f+u_{1} r^{1}+u_{2} r^{2}, \tag{4}\\
& \bar{x}=f+v_{3} r^{3}+v_{4} r^{4} \text { and } \tag{5}\\
& \bar{x}=f+z_{2} r^{2}+z_{3} r^{3}, \tag{6}
\end{align*}
$$

where $u_{1}, u_{2}, v_{3}, v_{4}, z_{2}, z_{3}>0$. Note that Lemma 6 proves that (6) gives a tight represention of \bar{x}. Using (4)-(6), we obtain the relation

$$
\left(\begin{array}{l}
T_{1,1} I_{2} \tag{7}\\
T_{1,2} I_{2} \\
T_{2,1} I_{2} T_{2,2} I_{2}
\end{array}\right)\binom{r^{2}}{r^{3}}=\binom{u_{1} r^{1}}{v_{4} r^{4}}
$$

where T is the 2×2 matrix $T:=\binom{T_{1,1} T_{1,2}}{T_{2,1} T_{2,2}}=\left(\begin{array}{cc}\left(z_{2}-u_{2}\right) & z_{3} \\ z_{2} & \left(z_{3}-v_{3}\right)\end{array}\right)$ and I_{2} is the 2×2 identity matrix. On the other hand, the tightness of the representations (4)-(6) leads to the following identities

$$
\begin{align*}
& \alpha_{1} u_{1}+\alpha_{2} u_{2}=1 \tag{8}\\
& \alpha_{3} v_{3}+\alpha_{4} v_{4}=1 \text { and } \tag{9}\\
& \alpha_{2} z_{2}+\alpha_{4} z_{3}=1 \tag{10}
\end{align*}
$$

where, again, the last identity follows from Lemma 6. Using (8)-(10), we obtain the relation

$$
\begin{equation*}
\binom{T_{1,1} T_{1,2}}{T_{2,1} T_{2,2}}\binom{\alpha_{2}}{\alpha_{3}}=\binom{u_{1} \alpha_{1}}{v_{4} \alpha_{4}} \tag{11}
\end{equation*}
$$

We now argue that T is non-singular. Suppose, for a contradiction, that $T_{1,1} T_{2,2}=T_{1,2} T_{2,1}$. From (5) and (6) we obtain $v_{4} r^{4}=\left(z_{3}-v_{3}\right) r^{3}+z_{2} r^{2}$, which implies $z_{3}<v_{3}$, since $r^{4} \notin \operatorname{cone}\left(\left\{r^{1}, r^{2}\right\}\right) \supseteq \operatorname{cone}\left(\left\{r^{2}, r^{3}\right\}\right)$. Multiplying the first equation of (11) with $T_{2,2}$ gives $T_{2,2} T_{1,1} \alpha_{2}+T_{2,2} T_{1,2} \alpha_{3}=u_{1} T_{2,2} \alpha_{1}$, which implies $T_{1,2}\left(T_{2,1} \alpha_{2}+T_{2,2} \alpha_{3}\right)=u_{1} T_{2,2} \alpha_{1}$. By using the definition of T, this can be rewritten as $z_{3}\left(\alpha_{2} z_{2}+\left(z_{3}-v_{3}\right) \alpha_{3}\right)=u_{1} \alpha_{1}\left(z_{3}-v_{3}\right)$. Since $z_{2} \alpha_{2}+z_{3} \alpha_{3}=1$, this implies $z_{3}\left(1-v_{3} \alpha_{3}\right)=u_{1} \alpha_{1}\left(z_{3}-v_{3}\right)$. However, from (9) we have $\left.v_{3} \alpha_{3} \in\right] 0,1[$, so $z_{3}\left(1-v_{3} \alpha_{3}\right)>0$ and $u_{1} \alpha_{1}\left(z_{3}-v_{3}\right)<0$, which is a contradiction. Hence T is non-singular.

We now solve (7) for an expression of r^{2} and r^{3} in terms of r^{1} and r^{4}. The inverse of the coefficient matrix on the left hand side of (7) is given by $\binom{T_{1,1}^{-1} I_{2} T_{1,2}^{-1} I_{2}}{T_{2,1}^{-1} I_{2} T_{2,2}^{-1} I_{2}}$, where $T^{-1}:=\binom{T_{1,1}^{-1} T_{1,2}^{-1}}{T_{2,1}^{-1} T_{2,2}^{-1}}$ denotes the inverse of T. We therefore obtain

$$
\begin{align*}
r^{2} & =\lambda_{1} r^{1}+\lambda_{4} r^{4} \text { and } \tag{12}\\
r^{3} & =\mu_{1} r^{1}+\mu_{4} r^{4} \tag{13}
\end{align*}
$$

where $\lambda_{1}:=u_{1} T_{1,1}^{-1}, \lambda_{4}:=v_{4} T_{1,2}^{-1}, \mu_{1}:=u_{1} T_{2,1}^{-1}$ and $\mu_{4}:=v_{4} T_{2,2}^{-1}$. Similarly, solving (11) to express α_{2} and α_{3} in terms of α_{1} and α_{4} gives

$$
\begin{align*}
& \alpha_{2}=\lambda_{1} \alpha_{1}+\lambda_{4} \alpha_{4} \text { and } \tag{14}\\
& \alpha_{3}=\mu_{1} \alpha_{1}+\mu_{4} \alpha_{4} . \tag{15}
\end{align*}
$$

Now, using for instance (4) and (12), we obtain

$$
\begin{array}{ll}
\bar{x}=f+\left(u_{1}+u_{2} \lambda_{1}\right) r^{1}+\left(u_{2} \lambda_{4}\right) r^{4}, \text { and: } & \\
\left(u_{1}+u_{2} \lambda_{1}\right) \alpha_{1}+\left(u_{2} \lambda_{4}\right) \alpha_{4} & =\quad(\text { using (8) }) \\
\left(1-u_{2} \alpha_{2}\right)+u_{2} \lambda_{1} \alpha_{1}+\left(u_{2} \lambda_{4}\right) \alpha_{4} & = \\
1+u_{2}\left(\lambda_{1} \alpha_{1}+\lambda_{4} \alpha_{4}-\alpha_{2}\right) & =1 \text {. (using (14)) }
\end{array}
$$

To finish the proof, we only need to argue that we indeed have $\bar{x} \in f+$ cone $\left(\left\{r^{1}, r^{4}\right\}\right)$, i.e., that $\bar{x}=f+\delta_{1} r^{1}+\delta_{4} r^{4}$ with $\delta_{1}=u_{1}+u_{2} \lambda_{1}$ and $\delta_{4}=u_{2} \lambda_{4}$ satisfying $\delta_{1}, \delta_{4} \geq 0$. If $\delta_{1} \leq 0$ and $\delta_{4}>0$, we have $\bar{x}=f+\delta_{1} r^{1}+\delta_{4} r^{4}=$ $f+u_{1} r^{1}+u_{2} r^{2}$, which means $\delta_{4} r^{4}=\left(u_{1}-\delta_{1}\right) r^{1}+u_{2} r^{2} \in \operatorname{cone}\left(\left\{r^{1}, r^{2}\right\}\right)$, which is a contradiction. Similarly, if $\delta_{1}>0$ and $\delta_{4} \leq 0$, we have $\bar{x}=f+\delta_{1} r^{1}+$ $\delta_{4} r^{4}=f+v_{3} r^{3}+v^{4} r^{4}$, which implies $\delta_{1} r^{1}=v_{3} r^{3}+\left(v_{4}-\delta_{4}\right) r^{4} \in \operatorname{cone}\left(\left\{r^{3}, r^{4}\right\}\right)$, which is also a contradiction. Hence we can assume $\delta_{1}, \delta_{4} \leq 0$. However, since $\delta_{1}=u_{1}+u_{2} \lambda_{1}$ and $\delta_{4}=u_{2} \lambda_{4}$, this implies $\lambda_{1}, \lambda_{4} \leq 0$, and this contradicts what
was shown above, namely that the representation $\bar{x}=f+\delta_{1} r^{1}+\delta_{4} r^{4}$ satisfies $\alpha_{1} \delta_{1}+\alpha_{4} \delta_{4}=1$.

It follows that only one tight representation of every point x of $\operatorname{conv}\left(X_{\alpha}\right)$ is needed. We now use Lemma 5 to limit the number of vertices of L_{α} to four. The following notation is introduced. The set $J^{x}:=\cup_{\left(j_{1}, j_{2}\right) \in T_{\alpha}(x)}\left\{j_{1}, j_{2}\right\}$ denotes the set of variables that are involved in tight representations of x. As above, $\left(j_{1}^{x}, j_{2}^{x}\right) \in T_{\alpha}(x)$ denotes the unique maximal representation of x. Furthermore, given any $\left(j_{1}, j_{2}\right) \in T_{\alpha}(x)$, let $\left(t_{j_{1}}^{j_{2}}(x), t_{j_{2}}^{j_{1}}(x)\right)$ satisfy $x=f+t_{j_{1}}^{j_{2}}(x) r^{j_{1}}+t_{j_{2}}^{j_{1}}(x) r^{j_{2}}$. Lemma 5 implies that $r^{j} \in \operatorname{cone}\left(r^{j_{1}^{x}}, r^{j_{2}^{x}}\right)$ for every $j \in J^{x}$. Let $\left(w_{1}^{j}(x), w_{2}^{j}(x)\right)$ satisfy $r^{j}=w_{1}^{j}(x) r^{j_{1}^{x}}+w_{2}^{j}(x) r^{j_{2}^{x}}$, where $w_{1}^{j}(x), w_{2}^{j}(x) \geq 0$ are unique.

Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a valid inequality for $\operatorname{conv}\left(P_{I}\right)$ that satisfies $\alpha_{j}>0$ for $j \in N$. The inequality $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is facet defining for $\operatorname{conv}\left(P_{I}\right)$, if and only if the coefficients $\left\{\alpha_{j}\right\}_{j \in N}$ define a vertex of the polar of $\operatorname{conv}\left(P_{I}\right)$. Hence $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is facet defining for $\operatorname{conv}\left(P_{I}\right)$, if and only if the solution to the system

$$
\begin{equation*}
\alpha_{j_{1}} t_{j_{1}}^{j_{2}}(x)+\alpha_{j_{2}} t_{j_{2}}^{j_{1}}(x)=1, \quad \text { for every } x \in X_{\alpha} \text { and }\left(j_{1}, j_{2}\right) \in T_{\alpha}(x) \tag{16}
\end{equation*}
$$

is unique. We now rewrite the subsystem of (16) that corresponds to a fixed point $x \in X_{\alpha}$.

Lemma 8. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality for $\operatorname{conv}\left(P_{I}\right)$ that satisfies $\alpha_{j}>0$ for $j \in N$. Suppose $x \in X_{\alpha}$ is not a ray point. The system

$$
\begin{equation*}
\alpha_{j_{1}} t_{j_{1}}^{j_{2}}(x)+\alpha_{j_{2}} t_{j_{2}}^{j_{1}}(x)=1, \quad \text { for every }\left(j_{1}, j_{2}\right) \in T_{\alpha}(x) \tag{17}
\end{equation*}
$$

has the same set of solutions $\left\{\alpha_{j}\right\}_{j \in J^{x}}$ as the system

$$
\begin{array}{rlr}
1=t_{j_{1}}^{j_{2}}(x) \alpha_{j_{1}}+t_{j_{2}}^{j_{1}}(x) \alpha_{j_{2}}, & \text { for }\left(j_{1}, j_{2}\right)=\left(j_{1}^{x}, j_{2}^{x}\right), \\
\alpha_{j} & =w_{1}^{j}(x) \alpha_{j_{1}^{x}}+w_{2}^{j}(x) \alpha_{j_{2}^{x}}, & \text { for } j \in J^{x} \backslash\left\{j_{1}^{x}, j_{2}^{x}\right\} . \tag{19}
\end{array}
$$

We next show that it suffices to consider vertices of $\operatorname{conv}\left(X_{\alpha}\right)$ in (16).
Lemma 9. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality for conv $\left(P_{I}\right)$ that satisfies $\alpha_{j}>0$ for $j \in N$. Suppose $x \in X_{\alpha}$ is not a vertex of $\operatorname{conv}\left(X_{\alpha}\right)$. Then there exists vertices y and z of $\operatorname{conv}\left(X_{\alpha}\right)$ such that the equalities

$$
\begin{array}{ll}
\alpha_{j_{1}} j_{j_{1}}^{j_{2}}(y)+\alpha_{j_{2}} t_{j_{2}}^{j_{1}}(y)=1, \quad \text { for every }\left(j_{1}, j_{2}\right) \in T_{\alpha}(y) \text { and } \\
\alpha_{j_{1}} t_{j_{1}}^{j_{2}}(z)+\alpha_{j_{2}} t_{j_{2}}^{j_{1}}(z)=1, \quad \text { for } \operatorname{every}\left(j_{1}, j_{2}\right) \in T_{\alpha}(z) \tag{21}
\end{array}
$$

imply the equalities:

$$
\begin{equation*}
\alpha_{j_{1}} t_{j_{1}}^{j_{2}}(x)+\alpha_{j_{2}} t_{j_{2}}^{j_{1}}(x)=1, \quad \text { for every }\left(j_{1}, j_{2}\right) \in T_{\alpha}(x) \tag{22}
\end{equation*}
$$

By combining Lemma 8 and Lemma 9 we have that, if the solution to (16) is unique, then the solution to the system

$$
\begin{equation*}
t_{j_{1}^{x}}^{j^{x}}(x) \alpha_{j_{1}^{x}}+t_{j_{2}^{x}}^{j_{1}^{x}}(x) \alpha_{j_{2}^{x}}=1, \quad \text { for every vertex } x \text { of } \operatorname{conv}\left(X_{\alpha}\right) \tag{23}
\end{equation*}
$$

is unique．Since（23）involves exactly $k \leq 4$ equalities and has a unique solution， exactly $k \leq 4$ variables are involved in（23）as well．This finishes the proof of Theorem 1 ．

We note that from an inequality $\sum_{j \in S} \alpha_{j} s_{j} \geq 1$ that defines a facet of $\operatorname{conv}\left(P_{I}(S)\right)$ ，where $|S|=k$ ，the coefficients on the variables $j \in N \backslash S$ can be simultaneously lifted by computing the intersection point between the halfline $\left\{f+s_{j} r^{j}: s_{j} \geq 0\right\}$ and the boundary of L_{α} ．

We now use Theorem 2 to categorize the inequalities $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ that define facets of $\operatorname{conv}\left(P_{I}\right)$ ．For simplicity，we only consider the most general case， namely when none of the vertices of $\operatorname{conv}\left(X_{\alpha}\right)$ are ray points．Furthermore，we only consider $k=3$ and $k=4$ ．When $k=2, \sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is a facet defining inequality for a cone defined by two rays．We divide the remaining facets of $\operatorname{conv}\left(P_{I}\right)$ into the following three main categories．
（i）Disection cuts（Fig．母（a）and Fig．母．（b））：
Every vertex of $\operatorname{conv}\left(X_{\alpha}\right)$ belongs to a different facet of L_{α} ．
（ii）Lifted two－variable cuts（Fig．4r（c）and Fig．目（d））：
Exactly one facet of L_{α} contains two vertices of $\operatorname{conv}\left(X_{\alpha}\right)$ ．Observe that this implies that there is a set $S \subset N,|S|=2$ ，such that $\sum_{j \in S} \alpha_{j} s_{j} \geq 1$ is facet defining for $\operatorname{conv}\left(P_{I}(S)\right)$ ．
（iii）Split cuts：
Two facets of L_{α} each contain two vertices of $\operatorname{conv}\left(X_{\alpha}\right)$ ．

Fig．4．Disection cuts and lifted two－variable cuts

An example of a cut that is not a split cut was given in 3］（see Fig．1）．This cut is the only cut when $\operatorname{conv}\left(X_{\alpha}\right)$ is the triangle of Fig．4．（c），and，necessarily， $L_{\alpha}=\operatorname{conv}\left(X_{\alpha}\right)$ in this case．Hence，all three rays that define this triangle are
ray points. As mentioned in the introduction, the cut in 3] can be viewed as being on the boundary between disection cuts and lifted two-variable cuts.

Since the cut presented in [3] is not a split cut, and this cut can be viewed as being on the boundary between disection cuts and lifted two-variable cuts, a natural question is whether or not disection cuts and lifted two-variable cuts are split cuts. We finish this section by answering this question.

Lemma 10. Let $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ be a facet defining inequality for $\operatorname{conv}\left(P_{I}\right)$ satisfying $\alpha_{j}>0$ for $j \in N$. Also suppose $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is either a disection cut or a lifted two-variable cut. Then $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is not a split cut.

Proof: Observe that, if $\sum_{j \in N} \alpha_{j} s_{j} \geq 1$ is a split cut, then there exists $\left(\pi, \pi_{0}\right) \in$ $\mathbb{Z}^{2} \times \mathbb{Z}$ such that L_{α} is contained in the split set $S_{\pi}:=\left\{x \in \mathbb{R}^{2}: \pi_{0} \leq \pi_{1} x_{1}+\right.$ $\left.\pi_{2} x_{2} \leq \pi_{0}+1\right\}$. Furthermore, all points $x \in X_{\alpha}$ and all vertices of L_{α} must be either on the line $\pi^{T} x=\pi_{0}$, or on the line $\pi^{T} x=\pi_{0}+1$. However, this implies that there must be two facets of L_{α} that do not contain any integer points.

References

1. J. R. Arkinstall. Minimal requirements for Minkowski's theorem in the plane I. Bulletin of the Australian Mathematical Society, 22:259-274, 1980.
2. E. Balas. Intersection cuts - a new type of cutting planes for integer programming. Operations Research, 19:19-39, 1971.
3. W.J. Cook, R. Kannan, and A. Schrijver. Chvátal closures for mixed integer programming problems. Mathematical Programming, 47:155-174, 1990.
4. R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM2597, The Rand Corporation, 1960a.
5. E. Johnson. On the group problem for mixed integer programming. Mathematical Programming, 2:137-179, 1974.
6. G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization. Wiley, 1988.
7. S. Rabinowitz. A census of convex lattice polygons with at most one interior lattice point. Ars Combinatoria, 28:83-96, 1989.
8. A. Schrijver. Theory of linear and integer programming. Wiley, 1986.

[^0]: * This work was partly carried out within the framework of ADONET, a European network in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438. The second author is supported by FRS-FNRS. This text presents research results of the Belgian Program on Interuniversity Poles of Attraction initiated by the Belgian State, Prime Minister's Office, Science Policy Programming. The scientific responsibility is assumed by the authors.

