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Introduction. Weierstrass was the first to prove that an arbitrary 
continuous function which is defined over a closed finite interval may 
be uniformly approximated by a sequence of polynomials. The more 
difficult problem of best approximation by polynomials had earlier 
been initiated by Tchebycheff. A number of years later, in the early 
part of the present century, de la Vallée Poussin raised the following 
question of best approximation : Is it possible to approximate every 
polygonal line by polynomials of degree n with an error of o(l/n) as n 
becomes large? (He had proved that the approximation can be carried 
out with an error of 0(1 /n). This question was answered in the nega-
tive by Serge Bernstein in a prize-winning essay on problems of best 
approximation. In this paper Bernstein proved and made consider-
able use of an inequality concerning the derivatives of polynomials. 
This inequality and a related (and earlier) one by Andrew Markoff 
have been the starting point of a considerable literature. I t has been 
found for example that the underlying ideas of these two inequalities 
are applicable to a much wider class of functions than polynomials. 
These inequalities have supplied one approach to questions concern-
ing the derivatives of quasi-analytic functions. A generalization of 
Bernstein's theorem has been applied to almost periodic functions. 

In discussing a mathematical theory we may emphasize either its 
applications or the salient points of the theory itself. The applications 
of Bernstein's inequality to problems of approximation (where it has 
probably had its greatest success) have been treated in the literature ; 
see for example Dunham Jackson's book in the Colloquium Publica-
tions of the American Mathematical Society. On the other hand I am 
unaware of any recent résumé of the literature which has been sug-
gested by the theorems of Markoff and Bernstein, so I shall discuss 
some of the investigations which have centered about these theorems. 

Rational polynomials. I t was the chemist Mendeleieff (author of the 
periodic table of chemistry) who asked the following question: If the 
bound of a rational polynomial over a given interval is known, how 
large may its derivative be in this interval? The maximum possible 
value of the derivative will of course depend on the degree of the poly-

1 An address delivered before the Los Angeles meeting of the Society on November 
23, 1940, by invitation of the Program Committee. 
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nomial. Actually Mendeleieff was interested in only the special case 
in which the polynomial is of degree two, and in this case the question 
is easily answered. The question for a polynomial of arbitrary degree 
is more difficult, but was answered in 1889 by A. Markoff [23] who 
proved the following theorem: 

THEOREM I. If f{x) =z^oCvx
p is a rational polynomial of degree n and 

\f(x) | ^ 1 in the interval — 1 Sx ^ 1 then in the same interval 

(1) \f{x)\^n\ 

The inequality of S. Bernstein [2] which appeared in his paper pre-
viously mentioned is as follows: 

THEOREM I I . Under the conditions of Theorem I 

(2) | f(x) | £ n(l - x2)-1 '2, - 1 < x < 1. 

Inequalities (1) and (2) are exact in the following sense. The con-
stant n2 in (1) cannot be replaced by any lower constant, in fact there 
is a well known polynomial which satisfies the conditions of Theorem 
I and whose derivative at the point x — 1 is equal to n2. This polyno-
mial is the nth Tchebycheff polynomial 

n 

(3) Tn(x) = cos (n arc cos x) = 2n~1IJ {x — cos ((*> — h)^/n)}-
l 

It satisfies the differential equation 

(1 - X2)T:'(X) - *2V (*) + n2Tn{x) = 0. 

However, it is known that a t points in the interior of the interval 
( — 1 , 1) the derivative of f{x) must be strictly less than n2. In Bern-
stein's theorem, on the other hand, the bound for f'{x) is given as a 
function of x. This dominant n(l —x2)~112 is the least possible dominant 
only at special points in the interval ( — 1, 1). I t is, however, asymp-
totically equal to the precise bound at every fixed point in the interior 
of the interval as n becomes infinite. 

I t is easily seen that Bernstein's inequality gives a much lower esti-
mate of ƒ'(#) than does Markoff's except for a small neighborhood of 
the points — 1 and + 1 . This remark has been used to prove Markoff's 
theorem with the aid of Bernstein's. If x lies in the interval 
\x\ ^cos (%Tr/n) then (2) shows that 

\f(x)\£ . " ,*n*. 
sin {^ir/n) 
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Then to prove MarkofFs inequality it is only necessary, in view of evi-
dent symmetry, to show that (1) is satisfied in the range cos (iw/n) 
^ # ^ 1 , and this has been accomplished by several methods.2 

The above remarks show that if x is a fixed point and n is increas-
ing, the proper bound for ƒ'(#) is of order n when |x \ < 1 and of order 
n2 when \x\ = 1 . The reason that the order is different in these two 
cases can be seen from the following result due to Szegö [36]. Let T 
represent an open or a closed Jordan curve in the complex z-plane, 
and at any point z0 on V let cnr be the exterior angle. In the case in 
which T is an open curve there will of course be two exterior angles 
at each point z0 except the ends. In this case let air be the larger of 
the two exterior angles at z0. With suitable smoothness conditions on 
r we have the following theorem: 

THEOREM I I I . If f{z) =^lcvz
v is a rational polynomial of degree n 

and \f(z) | ^ 1 on T then 

| /'(so) | < en", so G T. 

Here c is a constant which depends on ZQ and T, but not on n. 

I t is possible to show that the bound cna in this inequality is of the 
precise order as n becomes infinite. In the case in which T is the inter-
val ( — 1 , 1) of the real axis we see that a = 2 at the endpoints of the 
interval, so this theorem shows that the derivative is of order n2. On 
the other hand at points in the interior of the interval a = l, so at 
these points the derivative is of order n. 

Theorem III can be proved by the use of conformai mapping. Let 

co = <j>(z) = az + a0 + ai/z + • • • 

be a function which maps the exterior of T onto the exterior of the 
unit circle in the co plane in such a way that the points at infinity 
correspond. Then the function ƒ(z)<j>~n(z) is regular in the exterior 
of T, even at infinity. Since it is bounded by 1 on T it has the same 
bound outside T, 

(4) l/Wl £|*0O | ». 

Now the behavior of the mapping function <j>(z) near the boundary 
of T has been effectively studied so it is possible to obtain good esti-
mates of f(z) from (4). To obtain an estimate for the derivative of 
ƒ (z) we write 

i r /W 
f(Zo) = — ^ — dz 

2wiJc (z — ZQ)2 

2 See Kellogg [20], M. Riesz [29], Schur [32]. 
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where C is a circle with center at z0 and properly chosen radius. The 
theorem is then proved by taking absolute magnitudes under the in-
tegral sign and making use of (4). 

In the case in which T is the segment ( — 1, 1) of the real axis the 
mapping function </>(z) is especially simple. In this special case Mon tel 
[25] had earlier used a similar method to obtain inequalities (1) and 
(2), although not in their precise form. He showed, for example, that 
under the conditions of Theorem I the derivative of ƒ(x) is less than 
4rc2. 

There are analogous inequalities for the Riemann-Liouville gen-
eralized derivatives of positive order a : 

1 d* rx 

JK T(p-a) dx*J-i 

where a>0 and p is the integer part of a + 1. Mon tel showed that if 
f(x) satisfies the conditions of Theorem I then in every interval 
(—#o, ffo), 0 < # o < l , 

| D«f(x) | S Kn«, K = K(a, x0), a > 0. 

This result was later generalized by Sewell [34] who obtained inequal-
ties for the fractional derivatives of those polynomials which satisfy 
the conditions of Theorem I I I . 

Trigonometric polynomials. An extension of Theorem II to trigo-
nometric polynomials was found by Bernstein. By a trigonometric 
polynomial of degree n we mean an expression of the form 

n 

(5) F(6) = X (^ c o s vB + h s i n vO)-
o 

If in Theorem II we make the substitution # = cos 0, then, as is well 
known, /(cos 6) =Y%cv cos" 6 may be written as a trigonometric poly-
nomial of degree n in which only the cosine terms appear. Since 
dd = - (1 -x2)-ll2dxy inequality (2) states that 

d 
— /(cos 0) 
ddJ ^ n. 

More generally we may state the following proposition : 

THEOREM IV. If F(6) is a trigonometric polynomial of degree n and 
\F(fi)\ ^ 1 for real 0, then 

(6) | F\B) | S n, 6 real. 
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This result was proved by Bernstein [2] at the same time as Theo-
rem II, except that in (6) he had In in place of n. Inequality (6) in 
the present form first appeared in print in a paper of Fekete [15] who 
attributes the proof to Fejér. Bernstein [5, p. 39] attributes the proof 
to Landau. This theorem has a wide application to problems of ap-
proximation by trigonometric polynomials. The example F(0) =sin nO 
shows that no lower constant than n will suffice in (6). 

As already mentioned, under the substitution # = cos 0 a rational 
polynomial is transformed into a cosine polynomial in 6 of the same 
degree; and the converse is also true. On the other hand, a sine poly-
nomial F(0) =Y^bv sin vd is transformed into a function of the form 
(1 — x2)112 Pn_i{x) wherePn^i(x) is a rational polynomial of degree n — 1 
in x. In this sense the trigonometric polynomials represent a wider 
class of functions than the rational polynomials. This distinction is of 
some importance because the class of trigonometric polynomials pos-
sesses a flexibility which makes several theorems easier to prove in 
terms of trigonometric polynomials than in terms of rational poly-
nomials. 

Bernstein's proof of Theorem IV was based on a variational 
method. Simpler proofs of this theorem have been obtained by 
M. Riesz, F. Riesz, and de la Vallée Poussin. Each of these meth-
ods has led to interesting extensions of Theorem IV, so we shall 
discuss them briefly. M. Riesz' proof is based on an important in-
terpolation formula which expresses the derivative of a trigonometric 
polynomial in terms of the values of the polynomial at In equidistant 
points. 

M. RIESZ ' INTERPOLATION FORMULA [29]. If F(6) is a trigonometric 
polynomial of degree n then 

(7) F'{e)=
i
YJ(-\yPvF{e + ev). 

0 

Here pv and dv are constants which depend only on n and satisfy p„>0, 
Y,pv = n, O<0o<0i< • • • <02n-l<27T. 

Theorem IV is an obvious consequence of (7). This interpolation 
formula was used by Zygmund to obtain a generalization of Theorem 
IV. Zygmund [42] proved the following: 

THEOREM V. Let p^\. If F(6) is a trigonometric polynomial of de-
gree n then 

(8) {(27T)-1 f * I F'(S) \He\l V g ni (271-)-1 f * | F {ff) \*d0 
V LIP 
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This result is proved by use of M. Riesz' interpolation formula and 
Jensen's inequality for convex functions. Theorem IV is obtained 
from (8) by letting p become infinite. 

The proof of Theorem IV due to F. Riesz [28] begins with the 
representation 

(9) F'(0) = — f F(0 + 0) | f > sin VA d<t>. 

This may be obtained by use of the familiar integral representation 
of the coefficients av and bv. The underlying idea in this method is the 
completion of the kernel, an idea which had earlier been used by 
Landau and by Fejér in other problems. The kernel in (9) is not posi-
tive, but since T is a trigonometric polynomial of degree n we may 
add to the kernel terms in cos v<j> and sin v<p where v is greater than n, 
and the value of the integral will not be changed. Adding a suitable 
trigonometric sum in (9) we obtain 

(10) F'(6) = — f F (6 + 4>) <n + 2 X (n - v) cos *>0 > sin n0<fy. 

The kernel in this case is more regular than before, although it is not 
positive. If we take absolute magnitudes under the integral sign and 
replace \F\ by 1 and |sin n<f>\ by 1, what is left of the integrand is 
positive (it is essentially the Fejér kernel). Then we may integrate 
termwise and we obtain 

| F'(6) | S In. 

This is less precise than Theorem IV, but F. Riesz showed how the 
kernel could be completed still further, and Theorem IV could be 
proved by this method. 

de la Vallée Poussin's proof [40] of Theorem IV is based on the 
well known theorem that a trigonometric polynomial of degree n can 
have at most 2n real zeros modulo 2TT. If X and a are real, — 1 <X < 1, 
the function 

(11) g(0) = cos ne - \F(0 + a) 

is positive wherever cos nO = + 1 and is negative wherever cos nd = — 1. 
It therefore vanishes at 2n different points modulo 2T. I t can be 
shown that if the derivative of F(6) is greater than n} then X and a 
can be so chosen that g(0) has at least 2n + l zeros modulo 2ir. This 
is impossible since g{6) is a trigonometric polynomial of degree 2n. 

The method of de la Vallée Poussin applies only to polynomials 
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with real coefficients, but this is a restriction which is easily removed. 
For, if F(6) is any polynomial which satisfies the conditions of Theo-
rem IV and 7 is a complex constant of unit modulus then yF(6) will 
satisfy the conditions of Theorem IV, and so will dl{yF(d)}. But y 
can be so chosen that the derivative of yF(0) at any preassigned point 
is real, and then the derivative of 9Î {yF(0)} will have the same modu-
lus as F'{6) a t this point. The inequalities which have been mentioned 
until now hold whether the polynomials have real or complex coeffi-
cients, and this is true in all subsequent cases except where the con-
trary is stated. 

de la Vallée Poussin's method can be used to show that under the 
conditions of Theorem IV we have the sharper inequality 

(12) n\F{B)Y + (F'(0))2 S n\ 

Here F(0) is assumed real. In the general case in which the polyno-
mial is complex we cannot say that the sum of the absolute magni-
tudes of the two terms on the left is less than n2. This is shown by 
the example F(6) =eind. Inequality (12) was first explicitly stated by 
van der Corput and Schaake [9], although it is implicit in an earlier 
inequality due to Szegö. 

Polynomials in several variables. Now any trigonometric polyno-
mial is the boundary function on the unit circle of a harmonic poly-
nomial of the same degree. If F(6) is given by (5) then 

n 

(13) F{r, 0) = J2 rv(av cos vB + bv sin v6) 
o 

is a harmonic polynomial of degree n and F{\1 0) = J7(0). This har-
monic function may also be expressed as a polynomial of degree n in 
the rectangular coordinates x and y under the substitution x = r cos 0, 
y — r sin 0; and it satisfies Laplace's equation Fxx+Fyy = 0. 

Interpreting Theorem IV from the point of view of harmonic func-
tions, it states that if a harmonic polynomial of degree n is bounded 
by 1 on the unit circle r = 1 then its tangential derivative on the unit 
circle is bounded by n. Under the same conditions, how large can the 
derivative be in other directions? Now the gradient of a function is a 
vector equal in magnitude to the largest directional derivative of the 
function. This question is therefore answered in the following theorem 
of Szegö [37]. 

THEOREM VI. If F(r, 0) is a harmonic polynomial of degree n and 
| F (1 ,0 ) | SI then for r SI 

(14) | gradF(r, 0) | S n. 
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To prove this theorem it is sufficient to show that (14) is satisfied 
on the unit circle, that is, when r = 1. Also it is sufficient to show that 
for all real a the expression 

OF dF 
(15) cos a \~ sin a 

dr dd 

is bounded by n. From this point the proof parallels the method of 
F. Riesz. We obtain by a familiar method of Fourier series an integral 
representation of (15) which is slightly more complicated than (9). 
The idea then is to complete the kernel. 

At about the same time Kellogg investigated problems concerning 
the derivatives of general, not necessarily harmonic, polynomials in 
two and more variables. Suppose that P(x, y) is a polynomial of de-
gree n in rectangular variables, and that it is bounded by 1 in the 
unit circle x2+y2^ 1. Here of course we cannot apply the maximum 
principle of harmonic functions so we assume that the polynomial is 
bounded in the closed interior of the unit circle, not merely on the 
boundary. The inequalities in this case will of course not be the same 
as those that are valid for harmonic polynomials. Along any diameter 
of the unit circle P(x, y) =P(r cos 6, r sin 8) will be a polynomial of de-
gree n in r=(x2+y2)1/2, where we allow r to take negative values. 
Theorems I and II then show that its derivative with respect to r (the 
derivative of P in the radial direction) will be dominated by the 
smaller of the two numbers n(l—r2)~1/2 and n2. Here we may ask: 
How large can the derivative be in other directions? Kellogg answered 
this by showing that the gradient of P(x, y) is bounded by the smaller 
of the two numbers n{\ —x2—y2)~112 and n2. This includes both Theo-
rem I and Theorem II, for if fix) satisfies the conditions of Theorem I 
then it may be considered as a polynomial in x and y, with the coeffi-
cients of terms in y equal to zero. As such it will be bounded by 1 in 
the unit circle, and Kellogg's result then shows that the derivative 
oif(x) must satisfy inequalities (1) and (2). 

There are analogous inequalities for polynomials in more than two 
variables. Kellogg [20] proved the following: 

THEOREM VII . If P(xi, x2l • • • , xm) is a polynomial of degree n 
which is bounded by 1 in the unit sphere #?+X2+ * • • +#w = 1 then in 
the same sphere the gradient of P is dominated by the smaller of the two 
numbers n{\—o^ — x\— • • • — x2

m)~1/2 and n2. 

Using a rotation of axes, this theorem in the case of more than two 
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variables can be deduced from the special case in which there are 
two variables. 

Theorem VI also suggests problems concerning the gradient of 
polynomials in more than two variables. For harmonic polynomials 
of three variables which are bounded by 1 on the unit sphere the pre-
cise bounds of the gradient are known, except, curiously, when the 
polynomial is of degree two or three [38]. Unlike Theorem VII, the 
proper bound for the gradient of harmonic polynomials in three di-
mensions does not seem to be deducible from the corresponding in-
equality in the two-dimensional case. The proper bound for the 
gradient in the three-dimensional case is considerably more compli-
cated than (14). 

Entire functions. An extension of Theorem IV to a much wider 
class of functions than polynomials was noted by Bernstein. Clearly 
a trigonometric polynomial F(z) =^2(av cos vz+bu sin vz) is periodic 
with period 27r, and is also an entire function of the complex variable 
z. I t also belongs to the class of entire functions which are of expo-
nential type, that is, those which satisfy, for some positive constant p, 

(16) F(z) = 0(e'l*l) 

uniformly in every direction as \z\ —><*>. In the case in which F(z) is 
a trigonometric polynomial, (16) is true with p equal to the degree 
of the polynomial. Bernstein [4] found that the condition in Theorem 
IV that F(z) is a trigonometric polynomial can be replaced by the 
milder condition that it is an entire function of exponential type. He 
proved the following : 

THEOREM VIII. If F(z)f z = x+iy, is an entire function of exponen
tial type which satisfies 

\F{z)\ =0(* ' i ' i ) , \F(X) | ^ 1, 

then on the real axis 

(17) | F'(x) | =g p. 

In this theorem p need not be an integer, and the functions which 
satisfy these conditions are not in general periodic. This theorem is 
applicable for example to the general Fourier-Stieltjes transform 

(18) F(z) = f' e
izt

da(t) 
J -P 

where a(t) is of bounded variation. 
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If F(z) satisfies the conditions of Theorem VIII it can be shown by 
repeated use of the Phragmén-Lindelöf principle that 

(19) \F(x+ iy)\ ^ e'M. 

If x is a point on the real axis let C be a circle with radius 1/p and 
center at x, and write 

JL f
 F(z) 

2wiJc (z- x)2 
F\x) = — ; -^— dz. 

Then taking absolute magnitudes under the integral sign and making 
use of (19) we obtain 

\F'{x)\ ^ep. 

This is less precise than inequality (17). Inequality (17) can be proved 
using a modification of any of the methods outlined for proving Theo-
rem IV. 

Boas [7] obtained sharper results than in Theorem VIII, but under 
the slightly more stringent condition that F(z) is representable in the 
form (18), and is bounded by 1 on the real axis. 

Higher derivatives. The inequalities which have been mentioned 
until now have concerned the first derivative of the function. In some 
cases the proper bounds for the higher derivatives can be inferred by 
an inductive process from the inequalities for the first derivative. This 
is the case for example in Theorem IV. If F(d) satisfies the conditions 
of that theorem then the function F'{d)/n is a trigonometric poly-
nomial of degree n, and is bounded by 1. Hence we infer from (6) that 
|-F"(0)| ^n2. In the same way we obtain the best bounds for all 
higher derivatives of F(6). This inductive process does not give the 
best bounds in all cases, however. If f(x) is a rational polynomial of 
degree n and is bounded by 1 in ( — 1, 1) then repeated use of Theo-
rem I will show that |jf'(#)| ^n2(n — l )2 . I t is known that the true 
bound for f'(x) is less than this. I t was Wladimir Markoff (brother of 
A. Markoff) who found the proper bounds for the higher derivatives 
of f(x) under these conditions. W. Markoff [24] proved the theorem 
which follows. 

THEOREM IX. Under the conditions of Theorem I 

n\n2 - \2){n2 - 22) • • • (n2 - (p - l)2) 
| ƒ<*»(*) | S 

(20) ' ' ~ 1-3-5 • • - (2p - 1) 

~ 1 Ö x ^ 1; p = 1, 2, • • • , n. 
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The right-hand side of this inequality is exactly equal to 7 ^ ( 1 ) , 
where Tn(x) is the nth Tchebycheff polynomial (3). Markoff's proof 
of this result is based on a variational method. For fixed p suppose 
that ƒ (x) is an extremal polynomial, that is, suppose its pth derivative 
assumes the maximum possible value under the conditions of Theo-
rem IX. (It is easily shown that this polynomial exists.) Markoff used 
a variational method to show that \f(x) | must be equal to 1 at either 
n or n + 1 different points in the interval ( — 1, 1). In the latter case 
±f(x) is the nth. Tchebycheff polynomial, whose derivatives are easily 
shown to satisfy (20). In the former case it is possible to show that 
f{x) satisfies a differential equation of the form 

(1 — x2)(x — b)(x — c) 
(21) l - (f{x)Y = ^ ^ £—-L (f(x))\ 

n\x — ay 
Here a, b, c are real constants which depend upon one parameter. 
Markoff was then able to show that the derivatives of this class of 
polynomials satisfy (20), but the proof is quite difficult. 

The differential equation (21) appeared in a paper of Tchebycheff 
[39] in 1854, but the polynomial solutions are often named for 
Zolotareff, who investigated their properties extensively at a later 
date. Zolotareff [41 ] showed that this differential equation admits a 
polynomial solution if and only if the constants a, b, c satisfy certain 
equations, which involve elliptic integrals. These elliptic integrals 
were not used, however, by W. Markoff in the proof of Theorem IX. 

W. Markoff also investigated a more general problem: If 
ko, ki, • • • , kn are given constants and f(x) =^2cPxv satisfies the con
ditions of Theorem I, what is the precise bound for the linear form 
^2cvkP? The best bound will of course depend upon the constants kv 

as well as upon the degree of the polynomial. By suitably choosing 
the constants kv the linear form can be made equal to any derivative 
of f(x) at any preassigned point. However, this general problem was 
not carried so far as the special problem concerning derivatives of f(x). 

Duffin and Schaeffer found a shorter proof of Theorem IX. In ad-
dition they showed that for inequality (20) to be satisfied it is not 
necessary to assume that the polynomial is bounded over the entire 
interval ( — 1, 1). They proved [13] the following fact: 

THEOREM X. If f(x) =^2QCVXV is a rational polynomial of degree n 
and \f(x) I ^ 1 at the n + 1 points where (Tn(x))2 = l, then 

1 „ „ M ^ **(»* - 12) • • • («2 - (P ~ 1)*) 
U W | _ 1-3-5 • • • (2p- 1) 

- 1 S x g l;p = 1, 2, • • • , n. 
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In the case of the first derivative (£ = 1) this is a generalization of 
Theorem I, but there is no analogous generalization of Theorem II, 
at least in the obvious form. It is possible to show by use of an inter-
polation formula that if f(x) satisfies the conditions of Theorem X 
then the inequality | / ' ( # ) | tkn{\— x2)~112 will be satisfied at special 
points, but this inequality will not be valid throughout the entire in-
terval ( - 1 , 1). 

Quasi-analytic functions. The theorems of Markoff and Bernstein 
lead in a natural way to problems concerning the derivatives of a 
class of functions which are in general not analytic. One of the sim-
plest results of this nature is the following lemma which is useful in 
the proof of certain Tauberian theorems: If f(x) is two times differ-
entiablefor x>0, and if as #—» <*> 

f(x) = 0(1), f"(x) = 0(1), 

then 

f(x) = o(l). 

More general problems of this nature have been investigated by 
Hardy and Littlewood [16], Landau, and others. One problem which 
presents itself is : 

Iff(x) is n times differentiable in a given interval I (finite or infinite), 
and if throughout 7, 

| / ( * ) | è 1, | / ( w ) ( * ) | ^ 1, 

what is the proper dominant off^k)(x) over l,0<k<n? 

When i" is a finite interval the question has not been answered ex-
cept in special cases. Approximate results were obtained by Ore and 
Gorny. Ore [26] proved, for example, that under the above conditions 
the first derivative must satisfy 

2(» - 1)2( Ln) 

where L is the length of the interval I. His proof is based on Taylor's 
formula and makes use of A. MarkofFs theorem. For a finite interval 
an exact solution was given by Landau in the special case n = 2. 
Landau [22] also investigated problems in which the second deriva-
tive satisfies a one-sided condition. Suppose ƒ (x) is real and \f(x) | ^ 1, 
fn(x)^a throughout a finite interval 7, where a is some constant. 
Of course if a is too large with respect to the length of the interval 
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there will be no function which satisfies these conditions. But if a is 
small enough, in particular if a ^ O , the conditions are consistent and 
it is possible to find a dominant for the first derivative of the function. 
This dominant varies throughout the interval, becoming infinite at 
the endpoints. 

In the case in which I is an infinite interval and n is arbitrary, the 
precise bounds for f(k)(x), 0<k<n, were obtained by Kolmogoroff 
[2l] . The bound for f(k)(x) which was obtained by Kolmorgoroff is 
always less than x /2 , but its precise form is fairly complicated, in-
volving the ratio of two infinite series. This result has been applied to 
questions concerning quasi-analytic functions. Duffin and Schaeffer 
[l2] altered the problem slightly, making stronger hypotheses and 
obtaining stronger results. They proved: If the real function f (x) is n 
times differentiate and if f or — <x> < # < 00 

(a) (ƒ(*))*^1, 
(b) (fW(x))* + (f

in
Kx))

s
£U 

then inequality (b) is true when n is replaced by any smaller positive 
integer. It is possible to obtain Theorem VIII from this result or that 
of Kolmogoroff by a simple argument. 

In conclusion, I wish to acknowledge my indebtedness to Dr. Duffin 
and Professor Szegö to each of whom I owe a great deal. I am also 
indebted to Professor Uspensky for several historical remarks. 
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