
RESEARCH ARTICLE

Inequalities in Open Source Software

Development: Analysis of Contributor’s

Commits in Apache Software Foundation

Projects

Tadeusz Chełkowski1☯, Peter Gloor2☯*, Dariusz Jemielniak3☯

1 Kozminski University, Warsaw, Poland, 2 Massachusetts Institute of Technology, Center for Cognitive

Intelligence, Cambridge, Massachusetts, United States of America, 3 Kozminski University, New Research
on Digital Societies (NeRDS) group, Warsaw, Poland

☯ These authors contributed equally to this work.
* darekj@kozminski.edu.pl

Abstract

While researchers are becoming increasingly interested in studying OSS phenomenon,

there is still a small number of studies analyzing larger samples of projects investigating the

structure of activities among OSS developers. The significant amount of information that

has been gathered in the publicly available open-source software repositories and mailing-

list archives offers an opportunity to analyze projects structures and participant involve-

ment. In this article, using on commits data from 263 Apache projects repositories (nearly

all), we show that although OSS development is often described as collaborative, but it in

fact predominantly relies on radically solitary input and individual, non-collaborative contri-

butions. We also show, in the first published study of this magnitude, that the engagement

of contributors is based on a power-law distribution.

Introduction

Open collaboration communities have been in the limelight of organization and information

studies for the last decade [1]. Open collaboration, in principle, is a way of developing a prod-

uct collectively, by the use of bottom-up collective intelligence [2] relying on self-organizing

communities [3] “open” for anyone to join (or quit), and thus lacking the traditional thresholds

of employment and the traditional fears of being fired.

In a famous metaphor introduced by Eric S. Raymond [4], the traditional model can be

compared to a medieval cathedral building with top-down management and hierarchy, while

the open-collaboration model resembles a bazaar with an a-hierarchical structure without a

coordinating center, which still is very successful. Even though not they are not physically pres-

ent in the same place, software developers involved in Open Source Software (OSS) can create

large-scale software [5].

PLOSONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 1 / 19

a11111

OPEN ACCESS

Citation: Chełkowski T, Gloor P, Jemielniak D (2016)

Inequalities in Open Source Software Development:

Analysis of Contributor’s Commits in Apache

Software Foundation Projects. PLoS ONE 11(4):

e0152976. doi:10.1371/journal.pone.0152976

Editor: Christophe Antoniewski, CNRS UMR7622 &

University Paris 6 Pierre-et-Marie-Curie, FRANCE

Received: December 15, 2015

Accepted: March 22, 2016

Published: April 20, 2016

Copyright: © 2016 Chełkowski et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information files.

Funding: This research was conducted as a part of a

research grant from the Polish National Science

Center (no. UMO-2012/05/E/HS4/01498).

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0152976&domain=pdf
http://creativecommons.org/licenses/by/4.0/


“Open source can be seen as a movement, where communities of highly skilled program-

mers collectively develop software, often of a quality that outperforms commercial proprietary

software” [6]. Indeed, the triumphs of Linux, MySQL, Firefox, and Wordpress speak for them-

selves. One of the most prominent examples of successful open-software projects is also

Apache—absolutely dominating as web server software (running nearly half of all servers

worldwide). Open collaboration is sometimes called peer production [7,8,9]. This perspective

also emphasizes the equal and a-hierarchical character of open-source development [10,11].

While some authors criticize open-collaboration and peer-production phenomenon as lead-

ing to deterioration of quality [12,13], or as resulting in exploitation of participants and creat-

ing new inequalities [14,15,16], many others see its great promise [17]. According to Yochai

Benkler [18,19], peer production has the potential to redefine capitalism and create a new

mode of goods development and consumption with an anti-bureaucratic and a-hierarchical

organization of work.

Whether these revolutionary results can in fact be initiated by open collaboration projects

remains to be seen [9]. Yet, it is clear that these approaches, at least, rhetorically assume that

the phenomenon they are describing relies, in fact, on “collaboration” and “peers”. While some

authors are critical of such newspeak [20], it is generally assumed that “collaboration generally

happens within the context of a particular production goal; in other words, open collaboration

is about people trying to make something together” [1]. As we will show in this article, this pre-

sumption is not necessarily valid. From the perspective of code commitment, the processes

covered by terms of “open collaboration” or “peer production” are mostly not, in fact, collabo-

rative at all. Instead of a network of peers, they rely on a collection of separate individuals

focused on their own goals and ambitions.

Moreover, the participation of contributors is following a steep power law distribution. It is

worth noting that open collaboration communities in general follow the “1-9-90 rule” [21,22],

under which only 1% of community members actively produce content, 9% are generally

somewhat active, and the remaining 90% are passive lurkers. This rule has been widely

accepted as valid in open-software projects based on smaller studies. Our findings show that

even among the professional and committed contributors, participation is similarly unequal.

This finding is significant as we are able to confirm a wide assumption using on an analysis

conducted on unprecedented scale (virtually all projects of a major, leading open-source initia-

tive are taken into account). We are able to further ground this finding in an analysis if Gini

indexes (counting disparities of commitments) between projects.

Open-Source Contributors

Open-source contributors can be divided into five groups based on the nature of their involve-

ment. Core developers are responsible for technical concepts and key code commitment. Main-

tainers are responsible for keeping the project up to date, including porting and compatibility.

Patchers actively respond to problems, fixing the product issues. Bug reporters provide issue

descriptions. Finally, documenters play the role of power users, supporting others with docu-

mentation and instructions [23,24]. Researchers have also examined that, in terms of active

participation, North America and Europe are the top regions for Open-Source developers [25].

Self-report studies have measured individual developers’ time commitments, discovering dif-

ferences in time spent between project leaders (14.13 hours/week), developers (11.10 hours/

week) and bug fixers (5.6 hours/week) [26]. In addition to the time spent on development,

researchers studied the amount of time community members spent on supporting forums,

finding that it may take up 1.5 hours per week [27], and that helping other members is a signifi-

cant part of software development [28]. On the other hand, Robles and Gonzalez-Barahona

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 2 / 19



have explored the commits distribution in project MONO characterizing commits vs. time and

authorship attribution [29], finding high inequalities in the level of commits between different

participants. Some researchers have advanced an understanding of the commits distribution

on the single-project level (project Ximian Evolution), providing another interesting example

of the high inequalities among developers’ commits. “From a total of 196 developers, 5 account

for 47% of the MRs, while 20 account for 81% of the MRs, and 55 have done 95% of them”

[30], where As defined by German and Mockus, “MR is a logical change of software”. High

inequalities have been also confirmed by the GNOME project studies where “[t]he number of

checkins performed by a programmer was in the mean 731 with a standard deviation of 1 857

and a maximum of 23 000” [31]–a checkin is an equivalent of a commit.

The Apache Software Foundation has been the subject of a number of academic studies.

Researchers have been mostly interested in individual projects such as the Apache HTTP Server

[32,33], Apache Lucene [34], or Apache Ant [35]. MacLean, Knutson have provided a Neo4J

graph representation of the commit behavior (Apache Software Foundation developers for 2010

and 2011) [36], and in a study of the Apache community, Gala-Pérez, Robles, González-Bara-

hona, and Herraiz [37] analyzed the ratio of mailing list activity to the total number of commits.

Yet, surprisingly, little research has examined commits distribution among the larger group

of the Apache Foundation Open Source projects [38], even though studying one of the most

successful peer production projects using a large dataset should allow for the most accurate

analysis of the studied phenomenon. Our article presents the first analysis of this sort using

data from nearly all Apache projects.

Motivation, Research Questions, and Hypothesis

The goal of this article is to improve our understanding of the OSS participation distribution

by analyzing user commits frequency using a large group of the Apache Foundation Open

Source projects.

Research Question:

What is the structure of the Apache Software Foundation projects commits distribution?

Hypothesis:

The contributions in the analyzed Apache Software Foundation projects measured in com-

mits are highly unequal, the vast majority of projects are created by a minor but very active

part of the open-source community.

Research Method

In this section, we discuss the methodology used to analyze the collected data. In order to

achieve the aims of this study, this work uses the quantification of the individual contributors’

activity on the project level. For the basic picture and the relationship between commits and

contributors we use contingency tables. A contingency table is an widely used scientific

research standard developed as a unified analytic approach for the multivariate frequency dis-

tribution [39]. For the close examination of open source commits distribution, we measure the

statistical dispersion using the Gini coefficient. The Gini coefficient is a well-established single

measure of inequalities [40] and a popular method supporting studies such as wealth empirical

studies. Like most of the inequalities measures, the Gini index might be derived from the

Lorenz curve “Gini is a 1 minus twice the area under the Lorenz curve” [41]. For the purpose of

the Gini calculation, however, we use the Gini index relationship to covariance proved by Ler-

man and Yitzhaki [42]:

G ¼ 2cov½y=FðyÞ�=�y

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 3 / 19



The advantage of the Gini index is that it’s an easy-to-interpret ratio analysis method. Gini

coefficients range between 0 and 1, where 0 represents complete equality and 1 represents com-

plete inequality. It’s worth mentioning that Gini index limitation—since it’s a relative and not

absolute measure—might be misleading (e.g. the Gini index will remain the same for the popula-

tion of developers where 50% of the participants have no activity and the remaining 50% of the

population contributes equally, and the population where 75% of the developers contributes in

25% in the overall project activity, and the remaining 25% contributes the remaining 75%) [43].

Sample Selection

The open-source software “movement” is represented by the network of collaborating pro-

grammers. However, there is no single place integrating all existing open-source projects.

Open-source projects exist in a wide variety of social, technical, and licensing structures.

Cloud-versioning software and repository services like GitHub integrates 26.9M repositories

and 10.9M people (see https://github.com/about/press).

For further analysis we’ve selected only projects from the Apache Software Foundation. The

Apache Foundation is one of the oldest open-source development organizations. Since 1999,

the Apache Foundation has provided technical governance, including collaboration, licensing,

and technical policies, for the project committers (a committer is a developer granted access to

an Apache Project). For the purpose of collaborative-code development, Apache committers

use the subversion revision control system. The Apache Foundation was sampled for the fol-

lowing reasons: firstly, it contains more than 350 projects (see http://apache.org/foundation/),

mostly stable and well-established projects with a unified governance model. Secondly, the vast

majority of projects are developed over the years, which gives us an opportunity to analyze the

structure over time (e.g. the Apache HTTP Server was founded in 1995). Thirdly, the Apache

Foundation supported the development of some of the most well-known open-source projects

such as Apache HTTP Server and Apache Open Office. Regardless of the Apache Software

Foundation’s long history and significant size, the results of this study should not be general-

ized beyond the Apache Software Foundation community.

What qualifies as an Apache project is, to some extent, open to debate. Even the Apache

Foundation lists 262 projects, in some documents 350, or simply “300+ initiatives” elsewhere

(on the very same page they also refer to 278 projects). This includes projects in the incubation

phase, as well as defunct ones that may cause obvious distortions in the results. Similarly, we

have decided against counting the projects that have merged separately or projects that have

just one commit, as in our best judgment they should not qualify. Our approach is typical for

this kind of research [44].

Commit

To analyze the contributor activity distribution, we measure the number of commits submitted

by the individual contributors. The collective open-software development process consists of

commits submitted by the programmers to the unified project repository supported by the

source code versioning software. A commit represents a synchronization/exchange of local

changes with a remote project repository and is a submission of the individual programmer’s

changes. A source-code modification, such as adding, modifying, or removing lines of code,

adding or removing files, changes in the documentation files, are typical examples of commits.

Because of the open nature of software repositories and their accessibility, commits have been a

subject of numerous software development studies [32,45]. Although many researchers tried to

classify the value of commits using their size or a number of received comments, we intend to

measure only the contributor’s activity, not the value of their work. [45,46,47].

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 4 / 19

https://github.com/about/press
http://apache.org/foundation/


Data Source

We use data collected by OpenHub.net (formerly Ohloh)—the open-source projects registry.

This article is based on the June 2014 snapshot of the OpenHub database, which contains more

than 664 thousand open-source projects. In particular, OpenHub provides descriptive infor-

mation about projects, including name, main programming language, date of creation. Addi-

tionally, the registry provides information about the individual contributors and commits.

OpenHub retrieves the project data directly from open-source project repositories using con-

nectors to the most popular source versioning systems such as Git, SubVersion, CVS, Mercu-

rial, and Bazaar. OpenHub integrates project information with a user’s feedback, managing the

open-source project contributors’ feedback and community. For the purposes of this article,

however, we use only raw commit data without information added by the OpenHub commu-

nity. The Apache Foundation references OpenHub as the historical raw data source.

Data Collection

In order to collect the Apache Software Foundation project commits data, we developed a Java-

based program that crawls the OpenHub database using the REST-based API provided. Our pro-

gram queries the OpenHub registry using “Apache” as a project identification key word, then iter-

ates over the result table, searching for the unique project ID. Using the project ID, the program

executes additional queries and collects project details such as individual contributors’ commits.

The initial query returned not only the open-source project originating from the Apache Founda-

tion, but all related projects that extend, use, or integrate Apache projects. Therefore, for the final

analysis we have decided to create unified filtering criteria to prepare a clean dataset.

Filtering criteria:

• The project must be listed as an official Apache foundation project at http://projects.apache.

org/. Only projects registered and listed are qualified by the Apache Foundation as the

“Apache project”.

• The project must not be qualified as “incubating” by the Apache Software Foundation and its

homepage must not be listed under the incubator.apache.org domain. The incubation pro-

gram has been created for the projects wishing to become a part of the Apache Foundation.

Typically, it’s a place to verify external organization donation, making sure that it follows the

Apache Software Foundation legal standards. A donated project contains existing code with

limited and unverified commits information. Thus, projects listed as a part of the incubation

are not considered valid date entries for this study. Additionally, the incubation process can

lead to project rejection, and a project may not be established as a full Apache member.

• The project must not be qualified by the Apache Software Foundation as discontinued

(“moved to attic”). The Apache Software Foundation has created an “attic” project category

to manage issues with project life end. It is intended to provide a controlled process to close

the project without the active committers or committers that are unable to fulfill their duties.

It is common that projects classified as “attic” are merged and integrated with other projects,

therefore their commits might be included in other projects.

• Additionally, we have removed 77 records without a proper user name. For selected cases, a

detailed review of the removed cases indicated that it belongs to “anonymous”, “none”, “user

name”, “unknown”, “root” users, e.g. representing the technical accounts used for the proj-

ect’s migration process.

Finally, the collected data encompasses 1,348,405 individual commits. The selected 263

Apache Projects represent 10, 045,099 lines of the source code, which have been created by the

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 5 / 19

http://projects.apache.org/
http://projects.apache.org/


4,661 unique committer accounts (one contributor can commit to multiple projects—see

Table 1 and Fig 1).

The analyzed projects vary in commits size and contributors amount (Table 2).

Data and Results Verification

In order to verify the data source (Open Hub), we have selected a set of projects and conducted

a manual verification of the OpenHub data with the projects repositories. Data collected auto-

matically has been compared to the commit records inside the projects repository. The only

inconsistency we found was that the code collection by OpenHub was delayed compared to the

data inside the project repositories.

Additionally, for the project-list validation we reviewed the official Apache project list, mak-

ing sure that only the Apache projects and its version have been selected for the analysis.

Finally, we matched the individual data records against selected contributors to validate the

accuracy of the collected data. We interviewed three developers, and during the interview we

presented the commits records and asked for confirmation of the data accuracy. All of the

interviewed developers confirmed their commits records.

Table 1. Sample commit record retrieved from OpenHub.

Project name Contributor Commits

Apache Jackrabbit Angela Schreiber 1,499

doi:10.1371/journal.pone.0152976.t001

Fig 1. Projects sizes measured as lines of code.

doi:10.1371/journal.pone.0152976.g001

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 6 / 19



Results

The descriptive analysis (Table 3) of the analyzed projects shows a highly unequal distribution

of commits among contributors. Additionally, skewness, a metric of asymmetry, confirms that

the mass of the distribution is concentrated on the left with a long right tail (Fig 2).

To better understand the data distribution and identify similar data groups in an unsuper-

vised way, we have conducted a cluster analysis using k-means clustering and the JENKS algo-

rithm. Both methods provide similar results. As noted in Table 4, in the nine cluster commit

frequency distribution list, significant numbers of committers (85.82%) have been aggregated

around the lowest cluster center value (56).

For better clarity, we used the expert method (interviews with open-source contributors) to

classify nine commit-contribution categories. As presented in Table 5 and Fig 3, 156 commit-

ters (the sum of the two top contributing categories), representing only 3.35% of the total ana-

lyzed committer’s population, contribute 50.13% of all commits. On the other hand, 2,786

contributors (the sum of the two bottom categories 1–50), representing 59.77% of the popula-

tion, contribute only 2.27% of the total commits. Fig 4 presents exponential decrease of the

committer number for the selected categories and the increase of the commits for the selected

categories.

Gini Index Analysis

We observe (Fig 5, Tables 6 and 7) high inequalities among the committers’ activities on the

project level, measured as Gini index values. Among the 263 analyzed cases, 100 (38.02%) cases

are in the range of 0.7–0.8, while 234 (88.97%) of the analyzed population is between 0.6 and

0.9. Additionally, only 9.51% of projects have a Gini value lower than 0.6, and 1.52% are in the

range of 0.9 to 1.0. It should be noted that analyzed Gini indexes values are highly concentrated

around the mean value. Apache Camel (Gini index 0.919) is the project with the highest level

of commit inequality, while Portal JSF Bridge with Gini index = 0.301 has the most equally

Table 2. Basic statistics of the analyzed dataset.

Attribute Total code lines Total Commits Contributors

Minimum 822 16 3

Mean 399,411.02 5,127.02 38.30

Median 97,753 1,993 19

1 Quartile 28,459 639 11

3 Quartile 300,162 5,509 35

Maximum 14,625,904 94,585 527

Standard deviation 1,237,915.25 9,710,75 35

doi:10.1371/journal.pone.0152976.t002

Table 3. Descriptive analysis of commits among contributors.

N 4,661

Minimum 1

Maximum 19,053

Sum 1,348,405

Mean 289.295

Std. Deviation 968.641

Skewness 8.428

doi:10.1371/journal.pone.0152976.t003

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 7 / 19



distributed commits among all of the analyzed projects. Gini-indexes analysis confirms the

findings in the contingency-tables analysis. We were unable to find any particular correlation

between Gini index value and project size measured as the total lines of code (r = 0.1189), Gini

index and project size measured as the number of participating contributors (r = 0.1255), as

well as Gini index and project size measured as the number of commits (r = 0.1658). The distri-

bution of Gini indexes and the relationship to project sizes is presented in Figs 6, 7 and 8.

Fig 2. Histogram commits distribution among contributors.

doi:10.1371/journal.pone.0152976.g002

Table 4. Commits aggregation using k-means clustering classification.

Cluster no. Cluster center Committers %Committers

1 56 4,000 85.82%

2 737 424 9.10%

3 1,921 131 2.81%

4 3,560.8 65 1.39%

5 6,199.8 30 0.64%

6 9,336 3 0.06%

7 12,269 2 0.04%

8 14,230 5 0.11%

9 19,053 1 0.02%

doi:10.1371/journal.pone.0152976.t004

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 8 / 19



Social Network Analysis

We also conducted a social network analysis of the contributor and project networks by con-

structing a bipartite graph (Fig 9). The network has been constructed by showing all links

between the 4,661 developers and the 263 projects on which they are working. In this bipartite

graph we calculate betweenness centrality (Freeman 1977) as a proxy for importance of the

developers, as well as a proxy for the importance of the projects. We find that Apache Taglibs

has the highest betweenness centrality among the analyzed cases (see Tables 8 and 9). It’s a

mature and well-established open-source project, the first code contribution was committed

over 15 years ago in September 2000. Over the years, 527 contributors have developed it.

Apache Taglibs supports Java Server Pages (JSP). JSP it’s a popular technology simplifying the

web application development in Java programming language, and in recent years has became a

standard for Java-based web applications. Apache Taglibs is a custom JSP tags library project,

which makes it easier for other developers to join the collaborative development effort since

their commitments can be easily separated and are more modular than in other projects. We

Table 5. Commits aggregation using expert method.

Category Commits Committers %Commits %Committers

1 to 10 5,942 1,858 0.441% 39.863%

11 to 50 24,085 928 1.786% 19.910%

51 to 100 33,018 449 2.449% 9.633%

101 to 200 58,829 405 4.363% 8.689%

201 to 500 146,814 460 10.888% 9.869%

501 to 1000 178,262 246 13.220% 5.278%

1001 to 2000 225,521 159 16.725% 3.411%

2001 to 5000 357,141 117 26.486% 2.510%

over 5001 318,793 39 23.642% 0.837%

doi:10.1371/journal.pone.0152976.t005

Fig 3. Commits aggregation using expert method.

doi:10.1371/journal.pone.0152976.g003

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 9 / 19



believe that a combination of the three above-mentioned characteristics—mature and well-

established project, popular technology, and the modular nature of the Apache Taglibs—are

the reasons behind the highest number of contributors, and also indirectly the reason for the

highest betweenness centrality among the analyzed projects. When correlating betweenness

centrality of projects in the network graph with number of lines, number of committers, and

number of commits of the project, we find significant correlation between number of develop-

ers and betweenness of a project in the graph (r = 0.907, p<0.001, N = 263). The correlation

between commits and project betweenness is r = 0.471 (p<0.001), while the correlation

between number of lines and betweenness of the project is r = 0.168 (p = 0.005). This result is

not surprising, as we are constructing our network based on the number of people simulta-

neously working on more than one network, and the more people that work on a project, the

more central it becomes. If there is one insight from this short analysis, it is that it is quality of

the code matters more than the quantity measured through number of lines or number of com-

mits. It seems that having many eyeballs involved is the best way to increase the influence of a

project.

As for the Social Network Analysis of the developer, we found that user “jukka”, with 6,345

commits, is the developer with the highest betweenness centrality. Real user "jukka” is a com-

bined record of the accounts “jukka” with 3,208 commits, “Jukka Zitting” with 3,133 commits,

Fig 4. Commits and committers distribution in categories.

doi:10.1371/journal.pone.0152976.g004

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 10 / 19



and “Jukka Lauri Zitting” with 4 commits, which we have identified as accounts all represented

by the same person. A close examination of the project commit logs revealed that “jukka” con-

tributed to 20 projects, including Apache Jackrabbit, Apache Sling, Apache Taglibs, and a num-

ber of Apache Commons projects that developers commonly use as a foundational component

of other projects. The correlation between the number of commits of a developer and their

betweenness centrality is r = 0.222 (p<0.001, N = 4660), which means there is a significant—

but not strong—correlation. For instance, user sebb, with 14,447 commits, was well above

Fig 5. Sorted distribution of Gini index.

doi:10.1371/journal.pone.0152976.g005

Table 6. Properties of the projects Gini Indexes.

Attribute Gini index of the analyzed 263 projects

Minimum 0.301587302

Mean 0.728541383

Median 0.745753403

1 quartile 0.667293233

3 quartile 0.805603143

Maximum 0.919309711

Standard deviation 0.106680995

Variance 0.013348064

doi:10.1371/journal.pone.0152976.t006

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 11 / 19



jukka but has a much lower betweenness. Taking the number of commits as a metric of activity

of a developer, we find that the most active developers are not necessarily the most central

ones. Rather, we find that there are developers in the core of the social network who, with com-

paratively few commits, are highly central.

Table 7. Distribution of the Gini Indexes.

Gini index value Number of projects # of the projects Accumulated number of the project Accumulated % of the projects

0.0 <x< = 0.4 3 1.14% 3 1.141%

0.4 <x< = 0.5 9 3.42% 12 4.563%

0.5 <x< = 0.6 13 4.94% 25 9.506%

0.6 <x< = 0.7 66 25.10% 91 34.601%

0.7 <x< = 0.8 100 38.02% 191 72.624%

0.8 <x< = 0.9 68 25.86% 259 98.479%

0.9 <x< = 1.0 4 1.52% 263 100.000%

doi:10.1371/journal.pone.0152976.t007

Fig 6. Gini indexes and project size.

doi:10.1371/journal.pone.0152976.g006

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 12 / 19



Discussion

Our study findings undermine the widespread idealistic belief that open-source development is

a wide collaborative movement. Rather, we show that in the analyzed Apache Software founda-

tion projects were created by a small, but very active, group of individual, separate

contributors.

We conclude that the analyzed Apache Foundation projects experience high levels of

inequalities in contributors’ activities measured as commits. The contingency table analysis

shows that a small group of contributors is responsible for the majority of commits, which is

reinforced by the high levels of the Gini indices among the analyzed projects regardless of proj-

ect size and committer population.

One main advantage of our research is the analyzed group of projects. The selected 263

cases represent a homogenous group of Apache Software Foundation projects developed under

the highly respected Apache Foundation brand. Apache Foundation projects are considered to

be among the best organized and the most reliable projects among all OSS projects.

One of the potential issues of our methodology is the semantic association of the commit

with the individual programmer’s project contribution. Although commits have been widely

used in similar analysis and represent a fundamental element of open-source development,

Fig 7. Gini indexes and committers population.

doi:10.1371/journal.pone.0152976.g007

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 13 / 19



commits are not the only type of open-source collaboration. Community members contribute

to open-source development by a number of supporting activities such as reading and answer-

ing users’ support questions, preparing technical documentation, or speaking at conferences.

Additionally it could be argued that commits might not represent the actual project contribu-

tion of a developer. However, the other well-known alternative method of measuring the proj-

ect contribution by calculating lines of codes has serious flaws and gives no information about

the value of the contribution—adding hundreds of lines into a project’s documentation branch

is treated identical to a small but essential modification of a project’s core component [48,49].

Therefore, a more effective way of calculating a programmer’s contribution—not only activity

as presented in this paper—is an issue that merits further investigation.

Our findings confirm the hypothesis that activities of contributors measured as commits

(committers) are unequal. In the analyzed 263 Apache projects, a small but very active core

group of developers submitted the majority of commits. Similar power law distributions have

been observed in online communities, for example in relation to users’ popularity [50] and for

user-content generation [51].

Fig 8. Gini indexes and commits number.

doi:10.1371/journal.pone.0152976.g008

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 14 / 19



Conclusions

Our results are not that surprising in the larger context of open-software development. While

in other non-professional contexts [52,53] of open collaboration, the benefits of participation

are much less clear in economic terms, in open-source software, while not payment-related,

Fig 9. Bipartite graph illustrating the contributor and project network (4924 actors, 4661 developers, 263 projects).

doi:10.1371/journal.pone.0152976.g009

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 15 / 19



they are quite obvious [10,54]. A developer participates in a gift culture, develops one’s net-

work, gets recognition for one’s skills, and also can often combine work with some commercial

endeavor. This combined model is increasing in popularity [55,56]. Thus, reputation may be a

major factor driving people to develop open source [57,58,59]. To build such a reputation, one

does not necessarily have to prove one’s teamwork or leadership skills.

In fact, being a lone hero may be an optimal strategy for portfolio building. Also, while there

are methodologies for cyber-teams allowing people to work collectively [60,61], open-collabo-

ration communities in general, and open-software development in particular, attract people

who avoid hierarchy and prefer individual work [62,63,64].

Table 8. The top 15 projects by betweenness. We also looked at project size and number of collaborators.

Betweenness centrality Project name # of lines #Commits #Committers

1,734,235.578 Apache Taglibs 77,397 68,179 527

1,333,166.445 Apache Shale Framework 85,645 9,163 451

1,239,350.732 Apache Cloudstack 1,540,264 23,520 279

1,223,937.202 Apache Spark 109,532 7,055 255

1,156,618.107 Apache Commons Pool 14,702 12,173 447

1,134,737.378 Apache Jclouds 546,572 11,012 166

1,089,733.276 Cordova-Android 25,617 2,552 122

1,075,281.033 Apache Commons Launcher 2,992 7,954 406

1,073,539.122 Apache Commons Modeler 7,981 7,945 405

790,400.008 Apache Maven 2 1,065,693 46,020 155

763,373.662 Apache Libcloud 133,591 5,446 91

761,588.927 Apache Subversion 592,060 49,995 170

626791,9109 Apache Camel 959,655 19,945 87

593164,5311 Apache Gump 36,250 14,181 137

566926,3238 Apache Traffic Server 536,615 7,408 111

doi:10.1371/journal.pone.0152976.t008

Table 9. Top 15 committers by betweenness. We also compared their number of commits and number of
lines of code they contributed.

Project name Betweenness centrality Commits

jukka 1,386,508.632 6,345

joes 919,986.125 1,562

gmcdonald 823,993.580 474

antonio 682,878.895 2,947

joe schaefer 611,604.685 49

gavin mcdonald 527,732,533 39

bdelacretaz 470,439.078 2,476

carlos 372815.024 1,461

niq 358,758.946 1,735

jim 317,239.08 4,972

ashutosh 269,789.440 13

bayard 252,713.137 2,720

sebb 226,232.766 14,447

jesse 223,974.211 1,091

tomwhite 221,081.369 642

doi:10.1371/journal.pone.0152976.t009

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 16 / 19



Our findings support this perspective. Additionally, our results help problematize the overly

simplistic view of open-software development as a mainly collaborative endeavor, as described

in our introduction. Open collaboration may well be the best thing since sliced bread, but call-

ing it “collaboration” is an over-emphasis. Peer production is mainly a solitary endeavor and

relies much less on peers than enthusiasts of open collaboration would like it to believe.

Supporting Information

S1 File. Source Data. Apache Software Foundation Open Source projects source data.

(XLSX)

Author Contributions

Analyzed the data: TC PG DJ. Wrote the paper: TC PG DJ.

References
1. Forte A, Lampe C (2013) Defining, understanding, and supporting open collaboration lessons from the

literature. American Behavioral Scientist 57: 535–547.

2. Riehle D, Ellenberger J, Menahem T, Mikhailovski B, Natchetoi Y, Naveh B, et al. (2009) Open collabo-
ration within corporations using software forges. Software, IEEE 26: 52–58.

3. Ostrom E (2000) Collective action and the evolution of social norms. The Journal of Economic Perspec-
tives 14: 137–158.

4. Raymond ES (1999) The cathedral and the bazaar. Knowledge, Technology & Policy 12: 23–49.

5. Ciesielska M, Petersen G (2013) Boundary object as a trust buffer. The study of an open source code
repository. Tamara Journal for Critical Organization Inquiry 11: 5–14.

6. Ljungberg J (2000) Open source movements as a model for organising. European Journal of Informa-
tion Systems 9: 208–216.

7. Benkler Y, NissenbaumH (2006) Commons‐based Peer Production and Virtue*. Journal of Political
Philosophy 14: 394–419.

8. Bauwens M (2009) Class and capital in peer production. Capital & Class 33: 121–141.

9. Kreiss D, Finn M, Turner F (2011) The limits of peer production: Some reminders fromMaxWeber for
the network society. NewMedia & Society 13: 243–259.

10. Baytiyeh H, Pfaffman J (2010) Open source software: A community of altruists. Computers in Human
Behavior 26: 1345–1354.

11. Bergquist M, Ljungberg J (2001) The power of gifts: organizing social relationships in open source com-
munities. Information Systems Journal 11: 305–320.

12. Lanier J (2006) Digital Maoism. The Hazards of the New Online Collectivism. The Edge org: retrieved
on 6 April 2012.

13. Keen A (2007) The cult of the amateur: how today's internet is killing our culture. New York: Broadway
Business.

14. Ritzer G, Jurgenson N (2010) Production, Consumption, Prosumption The nature of capitalism in the
age of the digital ‘prosumer’. Journal of Consumer Culture 10: 13–36.

15. O'Neil M (2010) Shirky and Sanger, or the costs of crowdsourcing. Journal of Science Communication
9: 1–6.

16. O'Neil M (2011) The sociology of critique in Wikipedia. Critical Studies in Peer Production 1: 1–11.

17. Pouwelse JA, Garbacki P, Epema D, Sips H (2008) Pirates and Samaritans: A decade of measure-
ments on peer production and their implications for net neutrality and copyright. Telecommunications
Policy 32: 701–712.

18. Benkler Y (2002) Coase's Penguin, or, Linux and" The Nature of the Firm". Yale Law Journal 112:
369–446.

19. Benkler Y (2006) The wealth of networks: how social production transforms markets and freedom.
New Haven: Yale University Press. xii, 515 p. p.

20. Van Dijck J, Nieborg D (2009) Wikinomics and its discontents: a critical analysis of Web 2.0 business
manifestos. NewMedia & Society 11: 855–874.

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0152976.s001


21. Gabbiadini A, Mari S, Volpato C (2013) Virtual users support forum: do community members really
want to help you? Cyberpsychology, Behavior, and Social Networking 16: 285–292.

22. Roth S, Kaivo-Oja J, Hirschmann T (2013) Smart regions: Two cases of crowdsourcing for regional
development. International Journal of Entrepreneurship and Small Business 20: 272–285.

23. Ducheneaut N (2005) Socialization in an open source software community: A socio-technical analysis.
Computer Supported Cooperative Work (CSCW) 14: 323–368.

24. Moon JY, Sproull L (2002) Essence of distributed work: The case of the Linux kernel. First Monday 5.
Available: http://firstmonday.org/ojs/index.php/fm/article/viewArticle/801/710.

25. Gonzalez-Barahona JM, Robles G, Andradas-Izquierdo R, Ghosh RA (2008) Geographic origin of libre
software developers. Information Economics and Policy 20: 356–363.

26. Luthiger B (2005) Fun and software development. Proceedings of the First International Conference on
Open Source Systems 273–278.

27. Lakhani KR, Von Hippel E (2003) How open source software works. Research policy 32: 923–943.

28. Jemielniak D (2009) Time as symbolic currency in knowledge work. Information and Organization 19:
277–293.

29. Matellán Olivera V (2003) Studying the evolution of libre software projects using publicly available data.
3rd Workshop on Open Source Software Engineering. Available: http://buleria.unileon.es/xmlui/handle/
10612/1796: 111–115.

30. German D, Mockus A (2003) Automating the measurement of open source projects. Proceedings of the
3rd workshop on open source software engineering 63–67.

31. Koch S, Schneider G (2000) Results from software engineering research into open source develop-
ment projects using public data. Diskussionspapiere zum Tätigkeitsfeld Informationsverarbeitung und
Informationswirtschaft.

32. Fielding RT (1999) Shared leadership in the Apache project. Communications of the ACM 42: 42–43.

33. Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software Engineering and Methodology (TOSEM) 11:
309–346.

34. McCandless M, Hatcher E, Gospodnetic O (2010) Lucene in Action: Covers Apache Lucene 3.0.
Greenwich, CT: Manning Publications Co.

35. Oliva GA, Santana FW, de Oliveira KC, de Souza CR, Gerosa MA (2012) Characterizing key develop-
ers: a case study with apache ant. Collaboration and Technology: Springer. pp. 97–112.

36. MacLean AC, Knutson CD (2013) Apache Commit History in Neo4J Representation.

37. Gala-Pérez S, Robles G, González-Barahona JM, Herraiz I (2013) Intensive metrics for the study of the
evolution of open source projects: Case studies from Apache Software Foundation projects. MSR '13
Proceedings of the 10th Working Conference on Mining Software Repositories 159–168.

38. Crowston K, Wei K, Howison J, Wiggins A (2012) Free/Libre open-source software development: What
we know and what we do not know. ACM Computing Surveys (CSUR) 44: 1–35.

39. Bishop YM, Fienberg SE, Holland PW (1975) Discrete multivariate analysis: theory and practice. Cam-
bridge, MA: MIT Press.

40. Cheong K (2000) A new interpretation and derivation of the Gini coefficient. Seoul Journal of Econom-
ics 13: 391–406.

41. Shalit H (1985) PRACTITIONERS'CORNER*Calculating the Gini Index of inequality for Individual
Data. Oxford Bulletin of Economics and Statistics 47: 185–189.

42. Lerman RI, Yitzhaki S (1989) Improving the accuracy of estimates of Gini coefficients. Journal of econo-
metrics 42: 43–47.

43. DeMaio FG (2007) Income inequality measures. Journal of epidemiology and community health 61:
849–852. PMID: 17873219

44. Howison J, Crowston K (2004) The perils and pitfalls of mining SourceForge. Proceedings of the Inter-
national Workshop on Mining Software Repositories (MSR 2004). Available: http://floss.syr.edu/sites/
crowston.syr.edu/files/The%20perils%20and%20pitfalls%20of%20mining%20SourceForge.pdf: 7–11.

45. Arafat O, Riehle D (2009) The commit size distribution of open source software. HICSS'09 42nd Hawaii
International Conference on System Sciences 1–8.

46. Hebb DO (1946) On the nature of fear. Psychological Review 53: 259. PMID: 20285975

47. Hahsler M, Koch S (2005) Discussion of a large-scale open source data collection methodology.
HICSS'05 Proceedings of the 38th Annual Hawaii International Conference on System Sciences

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 18 / 19

http://firstmonday.org/ojs/index.php/fm/article/viewArticle/801/710
http://buleria.unileon.es/xmlui/handle/10612/1796
http://buleria.unileon.es/xmlui/handle/10612/1796
http://www.ncbi.nlm.nih.gov/pubmed/17873219
http://floss.syr.edu/sites/crowston.syr.edu/files/The%20perils%20and%20pitfalls%20of%20mining%20SourceForge.pdf
http://floss.syr.edu/sites/crowston.syr.edu/files/The%20perils%20and%20pitfalls%20of%20mining%20SourceForge.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20285975


48. Krishnamurthy S (2002) Cave or community?: An empirical examination of 100 mature open source
projects. First Monday 2.

49. Bird C, Nagappan N (2012) Who? where? what?: examining distributed development in two large open
source projects. Proceedings of the 9th IEEEWorking Conference on Mining Software Repositories
237–246.

50. Johnson SL, Faraj S, Kudaravalli S (2014) Emergence of Power Laws in Online Communities: The
Role of Social Mechanisms and Preferential Attachment. MIS Quarterly 38: 795–808.

51. Hargittai E, Walejko G (2008) The Participation Divide: Content creation and sharing in the digital age.
Information, Community and Society 11: 239–256.

52. Jemielniak D (2014) Common knowledge? An ethnography of Wikipedia. Stanford, CA: Stanford Uni-
versity Press.

53. Hill BM, Monroy-Hernández A (2013) The Remixing Dilemma The Trade-Off Between Generativity and
Originality. American Behavioral Scientist 57: 643–663.

54. Bitzer J, Schrettl W, Schröder PJ (2007) Intrinsic motivation in open source software development.
Journal of Comparative Economics 35: 160–169.

55. Fitzgerald B (2006) The transformation of open source software. MIS Quarterly 30: 587–598.

56. Riehle D (2012) The single-vendor commercial open course business model. Information Systems and
e-Business Management 10: 5–17.

57. Wasko MM, Faraj S (2005) Why should I share? Examining social capital and knowledge contribution
in electronic networks of practice. MIS Quarterly 29: 35–57.

58. Von Hippel E, Von Krogh G (2003) Open source software and the" private-collective" innovation model:
Issues for organization science. Organization Science: 209–223.

59. Weber S (2004) The Success of Open Source. Cambridge: Harvard University Press.

60. Gloor PA (2005) Swarm creativity: Competitive advantage through collaborative innovation networks.
Oxford: Oxford University Press.

61. Gloor PA, Cooper SM (2007) The new principles of a swarm business. MIT Sloan Management Review
48: 81–84.

62. Jemielniak D (2015) Naturally emerging regulation and the danger of delegitimizing conventional lead-
ership: Drawing on the example of Wikipedia. In: Bradbury H, editor. The SAGE Handbook of Action
Research. London, UK—New Delphi, India—Thousand Oaks, CA: Sage.

63. Crowston K, Howison J (2006) Hierarchy and centralization in free and open source software team
communications. Knowledge, Technology & Policy 18: 65–85.

64. Demil B, Lecocq X (2006) Neither market nor hierarchy nor network: The emergence of bazaar gover-
nance. Organization Studies 27: 1447–1466.

Inequalities in Open Source Software Development

PLOS ONE | DOI:10.1371/journal.pone.0152976 April 20, 2016 19 / 19


