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INEQUALITIES INVOLVING MULTIVARIATE

CONVEX FUNCTIONS II

EDWARD NEUMAN

(Communicated by R. Daniel Mauldin)

Abstract. In this paper we offer some inequalities involving multivariate con-

vex functions. Among other things a refinement of classical Jensen's inequality

as well as an extension of Fejér's inequality to the case of s-variate (s > 1)

functions are included. These results are obtained with the aid of the general-

ized simplex splines.

1.  INTRODUCTION

The history of convex functions is long and laden with detail. These play an

important role in mathematical analysis, applied mathematics, probability the-

ory, and even in geometry. Among many known results about convex functions

the following one is fundamental. Let / be an 5-variate continuous convex

function on an open subset Í/ of Is   (s > 1 ). Then

\m=0 J        m=0

0 n
where com > 0, for all m ; w0 +-h œn = 1 ; x , ... , x  € U . This classical

result is essentially due to Jensen (see, e.g., [11]). A list of applications of this

inequality is almost endless.

In this paper, which is a continuation of our earlier work [10], we give some

inequalities for multivariate convex functions. The main results are obtained

with the aid of the generalized simplex splines. In §2 we introduce notation and

definitions that will be used in the sequel. Some auxiliary results are contained

in §3. In §4, among other things, we give a refinement of Jensen's inequality

and in addition, we offer an extension of Fejér's inequality (see [6, 9]) to the

case of 5-variate functions.
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966 EDWARD NEUMAN

2. Notation and definitions

Let us introduce some notation and definitions which will be used throughout

the sequel. By x, y,... , we denote elements of Euclidean space R1 (s > 1 ),

i.e., x = (xx, ... , xs). Superscripts are used to number vectors. The inner

product of x, y € Rs is denoted by x ■ y = ]T^=) x¡y¡. For a given set IcRs

the symbols vol^X) and [X] mean the s-dimensional Lebesgue measure and

the convex hull of X , respectively. We use standard multi-index notation, i.e.,

for a€Zs+, \a\ = a, H-has, a\ - a{\ ■ ■ ■ aj , Xa = x"' ■ ■ ■ x°* . Thus

^(Ri) = Í£^a^QeR¡

(\a\<m

is the space of all polynomials of (total) degree < m . By

S" = j > = (/,,...,/„) G R":',>0,  forally,¿/7< 1

we denote the standard «-simplex.

Let cp be a nonnegative function on R" with suppç? = S" . We assume <p(t)

is continuous for any t € Int S" and also that

/   tp(t)dt= 1       (dt = dtx ■■•dt).
Js"

Thus q> is a density (or weight) function on Sn .

For X = {x°, ... , x"} cRs (« > s) with vols([X]) ¿ 0, the generalized

simplex spline M (-\X) is defined by requiring that

(2.1) / f(x)M(x\X)dx= [ f(Xt)<p(t)dt
Jr' v Js"

for all f€C(Rs) (see [4]). Here dx = dxx- ■ dxs, Xt := x°+tx(xx-x°) + -■■ +

t„(x" - x ). It follows from [4, p. 34], that M (-\X) is a multivariate density

function on Rs with suppMv(-\X) = [X]. When tp(t) = «! (t € S") we

will write M(-\X) instead of M (-\X). The latter splines, commonly referred

to as the simplex splines, have been introduced by de Boor in [1] and studied

extensively by several researchers (see [4] and the references therein). A more

general class of splines can be obtained choosing

(a0,...,an>0;  tQ = 1 - tx-t„).

In this case we will write MD(-\X) for the corresponding spline function. Dah-

men and Micchelli [5] called MD(-\X) the generalized Dirichlet density.  For

a0 = ■ ■ ■ - an = 1 , MD(-\X) becomes M(-\X).
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3. Lemmas

For our further purposes we need the following.

Lemma 3.1. Let X = {x°,... , xs} cR! (s > 1) be such that vols([X]) ¿ 0.

Further, let tp be a density function on Ss. Then

(3.1)    M(p(x\X) = [s\abs(vols([X]))fx<p(Ax-x-(x-x0),...,A;x-(x-x0))

for any x G Int[X|.  Here AJX   (1 < j < s) stands for the jth row of A~x,

where A = (xx - x°, ... , xs - x°) G RÍX    (xx -x°, ... , xs - x°—the columns

of A).

Proof. It is well known that

detA = s\vols([X]).

Since vol^X]) ^ 0, the matrix A is invertible. Taking into account that

supp M (-\X) = [X], we can rewrite equation (2.1) as

[   f(x)M<p(x\X)dx = isf(x° + At)(p(t)dt.
J [A ] J o

Substituting x = x + At into the right-hand side of the last equation, taking

into account that the Jacobian of this transformation equals detA~ , and next

making use of (3.2), we obtain the assertion.   D

For a given subset X = {x , ... , x"} of Rs and for an arbitrary density q>

on Sn we define

(3.3) %U,r,X) = ^r¡Ttmx]1}  <p(t)dt.

where r € R ; 1 < j < s. Here xf stands for the jth component of the vector

xm . In the particular case, when tp is the Dirichlet density (see (2.2)) and

r t¿ 0, the right-hand side of (3.3) becomes an 7?-hypergeometric function in

the variables x. , ... , x" (see [2]). The latter will be denoted by mD(j, r, X).

For more details concerning these functions consult, e.g., [3].

In the case when voL^-Y]) /Owe can utilize (2.1) to obtain

(3.4) mv(j,r, X) = j (X])rMf(x\X)dx,

where x   stands for the jth component of x .

For our purposes we let

(3.5) p9(ß)= ¡Y[t<¡'<p(tx,...,tn)dtx---dtn,
Js" j=0

where ß = (ß0, ... , ßn) G Z"++1 ; (*,,..., tH) € S" ; tQ = 1 - i,-tn. We

also let Zj = (x°j , ... , x")   ( 1 < j < s) and

r\      r\
(the multinomial coefficient),

where r G Z+ , \ß\ = r .
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968 EDWARD NEUMAN

The following result is essentially due to Carlson [2] who proved (3.7) and

(3.8).

Lemma 3.2. Let r G Z+ and let j = 1,2, ... , s. Then

(3-6) m9(j,r,X)=Y. (ß)^ß)zj '

where the summation is extended over all multi-indices ß € Z"+  . If <p = <pD,

\ß\=r

•e the summation is extended ovt

then

Í3 7) m  (i   r   X) -   F(c)r!    V zß T\ Y{a>» +ß™]

with c = a0-¡-h an   (a- > 0, for all j). If in addition xm > 0, for all m,

then

(3.8) mD(j,-c,X)=fl(xJTa™.
m=0

Since the proof of (3.6) is exactly the same as the proof of [2, (3.1)], we omit

further details.

We also need the following identity:

(3.9) (xjM9(x\X)dx = ¿ wmxj       (l<j<s)
jRS m=0

which follows immediately from (3.4), (3.6), and (3.5) by letting r = 1 . Here

(3.10) com= [ tm<p(t)dt       w = 0,l,...,«.
Js"

It is clear that a>m > 0, for all m , and also a>0 +-\- a>n = 1 . In particular,

when tp = tpD,

(3-11) ™m = «Jc

for all m (see [12]).

4. Main results

In this section we offer some inequalities involving multivariate convex func-

tions. Theorems 4.1 and 4.2 give generalizations of [10, Theorems 3.1 and

3.2].
We are ready now to state and prove the following.

Theorem 4.1. Let f be a continuous convex function on R1. Further, let tp be

a density function on S" and let X — {x , ... , x"} c R5   (n > s > 1)  with

vols([X]) ¿ 0. Then for any r,, ... , rs € R\{0}

(4.1)

f[mf{\, rx,X),..., mf(s,rs,X)\ < f /[(*,/', ..., (xs)r<W9(x\X)dx

with equality if and only if f € Px (Rs).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MULTIVARIATE CONVEX FUNCTIONS II 969

Proof. In order to establish (4.1) we utilize the following version of Jensen's

inequality for multivariate convex functions:

(4.2) / j^gxdv,...,^gsdv\<jj(gx,...,gs)dv,

where gx, ... , gs G C(RS) and du is a probability measure on Rs (see [8]).

The equality holds in (4.2) if and only if / G Px (R5). Now the assertion follows

immediately from (4.2) and (3.4) by letting g Ax) = (Xj)r> (1 < j < s) and

dv(x) = M9(x\X)dx .   D

Theorem 4.2. Under the assumptions of Theorem 4.1,

(4.3) /(£*Vn < I'¡f(x)Mip(x\X)dx<YjcoJ(xm),

where the to's are given by (3.10). The inequalities in (4.3) become equalities

if and only if f € PX(RS).

Proof. For the proof of the left-hand side inequality of (4.3) we utilize Theorem

4.1 with rx= ■■■ = rs = 1 . Hence, by virtue of (3.4) and (3.9),

/ (¿ ™mA  « / (¿ "m< - • • • . ¿ ««*f 1   <   /   f(xW,(x\X) dX.
\m=0 J \m=0 m=0 /        JR

In order to show that the right-hand side inequality of (4.3) is valid we employ

(2.1) and (3.10). This yields

f f(x)M(f(x\X) dx= f f ( ¿ tmxm ) f{t) dt
JrS Js"       \m=0 /

<£/(^)/ tm<p(t)dt = J2comf(xm).
m=0 JS m=0

The last assertion of the theorem is obvious. The proof is completed,   o

In 1906 Fejér [6] proved that for any functions / and « , both continuous

in (a, b), the inequality

f(^r)^l f(x)h(x)dx/ j h(x)dx<±[f(a) + f(b)]

holds provided, however, that / is convex in (a, b), that « is positive and

symmetric with respect to the straight line which contains the point (\(a + b),

0), and is perpendicular to the x-axis (see also [9]).

We will show below that Fejér's result can be extended to the case of multi-

variate functions.

Corollary 4.3 (Fejér's Inequality for Multivariate Functions). Let X = {x , ... ,

Xs} be a subset of R5   (s > 1) with vol (a) ^ 0, where a = [X]. Suppose that
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970 EDWARD NEUMAN

/ and h are s-variate continuous functions on Int a. If f is convex on Int a

and h is positive on Int a, then

(4.4) /(£ V] < i f(x)h(x)dxl ¡h(x)dx<YjwJ(xm),
Vm=0 )        Jo I    Jo m=0

where

(4.5) com= j[A~mx ■ (x - x°)]h(x)dx I Í h(x)dx       (1 < m < s)

and a>0 = 1 - wx - ■ ■ ■ - a>s. Here A~m has the same meaning as in Lemma

3.1.

Proof. We prove (4.4) and (4.5) assuming without loss of generality that the

function « is normalized to have the unit integral. It follows from Lemma 3.1

that for any density function on 5i there is a unique generalized simplex spline

M (-\X) provided that voller) ^ 0. In order to establish the assertion (4.4)

it is sufficient to apply Theorem 4.2 with n — s and M (-\X) = «(•). For the

proof of (4.5), with « as assumed above, we employ (3.10), i.e.,

(4.6) com= [ tm<p(tx,...,ts)dtx--dts       (0<m<s).
Jss

For a given t - (tx, ... , ts) € Ss we introduce a vector x = (xx, ... , xs),

where t = A~ (x - x ) with A as defined in Lemma 3.1. It is clear that

x € a. Taking into account that the Jacobian of this transformation equals

detA~   and next making use of (4.6) and (3.2), we obtain

wm -  [[A~J ■ (x - x°)][s\abs(vois(o))]-x
Jo

x <p(Ax   • (x — x ),..., A~  -(x — x))dx

=   f[A-mX-(x-x°)]M9(x\X)dx= i[A-x-(x-x°))h(x)dx
Jo Jo

which completes the proof.   G

We will show now that Fejér's inequality can be easily derived from Corollary

4.3. To this aim it is sufficient to insert s = 1, x = a, x — b (a ^ b) into

(4.4)-(4.5). We have A~[-(x- x°) = (x - a)/(b - a). Hence (4.5) yields'i

cox ¡ab^ah(x)dx/f\(x)dx.

Substituting x :— a + b - x and taking into account that h is assumed to be

an even function with respect to the midpoint (a + b)/2, we obtain

œ, /   -,-h(x)dx / /   h(x)dx = con.
Ja   b-a j  Ja

Since con + to. = 1 , a>n — a>. = I. Hence the desired result follows.'0   '  ""I - ' '   ""0 ~ "1  ~ 2
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Corollary 4.3 can be also utilized when deriving Hermite's inequality for

multivariate convex functions:

(4-7) / f-^T Y xm) <   u ,   * / Ax) dx<-^y f(xm)
W+1±í1      / ~ abs(vol (a))J/y s+l±*JKm=0        J v       sv   "    ° m=0

(see [10]). To this aim we insert h(x) = 1 into (4.4) and (4.5). It follows from

(4.5) that

1
03 „ = ^s<,T)íy:-{x-x°)]dx's'-ÍA«d''-'"-

L
for m = 1,2, ... , s. Since

tmdtx--dts=l/(s+l)\

(see, e.g., [12]), a>x = ■■■ = a>s = l/(s+ 1).  Hence o)Q = 1/(5+ 1), which

proves (4.7).

Before the next theorem we introduce more notation. To this end we will as-

sume that <p = <pD—the Dirichlet density on S" with parameters a0, ... , an>

1 (see Equation (2.2)). By tpD we denote Dirichlet's density on Sn~ with

parameters a0, ... , a,_, , a +, , ... , an (0 < j < « ; n > s > 1). The symbol

(pj. stands for the Dirichlet density on S" with parameters q0, ... , a _, , o —

1 , a +, , ... , an. The corresponding generalized simplex splines are denoted by

MD (-\X ) and A% (-|*), respectively. Here X, = {x°, ... , jcj_1 , xJ+1, ... ,

i"} c Rs   (0 < j < n; n > s > 1). The following recurrence formula plays a

crucial role in our further investigations:

y/^.-D^D.i^j) = DxJ_xMD(.\X) + (c-s- 1)MD(-\X)

(4'8) +(c-l)(S(a_X)-l)M15i(-\X)

(see [7]). This formula holds true provided vols([Xj]) ^ 0 for some 0 < j < n .

In (4.8),

/=i '

denotes the directional derivative of g G C (Rs)  in the direction  u G Rs ;

yj = r(c)/r(aßr(c-aj):

1    v = 0,
*■•{Ô..

0   otherwise.

Let kQ, ... , k  € R with ÀQ-\-\-Xn = 1 . Multiplying both sides of (4.8) by

A, and next summing over all j , we obtain, for any IcR1 with vol ([A"]) / 0 ,
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972 EDWARD NEUMAN

Ë VA-y-U^a/W = Dy-xMo('W + (c - 5 - WdÍ'W
(4.9)

where

(4.10)

7=0

+ {c-l)'¿Xj{olaj_l)-l)MBj(-\X),
7=0

y = £V;'.
7=0

The recursion (4.9) is valid for any x G [X] provided, however, that voli([A'.])

/ 0, for all ; .

We are now in a position to state and prove the following:

Theorem 4.4. Let X = {x°,..., x"} CRS   (n > s > 1) with vols([Xj)) ¿0,for

all j. Further, let X0, ... , Xn be arbitrary real numbers with X0-\-1- Xn = 1.

If f € C (Rs) is a convex function, then for aQ, ... , an> 1

(c

(4M]

MD(X\X) + Y¥S(arl) - l)Mff/*l*)
7=0

-1) / Ax)
Jrs

* ¿VA«-U fsAx)M  (x\Xj)dx
j=o '     JrS

dx

if and only if

(4.12) £w^ = £v''
j=0 j=0

where the to 's are given by (3.11). If this condition is satisfied, then equality

holds in (4.11 ) if and only if f € Px (Rs).

Proof. We employ the recursion (4.9).   Multiplying both sides by f(x)  and

next taking integrals over Rs, we obtain

(4.13)

where

(4.14)

and

(4.15)

¿VA. -■) / f{x)M» {x1xj] dx = I + J + K>
jAq JrS '

1=  [J(x)Dy_xMD(x\X)dx,

J = (c-s-l) [ f(x)MD(x\X)dx,

K = (c- l)Y¥S(a-i) - !) f, Ax)M3(x\X)dx.
,_n •'R
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In order to establish (4.11) we will find a lower bound on 7.   Applying the

product rule we obtain

7 = £ ÍJ(x)(yx-xx)-^-MD(x\X)dx
i=i JrS i

= ¿f  ldivF(x)-MD(x\X)
i=i JrS l

, sdf(x)      ,.   .
(^-x,)^-/(x. \dx,

where F(x) = {f(x)(yx-xx)MD(x\X), ... , f(x)(ys-xs)MD(x\X)} is the vec-

tor field. Since MD(-\X) has a local support there exists a closed bounded

subset Q of R* such that suppMD(-\X) ç fi and jF(x) = 0 for x G dïl (the

boundary of Q). Application of the divergence theorem yields

/,
divF(x)dx = 0.

Hence

7 = 5 / f(x)MD(x\X)dx + J2Í MD(x\X)(xx-yx
JRS /=, JRS

.df(x)
dx,

dx.

To obtain a lower bound on 7, we utilize the well-known inequality for the

multivariate convex functions

i=i '        t=i i

where x, y G Rs. If x ^ y, then the inequality is strict if and only if / ^

PX(RS). Thus

7 > 5 / f(x)MD(x\X) dx + Y, d4^ [ (X, - y,)MD(x\X) dx
Jrs /=,    axi   Jrs

for any y G Rs. Assume y is given by (4.10). Then, by virtue of (3.9),

£wW-£V/
7=0 7=0

7 > 5 / f(x)MD(x\X) dx + Y, ^&
(4.17) JrS t=i    ÓXi

= s ( f(x)MD(x\X)dx,
Jrs

where the last equality holds if and only if the condition (4.12) is satisfied.

Combining this with (4.14) and (4.15) one obtains

I + J + K>(c-1) f f(x)
Jrs

MDWi) + ^^(vl) - l)M^(x\X)
7=0

dx.

This in conjunction with (4.13) yields the inequality (4.11 ). The last assertion of

the theorem is an immediate consequence of (4.16) and (4.17). This completes

the proof.    D
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