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Abstract. In this paper we explore the geometry of the integer points in
a cone rooted at a rational point. This basic geometric object allows us to
establish some links between lattice point free bodies and the derivation
of inequalities for mixed integer linear programs by considering two rows
of a simplex tableau simultaneously.

1 Introduction

Throughout this paper we investigate a mixed integer linear program (MIP) with
rational data defined for a set I of integer variables and a set C of continuous
variables

(MIP) max cT x subject to Ax = b, x ≥ 0, xi ∈ Z for i ∈ I.

Let LP denote the linear programming relaxation of MIP. From the theory of
linear programming it follows that a vertex x∗ of the LP corresponds to a basic
feasible solution of a simplex tableau associated with subsets B and N of basic
and nonbasic variables

xi +
∑

j∈N

āi,jxj = b̄i for i ∈ B.

Any row associated with an index i ∈ B ∩ I such that b̄i $∈ Z gives rise to a set

X(i) :=
{
x ∈ R|N | | b̄i −

∑

j∈N

āi,jxj ∈ Z, xj ≥ 0 for all j ∈ N
}
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whose analysis provides inequalities that are violated by x∗. Indeed, Gomory’s
mixed integer cuts [4] and mixed integer rounding cuts [6] are derived from such
a basic set X(i) using additional information about integrality of some of the
variables. Interestingly, unlike in the pure integer case, no finite convergence
proof of a cutting plane algorithm is known when Gomory’s mixed integer cuts
or mixed integer rounding cuts are applied only. More drastically, in [3], an
interesting mixed integer program in three variables is presented, and it is shown
that applying split cuts iteratively does not suffice to generate the cut that is
needed to solve this problem.

Example 1: [3] Consider the mixed integer set

t ≤ x1,

t ≤ x2,

x1 + x2 + t ≤ 2,

x ∈ Z2 and t ∈ R1
+.

The projection of this set onto the space of x1 and x2 variables is given by
{(x1, x2) ∈ R2

+ : x1 + x2 ≤ 2} and is illustrated in Fig. 1. A simple analysis
shows that the inequality x1 + x2 ≤ 2, or equivalently t ≤ 0, is valid. In [3] it
is, however, shown that with the objective function z = max t, a cutting plane
algorithm based on split cuts does not converge finitely. '(

2

1

21

r2

r1

r3

0

x1 + x2 ≤ 2

f = ( 2
3 . 23 )

x2

x1

Fig. 1. The Instance in [3]

The analysis given in this paper will allow us to explain the cut t ≤ 0 of Example
1. To this end we consider two indices i1, i2 ∈ B ∩ I simultaneously. It turns out
that the underlying basic geometric object is significantly more complex than
its one-variable counterpart. The set that we denote by X(i1, i2) is described as

X(i1, i2) :=
{
x ∈ R|N | | b̄i −

∑

j∈N

āi,jxj ∈ Z for i = i1, i2, xj ≥ 0 for all j ∈ N
}
.
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Setting
f :=

(
b̄i1 , b̄i2

)T ∈ R2, and
rj :=

(
āi1,j , āi2,j

)T ∈ R2,

the set obtained from two rows of a simplex tableau can be represented as

PI := {(x, s) ∈ Z2 × Rn
+ : x = f +

∑

j∈N

sjr
j},

where f is fractional and rj ∈ R2 for all j ∈ N . Valid inequalities for the set PI

was studied in [5] by using superadditive functions related to the group problem
associated with two rows. In this paper, we give a characterization of the facets
of conv(PI) based on its geometry.

Example 1 (revisited): For the instance of Example 1, introduce slack vari-
ables, s1, s2 and y1 in the three constraints. Then, solving as a linear program,
the constraints of the optimal simplex tableau are

t + 1
3s1 + 1

3s2 + 1
3y1 = 2

3
x1 − 2

3s1 + 1
3s2 + 1

3y1 = 2
3

x2 + 1
3s1 − 2

3s2 + 1
3y1 = 2

3

Taking the last two rows, and rescaling using s′i = si/3 for i = 1, 2, we obtain
the set PI

x1 −2s′1 +1s′2 + 1
3y1 = + 2

3
x2 +1s′1 −2s′2 + 1

3y1 = + 2
3

x ∈ Z2, s ∈ R2
+, y1 ∈ R1

+.

Letting f = (2
3 , 2

3 )T , r1 = (2, −1)T , r2 = (−1, 2)T and r3 = (− 1
3 , − 1

3 )T (see
Fig. 1), one can derive a cut for conv(PI) of the form

x1 + x2 + y1 ≥ 2 or equivalently t ≤ 0,

which, when used in a cutting plane algorithm, yields immediate termination.
'(

Our main contribution is to characterize geometrically all facets of conv(PI).
All facets are intersection cuts [2], i.e., they can be obtained from a (two-
dimensional) convex body that does not contain any integer points in its interior.
Our geometric approach is based on two important facts that we prove in this
paper

– every facet is derivable from at most four nonbasic variables.
– with every facet F one can associate three or four particular vertices of

conv(PI). The classification of F depends on how the corresponding k = 3, 4
integer points in Z2 can be partitioned into k sets of cardinality at most two.

More precisely, the facets of conv(PI) can be distinguished with respect to the
number of sets that contain two integer points. Since k = 3 or k = 4, the
following interesting situations occur
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– no sets with cardinality two: all the k ∈ {3, 4} sets contain exactly one tight
integer point. We call cuts of this type disection cuts.

– exactly one set has cardinality two: in this case we show that the inequality
can be derived from lifting a cut associated with a two-variable subproblem
to k variables. We call these cuts lifted two-variable cuts.

– two sets have cardinality two. In this case we show that the corresponding
cuts are split cuts.

Furthermore, we show that inequalities of the first two families are not split
cuts. Our geometric approach allows us to generalize the cut introduced in Ex-
ample 1. More specifically, the cut of Example 1 is a degenerate case in the sense
that it is “almost” a disection cut and “almost” a lifted two-variable cut: by
perturbing the vectors r1, r2 and r3 slightly, the cut in Example 1 can become
both a disection cut and a lifted two-variable cut.

We review some basic facts about the structure of conv(PI) in Section 2. In
Section 3 we explore the geometry of all the feasible points that are tight for a
given facet of conv(PI), explain our main result and presents the classification
of all the facets of conv(PI).

2 Basic Structure of conv(PI)

The basic mixed-integer set considered in this paper is

PI := {(x, s) ∈ Z2 × Rn
+ : x = f +

∑

j∈N

sjr
j}, (1)

where N := {1, 2, . . . , n}, f ∈ Q2 \ Z2 and rj ∈ Q2 for all j ∈ N . The set
PLP := {(x, s) ∈ R2 × Rn

+ : x = f +
∑

j∈N sjrj} denotes the LP relaxation of
PI . The jth unit vector in Rn is denoted ej . In this section, we describe some
basic properties of conv(PI). The vectors {rj}j∈N are called rays, and we assume
rj $= 0 for all j ∈ N .

In the remainder of the paper we assume PI $= ∅. The next lemma gives a
characterization of conv(PI) in terms of vertices and extreme rays.

Lemma 1.

(i) The dimension of conv(PI) is n.
(ii) The extreme rays of conv(PI) are (rj , ej) for j ∈ N .
(iii) The vertices (xI , sI) of conv(PI) take the following two forms:

(a) (xI , sI) = (xI , sI
jej), where xI = f + sI

jr
j ∈ Z2 and j ∈ N

(an integer point on the ray {f + sjrj : sj ≥ 0}).
(b) (xI , sI) = (xI , sI

jej +sI
kek), where xI = f+sI

jr
j +sI

krk ∈ Z2 and j, k ∈ N

(an integer point in the set f + cone({rj , rk})).

Using Lemma 1, we now give a simple form for the valid inequalities for conv(PI)
considered in the remainder of the paper.
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Corollary 1. Every non-trivial valid inequality for PI that is tight at a point
(x̄, s̄) ∈ PI can be written in the form

∑

j∈N

αjsj ≥ 1, (2)

where αj ≥ 0 for all j ∈ N .

For an inequality
∑

j∈N αjsj ≥ 1 of the form (2), let N0
α := {j ∈ N : αj = 0}

denote the variables with coefficient zero, and let N %=0
α := N \ N0

α denote the re-
mainder of the variables. We now introduce an object that is associated with the
inequality

∑
j∈N αjsj ≥ 1. We will use this object to obtain a two dimensional

representation of the facets of conv(PI).

Lemma 2. Let
∑

j∈N αjsj ≥ 1 be a valid inequality for conv(PI) of the form
(2). Define vj := f + 1

αj
rj for j ∈ N %=0

α . Consider the convex polyhedron in R2

Lα := {x ∈ R2 : there exists s ∈ Rn
+ s.t. (x, s) ∈ PLP and

∑

j∈N

αjsj ≤ 1}.

(i) Lα = conv({f} ∪ {vj}j∈N !=0
α

)+ cone({rj}j∈N0
α
).

(ii) interior(Lα) does not contain any integer points.
(iii) If cone({rj}j∈N ) = R2, then f ∈ interior(Lα).

Example 2: Consider the set

PI = {(x, s) : x = f +
(

2
1

)
s1 +

(
1
1

)
s2 +

(
−3
2

)
s3 +

(
0

−1

)
s4 +

(
1

−2

)
s5},

where f =
( 1

4
1
2

)
, and consider the inequality

2s1 + 2s2 + 4s3 + s4 +
12
7

s5 ≥ 1. (3)

The corresponding set Lα is shown in Fig. 2. As can be seen from the figure,
Lα does not contain any integer points in its interior. It follows that (3) is valid
for conv(PI). Note that, conversely, the coefficients αj for j = 1, 2, . . . , 5 can be
obtained from the polygon Lα as follows: αj is the ratio between the length of
rj and the distance between f and vj . In particular, if the length of rj is 1, then
αj is the inverse of the distance from f to vj . '(

The interior of Lα gives a two-dimensional representation of the points x ∈
R2 that are affected by the addition of the inequality

∑
j∈N αjsj ≥ 1 to the

LP relaxation PLP of PI . In other words, for any (x, s) ∈ PLP that satisfies∑
j∈N αjsj < 1, we have x ∈ interior(Lα). Furthermore, for a facet defining

inequality
∑

j∈N αjsj ≥ 1 of conv(PI), there exist n affinely independent points
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r1r2

r3

r4

r5

v1
v2v3

v4

v5

Fig. 2. The set Lα for a valid inequality for conv(PI)

(xi, si) ∈ PI , i = 1, 2, . . . , n, such that
∑

j∈N αjsi
j = 1. The integer points

{xi}i∈N are on the boundary of Lα, i.e., they belong to the integer set:

Xα := {x ∈ Z2 : ∃s ∈ Rn
+ s.t. (x, s) ∈ PLP and

∑

j∈N

αjsj = 1}.

We have Xα = Lα ∩ Z2, and Xα $= ∅ whenever
∑

j∈N αjsj ≥ 1 defines a
facet of conv(PI). We first characterize the facets of conv(PI) that have zero
coefficients.

Lemma 3. Any facet defining inequality
∑

j∈N αjsj ≥ 1 for conv(PI) of the
form (2) that has zero coefficients is a split cut. In other words, if N0

α $= ∅, there
exists (π, π0) ∈ Z2 × Z such that Lα ⊆ {(x1, x2) : π0 ≤ π1x1 + π2x2 ≤ π0 + 1}.

Proof: Let k ∈ N0
α be arbitrary. Then the line {f +µrk : µ ∈ R} does not contain

any integer points. Furthermore, if j ∈ N0
α, j $= k, is such that rk and rj are not

parallel, then f + cone({rk, rj}) contains integer points. It follows that all rays
{rj}j∈N0

α
are parallel. By letting π′ := (rk)⊥ = (−rk

2 , rk
1 )T and π′

0 := (π′)T f , we
have that {f + µrk : µ ∈ R} = {x ∈ R2 : π′

1x1 + π′
2x2 = π′

0}. Now define:

π1
0 := max{π′

1x1 + π′
2x2 : π′

1x1 + π′
2x2 ≤ π′

0 and x ∈ Z2}, and

π2
0 := min{π′

1x1 + π′
2x2 : π′

1x1 + π′
2x2 ≥ π′

0 and x ∈ Z2}.

We have π1
0 < π′

0 < π2
0 , and the set Sπ := {x ∈ R2 : π1

0 ≤ π′
1x1 + π′

2x2 ≤ π2
0}

does not contain any integer points in its interior. We now show Lα ⊆ Sπ by
showing that every vertex vm = f + 1

αm
rm of Lα, where m ∈ N %=0

α , satisfies
vm ∈ Sπ. Suppose vm satisfies π′

1v
m
1 +π′

2v
m
2 < π1

0 (the case π′
1v

m
1 +π′

2v
m
2 > π2

0 is
symmetric). By definition of π1

0 , there exists xI ∈ Z2 such that π′
1x

I
1+π′

2x
I
2 = π1

0 ,
and xI = λvm + (1 − λ)(f + δrk), where λ ∈]0, 1[, for some δ > 0. We then have
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xI = f+ λ
αm

rm+ δ(1−λ)rk . Inserting this representation of xI into the inequality∑
j∈N αjsj ≥ 1 then gives αm

λ
αm

+ αkδ(1 − λ) = λ < 1, which contradicts the
validity of

∑
j∈N αjsj ≥ 1 for PI . Hence Lα ⊆ Sπ.

To finish the proof, we show that we may write Sπ = {x ∈ R2 : π0 ≤ π1x1 +
π2x2 ≤ π0 + 1} for some (π, π0) ∈ Z2 × Z. First observe that we can assume (by
scaling) that π′, π1

0 and π2
0 are integers. Next observe that any common divisor

of π′
1 and π′

2 also divides both π1
0 and π2

0 (this follows from the fact that there
exists x1, x2 ∈ Z2 such that π′

1x
1
1 + π′

2x
1
2 = π1

0 and π′
1x

2
1 + π′

2x
2
2 = π2

0). Hence we
can assume that π′

1 and π′
2 are relative prime. Now the Integral Farkas Lemma

(see [8]) implies that the set {x ∈ Z2 : π′
1x1 + π′

2x2 = 1} is non-empty. It follows
that we must have π2

0 = π1
0 + 1, since otherwise the point ȳ := x′ + x1 ∈ Z2,

where x′ ∈ {x ∈ Z2 : π′
1x1 + π′

2x2 = 1} and x1 ∈ {x ∈ Z2 : π′
1x1 + π′

2x2 = π1
0},

satisfies π1
0 < π′

1ȳ1 + π′
2ȳ2 < π2

0 , which contradicts that Sπ does not contain any
integer points in its interior. '(

3 A Characterization of conv(Xα) and conv(PI)

As a preliminary step of our analysis, we first characterize the set conv(Xα). We
assume αj > 0 for all j ∈ N . Clearly conv(Xα) is a convex polygon with only
integer vertices, and since Xα ⊆ Lα, conv(Xα) does not have any integer points
in its interior. We first limit the number of vertices of conv(Xα) to four (see [1]
and [7] for this and related results).

Lemma 4. Let P ⊂ R2 be a convex polygon with integer vertices that has no
integer points in its interior.

(i) P has at most four vertices
(ii) If P has four vertices, then at least two of its four facets are parallel.
(iii) If P is not a triangle with integer points in the interior of all three facets

(see Fig. 3.(c)), then there exists parallel lines πx = π0 and πx = π0 + 1,
(π, π0) ∈ Z3, such that P is contained in the corresponding split set, i.e.,
P ⊆ {x ∈ R2 : π0 ≤ πx ≤ π0 + 1}.

Lemma 4 shows that the polygons in Fig. 3 include all possible polygons that
can be included in the set Lα in the case when Lα is bounded and of dimension
2. The dashed lines in Fig. 3 indicate the possible split sets that include P . We
excluded from Fig. 3 the cases when Xα is of dimension 1. We note that Lemma
4.(iii) (existence of split sets) proves that there cannot be any triangles where
two facets have interior integer points, and also that no quadrilateral can have
more than two facets that have integer points in the interior.

Next, we focus on the set Lα. As before we assume αj > 0 for all j ∈ N .
Due to the direct correspondence between the set Lα and a facet defining in-
equality

∑
j∈N αjsj ≥ 1 for conv(PI), this gives a characterization of the facets
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(a) A triangle: no facet
has interior integer points

(b) A triangle: one facet
has interior integer points

(c) A triangle: all facets
have interior integer
points

(d) A quadrilateral: no
facet has interior integer
points

(e) A quadrilateral: one
facet has interior integer
points

(f) A quadrilateral: two
facets have interior inte-
ger points

Fig. 3. All integer polygons that do not have interior integer points

of conv(PI). The main result in this section is that Lα can have at most four
vertices. In other words, we prove

Theorem 1. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for all j ∈ N . Then Lα is a polygon with at most four vertices.

Theorem 1 shows that there exists a set S ⊆ N such that |S| ≤ 4 and
∑

j∈S αjsj ≥
1 is facet defining for conv(PI(S)), where

PI(S) := {(x, s) ∈ Z2 × R|S|
+ : x = f +

∑

j∈S

sjr
j}.

Throughout this section we assume that no two rays point in the same di-
rection. If two variables j1, j2 ∈ N are such that j1 $= j2 and rj1 = δrj2

for some δ > 0, then the halflines {x ∈ R2 : x = f + sj1r
j1 , sj1 ≥ 0} and

{x ∈ R2 : x = f + sj2r
j2 , sj2 ≥ 0} intersect the boundary of Lα at the same

point, and therefore Lα = conv({f} ∪ {vj}j∈N ) = conv({f} ∪ {vj}j∈N\{j2}),
where vj := f + 1

αj
rj for j ∈ N . This assumption does therefore not affect the

validity of Theorem 1.
The proof of Theorem 1 is based on characterizing the vertices conv(PI) that

are tight for
∑

j∈N αjsj ≥ 1. We show that there exists a subset S ⊆ N of
variables and a set of |S| affinely independent vertices of conv(PI) such that



Inequalities from Two Rows of a Simplex Tableau 9

|S| ≤ 4 and {αj}j∈S is the unique solution to the equality system of the polar
defined by these vertices. The following notation will be used intensively in the
remainder of this section.

Notation 1

(i) The number k ≤ 4 denotes the number of vertices of conv(Xα).
(ii) The set {xv}v∈K denotes the vertices of conv(Xα), where K := {1, 2, . . . , k}.

Recall that Lemma 1.(iii) demonstrates that for a vertex (x̄, s̄) of conv(PI), s̄
is positive on at most two coordinates j1, j2 ∈ N , and in that case x̄ ∈ f +
cone({rj1 , rj2}). If s̄ is positive on only one coordinate j ∈ N , then x̄ = f + s̄jrj ,
and the inequality of the polar corresponding to (x̄, s̄) is αj s̄j ≥ 1, which simply
states αj ≥ 1

s̄j
. A point x̄ ∈ Z2 that satisfies x̄ ∈ {x ∈ R2 : x = f + sjrj , sj ≥ 0}

for some j ∈ N is called a ray point in the remainder of the paper. In order to
characterize the tight inequalities of the polar that correspond to vertices xv of
conv(Xα) that are not ray points, we introduce the following concepts.

Definition 1. Let
∑

j∈N αjsj ≥ 1 be valid for conv(PI). Suppose x̄ ∈ Z2 is not
a ray point, and that x̄ ∈ f + cone({rj1 , rj2}), where j1, j2 ∈ N . This implies
x̄ = f + sj1r

j1 + sj2r
j2 , where sj1 , sj1 > 0 are unique.

(a) The pair (j1, j2) is said to give a representation of x̄.
(b) If αj1sj1 +αj2sj2 = 1, (j1, j2) is said to give a tight representation of x̄ wrt.∑

j∈N αjsj ≥ 1.
(c) If (i1, i2) ∈ N×N satisfies cone({ri1 , ri2}) ⊆ cone({rj1 , rj2}), the pair (i1, i2)

is said to define a subcone of (j1, j2).

Example 2 (continued): Consider again the set

PI = {(x, s) : x = f +
(

2
1

)
s1 +

(
1
1

)
s2 +

(
−3
2

)
s3 +

(
0

−1

)
s4 +

(
1

−2

)
s5},

where f =
( 1

4
1
2

)
, and the valid inequality 2s1 + 2s2 + 4s3 + s4 + 12

7 s5 ≥ 1 for

conv(PI). The point x̄ = (1, 1) is on the boundary of Lα (see Fig. 2). We have
that x̄ can be written in any of the following forms

x̄ =f+
1
4
r1+

1
4
r2,

x̄ =f+
3
7
r1 +

1
28

r3,

x̄ =f +
3
4
r2 +

1
4
r4.

It follows that (1, 2), (1, 3) and (2, 4) all give representations of x̄. Note that
(1, 2) and (1, 3) give tight representations of x̄ wrt. the inequality 2s1 + 2s2 +
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4s3 + s4 + 12
7 s5 ≥ 1, whereas (2, 4) does not. Finally note that (1, 5) defines a

subcone of (2, 4). '(

Observe that, for a vertex xv of conv(Xα) which is not a ray point, and a tight
representation (j1, j2) of xv, the corresponding inequality of the polar satisfies
αj1tj1 + αj2tj2 = 1, where tj1 , tj2 > 0. We now characterize the set of tight
representations of an integer point x̄ ∈ Z2, which is not a ray point

Tα(x̄) := {(j1, j2) : (j1, j2) gives a tight representation of x̄ wrt.
∑

j∈N

αjsj ≥ 1}.

We show that Tα(x̄) contains a unique maximal representation (jx̄
1 , jx̄

2 ) ∈
Tα(x̄) with the following properties.

Lemma 5. There exists a unique maximal representation (jx̄
1 , jx̄

2 ) ∈ Tα(x̄) of x̄
that satisfies:

(i) Every subcone (j1, j2) of (jx̄
1 , jx̄

2 ) that gives a representation of x̄ satisfies
(j1, j2) ∈ Tα(x̄).

(ii) Conversely, every (j1, j2) ∈ Tα(x̄) defines a subcone of (jx̄
1 , jx̄

2 ).

To prove Lemma 5, there are two cases to consider. For two representations
(i1, i2) and (j1, j2) of x̄, either one of the two cones (i1, i2) and (j1, j2) is contained
in the other (Lemma 6), or their intersection defines a subcone of both (i1, i2)
and (j1, j2) (Lemma 7). Note that we cannot have that their intersection is
empty, since they both give a representation of x̄.

Lemma 6. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for all j ∈ N , and let x̄ ∈ Z2. Then (j1, j2) ∈ Tα(x̄) implies
(i1, i2) ∈ Tα(x̄) for every subcone (i1, i2) of (j1, j2) that gives a representation
of x̄.

Proof: Suppose (j1, j2) ∈ Tα(x̄). Observe that it suffices to prove the following:
for any j3 ∈ N such that rj3 ∈ cone({rj1 , rj2}) and (j1, j3) gives a representation
of x̄, the representation (j1, j3) is tight wrt.

∑
j∈N αjsj ≥ 1. The result for all

remaining subcones of (j1, j2) follows from repeated application of this result.
For simplicity we assume j1 = 1, j2 = 2 and j3 = 3.

Since x̄ ∈ f+cone({r1, r2}), x̄ ∈ f+cone({r1, r3}) and r3 ∈ cone({r1, r2}), we
may write x̄ = f +u1r1 +u2r2, x̄ = f +v1r1 +v3r3 and r3 = w1r1 +w2r2, where
u1, u2, v1, v3, w1, w2 ≥ 0. Furthermore, since (1, 2) gives a tight representation of
x̄ wrt.

∑
j∈N αjsj ≥ 1, we have α1u1+α2u2 = 1. Finally we have α1v1+α3v3 ≥ 1,

since
∑

j∈N αjsj ≥ 1 is valid for PI . If also α1v1 + α3v3 = 1, we are done, so
suppose α1v1 + α3v3 > 1.

We first argue that this implies α3 > α1w1+α2w2. Since x̄ = f+u1r1+u2r2 =
f + v1r1 + v3r3, it follows that (u1 − v1)r1 = v3r3 − u2r2. Now, using the
representation r3 = w1r1 +w2r2, we get (u1 − v1 − v3w1)r1 +(u2 − v3w2)r2 = 0.
Since r1 and r2 are linearly independent, we obtain:

(u1 − v1) = v3w1 and u2 = v3w2.
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Now we have α1v1+α3v3 > 1 = α1u1+α2u2, which implies (v1−u1)α1−α2u2+
α3v3 > 0. Using the identities derived above, we get −v3w1α1−α2v3w2 +α3v3 >
0, or equivalently v3(−w1α1 −α2w2 +α3) > 0. It follows that α3 > α1w1 +α2w2.

We now derive a contradiction to the identity α3 > α1w1 + α2w2. Since∑
j∈N αjsj ≥ 1 defines a facet of conv(PI), there must exist x′ ∈ Z2 and k ∈ N

such that (3, k) gives a tight representation of x′ wrt.
∑

j∈N αjsj ≥ 1. In other
words, there exists x′ ∈ Z2, k ∈ N and δ3, δk ≥ 0 such that x′ = f + δ3r3 + δkrk

and α3δ3 + αkδk = 1. Furthermore, we can choose x′, δ3 and δk such that r3 is
used in the representation of x′, i.e., we can assume δ3 > 0.

Now, using the representation r3 = w1r1 + w2r2 then gives x′ = f + δ3r3 +
δkrk = f +δ3w1r1 +δ3w2r2 +δkrk. Since

∑
j∈N αjsj ≥ 1 is valid for PI , we have

α1δ3w1+α2δ3w2+ αkδk ≥ 1 = α3δ3+αkδk. This implies δ3(α3−α1w1−α2w2) ≤
0, and therefore α3 ≤ α1w1 − α2w2, which is a contradiction. '(

Lemma 7. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) satis-
fying αj > 0 for j ∈ N , and suppose x̄ ∈ Z2 is not a ray point. Also suppose the
intersection between the cones (j1, j2), (j3, j4) ∈ Tα(x̄) is given by the subcone
(j2, j3) of both (j1, j2) and (j3, j4). Then (j1, j4) ∈ Tα(x̄), i.e., (j1, j4) also gives
a tight representation of x̄.

Proof: For simplicity assume j1 = 1, j2 = 2, j3 = 3 and j4 = 4. Since the cones
(1, 2) and (3, 4) intersect in the subcone (2, 3), we have r3 ∈ cone({r1, r2}), r2 ∈
cone({r3, r4}), r4 /∈ cone({r1, r2}) and r1 /∈ cone({r3, r4}). We first represent x̄
in the translated cones in which we have a tight representation of x̄. In other
words, we can write

x̄ = f + u1r
1 + u2r

2, (4)

x̄ = f + v3r
3 + v4r

4 and (5)

x̄ = f + z2r
2 + z3r

3, (6)

where u1, u2, v3, v4, z2, z3 > 0. Note that Lemma 6 proves that (6) gives a tight
represention of x̄. Using (4)-(6), we obtain the relation

(T1,1I2 T1,2I2
T2,1I2 T2,2I2

)(r2

r3
)

=
(u1r1

v4r4
)
, (7)

where T is the 2 × 2 matrix T :=
(T1,1 T1,2
T2,1 T2,2

)
=

( (z2 − u2) z3
z2 (z3 − v3)

)
and I2 is

the 2×2 identity matrix. On the other hand, the tightness of the representations
(4)-(6) leads to the following identities

α1u1+α2u2 = 1, (8)
α3v3+α4v4 = 1 and (9)
α2z2 +α4z3 = 1, (10)



12 K. Andersen et al.

where, again, the last identity follows from Lemma 6. Using (8)-(10), we obtain
the relation

(T1,1 T1,2
T2,1 T2,2

)(α2
α3

)
=

(u1α1
v4α4

)
. (11)

We now argue that T is non-singular. Suppose, for a contradiction, that
T1,1T2,2 = T1,2T2,1. From (5) and (6) we obtain v4r4 = (z3 − v3)r3 + z2r2, which
implies z3 < v3, since r4 /∈ cone({r1, r2}) ⊇ cone({r2, r3}). Multiplying the first
equation of (11) with T2,2 gives T2,2T1,1α2 + T2,2T1,2α3 = u1T2,2α1, which im-
plies T1,2(T2,1α2 + T2,2α3) = u1T2,2α1. By using the definition of T , this can be
rewritten as z3(α2z2 + (z3 − v3)α3) = u1α1(z3 − v3). Since z2α2 + z3α3 = 1, this
implies z3(1 − v3α3) = u1α1(z3 − v3). However, from (9) we have v3α3 ∈]0, 1[,
so z3(1 − v3α3) > 0 and u1α1(z3 − v3) < 0, which is a contradiction. Hence T is
non-singular.

We now solve (7) for an expression of r2 and r3 in terms of r1 and r4.
The inverse of the coefficient matrix on the left hand side of (7) is given by
(T−1

1,1 I2 T−1
1,2 I2

T−1
2,1 I2 T−1

2,2 I2

)
, where T−1 :=

(T−1
1,1 T−1

1,2
T−1

2,1 T−1
2,2

)
denotes the inverse of T . We there-

fore obtain

r2 = λ1r
1 + λ4r

4 and (12)

r3 = µ1r
1 + µ4r

4, (13)

where λ1 := u1T
−1
1,1 , λ4 := v4T

−1
1,2 , µ1 := u1T

−1
2,1 and µ4 := v4T

−1
2,2 . Similarly,

solving (11) to express α2 and α3 in terms of α1 and α4 gives

α2 = λ1α1 + λ4α4 and (14)
α3 = µ1α1 + µ4α4. (15)

Now, using for instance (4) and (12), we obtain

x̄ = f + (u1 + u2λ1)r1 + (u2λ4)r4, and:

(u1 + u2λ1)α1 + (u2λ4)α4 = (using (8))
(1 − u2α2) + u2λ1α1 + (u2λ4)α4 =
1 + u2(λ1α1 + λ4α4 − α2) = 1. (using (14))

To finish the proof, we only need to argue that we indeed have x̄ ∈ f +
cone({r1, r4}), i.e., that x̄ = f + δ1r1 + δ4r4 with δ1 = u1 + u2λ1 and δ4 = u2λ4
satisfying δ1, δ4 ≥ 0. If δ1 ≤ 0 and δ4 > 0, we have x̄ = f + δ1r1 + δ4r4 =
f + u1r1 + u2r2, which means δ4r4 = (u1 − δ1)r1 + u2r2 ∈ cone({r1, r2}), which
is a contradiction. Similarly, if δ1 > 0 and δ4 ≤ 0, we have x̄ = f + δ1r1 +
δ4r4 = f + v3r3 + v4r4, which implies δ1r1 = v3r3+ (v4 − δ4)r4 ∈ cone({r3, r4}),
which is also a contradiction. Hence we can assume δ1, δ4 ≤ 0. However, since
δ1 = u1 +u2λ1 and δ4 = u2λ4, this implies λ1, λ4 ≤ 0, and this contradicts what
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was shown above, namely that the representation x̄ = f + δ1r1 + δ4r4 satisfies
α1δ1 + α4δ4 = 1. '(

It follows that only one tight representation of every point x of conv(Xα) is
needed. We now use Lemma 5 to limit the number of vertices of Lα to four. The
following notation is introduced. The set Jx := ∪(j1,j2)∈Tα(x){j1, j2} denotes
the set of variables that are involved in tight representations of x. As above,
(jx

1 , jx
2 ) ∈ Tα(x) denotes the unique maximal representation of x. Furthermore,

given any (j1, j2) ∈ Tα(x), let (tj2j1(x), tj1j2 (x)) satisfy x = f +tj2j1 (x)rj1 +tj1j2(x)rj2 .
Lemma 5 implies that rj ∈ cone(rjx

1 , rjx
2 ) for every j ∈ Jx. Let (wj

1(x), wj
2(x))

satisfy rj = wj
1(x)rjx

1 + wj
2(x)rjx

2 , where wj
1(x), wj

2(x) ≥ 0 are unique.
Let

∑
j∈N αjsj ≥ 1 be a valid inequality for conv(PI) that satisfies αj > 0

for j ∈ N . The inequality
∑

j∈N αjsj ≥ 1 is facet defining for conv(PI), if and
only if the coefficients {αj}j∈N define a vertex of the polar of conv(PI). Hence∑

j∈N αjsj ≥ 1 is facet defining for conv(PI), if and only if the solution to the
system

αj1t
j2
j1

(x) + αj2t
j1
j2

(x) = 1, for every x ∈ Xα and (j1, j2) ∈ Tα(x). (16)

is unique. We now rewrite the subsystem of (16) that corresponds to a fixed
point x ∈ Xα.

Lemma 8. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for j ∈ N . Suppose x ∈ Xα is not a ray point. The system

αj1t
j2
j1

(x) + αj2t
j1
j2

(x) = 1, for every (j1, j2) ∈ Tα(x). (17)

has the same set of solutions {αj}j∈Jx as the system

1 = tj2j1(x)αj1 + tj1j2(x)αj2 , for (j1, j2) = (jx
1 , jx

2 ), (18)

αj = wj
1(x)αjx

1
+ wj

2(x)αjx
2
, for j ∈ Jx \ {jx

1 , jx
2 }. (19)

We next show that it suffices to consider vertices of conv(Xα) in (16).

Lemma 9. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI) that
satisfies αj > 0 for j ∈ N . Suppose x ∈ Xα is not a vertex of conv(Xα). Then
there exists vertices y and z of conv(Xα) such that the equalities

αj1t
j2
j1

(y) + αj2t
j1
j2

(y) = 1, for every (j1, j2) ∈ Tα(y) and (20)

αj1t
j2
j1

(z) + αj2t
j1
j2

(z) = 1, for every (j1, j2) ∈ Tα(z) (21)

imply the equalities:

αj1t
j2
j1

(x) + αj2t
j1
j2

(x) = 1, for every (j1, j2) ∈ Tα(x). (22)

By combining Lemma 8 and Lemma 9 we have that, if the solution to (16) is
unique, then the solution to the system

t
jx
2

jx
1
(x)αjx

1
+ t

jx
1

jx
2
(x)αjx

2
= 1, for every vertex x of conv(Xα). (23)
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is unique. Since (23) involves exactly k ≤ 4 equalities and has a unique solution,
exactly k ≤ 4 variables are involved in (23) as well. This finishes the proof of
Theorem 1.

We note that from an inequality
∑

j∈S αjsj ≥ 1 that defines a facet of
conv(PI(S)), where |S| = k, the coefficients on the variables j ∈ N \ S can be
simultaneously lifted by computing the intersection point between the halfline
{f + sjrj : sj ≥ 0} and the boundary of Lα.

We now use Theorem 2 to categorize the inequalities
∑

j∈N αjsj ≥ 1 that
define facets of conv(PI). For simplicity, we only consider the most general case,
namely when none of the vertices of conv(Xα) are ray points. Furthermore, we
only consider k = 3 and k = 4. When k = 2,

∑
j∈N αjsj ≥ 1 is a facet defining

inequality for a cone defined by two rays. We divide the remaining facets of
conv(PI) into the following three main categories.

(i) Disection cuts (Fig. 4.(a) and Fig. 4.(b)):
Every vertex of conv(Xα) belongs to a different facet of Lα.

(ii) Lifted two-variable cuts (Fig. 4.(c) and Fig. 4.(d)):
Exactly one facet of Lα contains two vertices of conv(Xα). Observe that this
implies that there is a set S ⊂ N , |S| = 2, such that

∑
j∈S αjsj ≥ 1 is facet

defining for conv(PI(S)).
(iii) Split cuts:

Two facets of Lα each contain two vertices of conv(Xα).

(a) Disection cut from a triangle (b) Disection cut from a quadrilateral

(c) Lifted two-variable cut from
quadrilateral

(d) Lifted two-variable cut from tri-
angle

Fig. 4. Disection cuts and lifted two-variable cuts

An example of a cut that is not a split cut was given in [3] (see Fig. 1). This
cut is the only cut when conv(Xα) is the triangle of Fig. 4.(c), and, necessarily,
Lα = conv(Xα) in this case. Hence, all three rays that define this triangle are
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ray points. As mentioned in the introduction, the cut in [3] can be viewed as
being on the boundary between disection cuts and lifted two-variable cuts.

Since the cut presented in [3] is not a split cut, and this cut can be viewed
as being on the boundary between disection cuts and lifted two-variable cuts, a
natural question is whether or not disection cuts and lifted two-variable cuts are
split cuts. We finish this section by answering this question.

Lemma 10. Let
∑

j∈N αjsj ≥ 1 be a facet defining inequality for conv(PI)
satisfying αj > 0 for j ∈ N . Also suppose

∑
j∈N αjsj ≥ 1 is either a disection

cut or a lifted two-variable cut. Then
∑

j∈N αjsj ≥ 1 is not a split cut.

Proof: Observe that, if
∑

j∈N αjsj ≥ 1 is a split cut, then there exists (π, π0) ∈
Z2 × Z such that Lα is contained in the split set Sπ := {x ∈ R2 : π0 ≤ π1x1 +
π2x2 ≤ π0 + 1}. Furthermore, all points x ∈ Xα and all vertices of Lα must be
either on the line πT x = π0, or on the line πT x = π0 + 1. However, this implies
that there must be two facets of Lα that do not contain any integer points. '(
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