INEQUALITIES OF FEJÉR-RIESZ AND HARDY-LITTLEWOOD

NOZOMU MOCHIZUKI

(Received October 16, 1986)

Introduction. In this note, we shall derive some inequalities concerning the growth of mean values of holomorphic functions which extend classical results. Section 1 deals with the Fejér-Riesz inequality for H^p functions on the unit ball in C^n and on the generalized half-plane, and the results of [8] are extended. In Section 2, two types of Hardy-Littlewood inequalities are obtained. Section 3 concerns the weighted Bergman space on the unit ball which is closely related to the Hardy space.

1. The Fejér-Riesz inequality. Let B denote the open unit ball in C^n , $n \ge 2$, and D be the generalized half-plane defined by $\operatorname{Im} z_1 - |z'|^2 > 0$, $(z_1, z') \in C \times C^{n-1}$. We shall write $L_{j,k} = R^j \times C^k \times \{0\} \times \cdots \times \{0\} \subset C^n$, $1 \le j \le n$, $0 \le k \le n - j$, $L_{0,k} = C^k \times \{0\} \times \cdots \times \{0\}$, $1 \le k \le n$, and $L'_{j-1,k} = (iR)^{j-1} \times C^k \times \{0\} \times \cdots \times \{0\} \subset C^{n-1}$, $1 \le j \le n$, $0 \le k \le n - j$, where R means the real line in C. dz will denote the Lebesgue measure on $L_{j,k}$.

If c = 1 and j = 1 in Theorems 1 and 2, the inequalities coincide with those of [8], except in the case k = n in (2) and (4). Here we note that the method used in [8] does not work for the present situation. Theorem 1 generalizes the Fejér-Riesz inequality given in [1]. It also contains a recent result of Power's [9, Corollary] as a special case c = 1and n = j = 2.

THEOREM 1. Let $c \ge 1$. Then there is a constant C = C(n, j, k, c)such that the following holds for any p, $0 , and for any <math>f \in H^{p}(B)$:

$$(1) \quad \int_{B\cap L_{j,k}} |f(z)|^{c_p} (1-|z|^2)^{c_n-(j+2k+1)/2} dz \leq C (\|f\|_p)^{c_p} , \ 1 \leq j \leq n , \quad 0 \leq k \leq n-j .$$

There is a constant C' = C'(n, k, c) such that

$$(2) \quad \int_{B\cap L_{0,k}} |f(z)|^{\circ p} (1-|z|^2)^{\circ n-k-1} dz \leq C'(||f||_p)^{\circ p} , \quad 1 \leq k \leq n ,$$

Partially supported by the Grant-in-Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

where c > 1 for k = n. The exponents $cn - 2^{-1}(j + 2k + 1)$ and cn - k - 1 are the best possible in all cases.

THEOREM 2. For the same constants C and C' as in Theorem 1, the following hold for $f \in H^{p}(D)$, 0 , where each exponent isunique:

$$(3) \qquad \int_{0}^{+\infty} dy_{1} \int_{L'_{j-1,k}} |f(x_{1} + iy_{1} + i|z'|^{2}, z')|^{c_{p}} y_{1}^{c_{n-(j+2k+1)/2}} dz' \leq C(||f||_{p})^{c_{p}},$$

for any $x_1 \in \mathbf{R}$, $1 \leq j \leq n$, $0 \leq k \leq n - j$.

where c > 1 for k = n.

We shall denote by $A^{p}(\Omega)$ the class of holomorphic functions on $\Omega \subset \mathbb{C}^{n}$ which belong to $L^{p}(\Omega, dz)$. It is obvious that $H^{p}(B) \subset A^{p}(B)$, $0 . The relation between these classes will be made clear in the following corollary. <math>B_{k}$ denotes the open unit ball in \mathbb{C}^{k} , $1 \leq k \leq n$. For a function g on B_{k} , $1 \leq k \leq n-1$, $E_{n,k}g$ is defined by $(E_{n,k}g)(w, w') = g(w)$, $(w, w') \in B$. The statement (5) is a generalization of [3, Theorem E].

COROLLARY. Let 0 .

(5)
$$H^{p}(B) \subset A^{(n+1)p/n}(B)$$
, and $H^{p}(B) \not\subset A^{q}(B)$ for $q > n^{-1}(n+1)p$.

(6) $H^{p}(B_{k})$ is imbedded in $H^{np/k}(B)$, by the operator $E_{n,k}$,

where $k^{-1}np$ is the best possible.

(7) $H^{p}(D) \subset A^{(n+1)p/n}(D)$, and $H^{p}(D) \not\subset A^{q}(D)$ for $q \neq n^{-1}(n+1)p$.

In (5) and (7), H^{p} is properly contained in $A^{(n+1)p/n}$.

PROOF OF THEOREM 1. For $\xi \in \partial B$ and r > 0, let $K(\xi, r) = \{z \in B \mid |1 - \langle z, \xi \rangle \mid < r^2\}$. Let μ be a positive finite measure on B. Suppose that, for $c \ge 1$, there are positive numbers A, δ such that

(8)
$$\mu(K(\xi, r)) \leq Ar^{2cn}$$

for every $\xi \in \partial B$ and $0 < r < \delta$. If μ is a measure supported on $\{z \in C^n | 2^{-1} \leq |z| < 1\}$, then by the same argument as in [9], we can see that, for $f \in L^1(\partial B)$ and $\lambda > 0$, $\mu(\{|P[f]| > \lambda\}) \leq (C\lambda^{-1}||f||_1)^c$, where P[f] denotes the Poisson integral of f. The Marcinkiewicz interpolation theorem then shows that $\|P[f]\|_{L^{2c}(\mu)} \leq C'(n, \mu, c)\|f\|_2$, $f \in L^2(\partial B)$. Let μ be supported on B. Take $f \in H^p(B)$, $0 . Then there is an <math>h \in L^2(\partial B)$

such that $h \ge 0$, $(||h||_2)^2 = (||f||_p)^p$, and $|f|^{p/2} \le P[h]$. It follows that

$$\int_{B} |f|^{e_{p}} d\mu \leq \int_{|z| < 1/2} (P[h^{2}])^{e} d\mu + \int_{1/2 \leq |z| < 1} (P[h])^{2e} d\mu \leq C(n, \mu, c) (||f||_{p})^{e_{p}}$$

First, we shall prove (1). It suffices to see that the measure $d\mu(z) = (1 - |z|^2)^{\alpha}dz$, $z \in B \cap L_{j,k}$, satisfies (8) for 0 < r < 1, where $\alpha = cn - 2^{-1}$ (j + 2k + 1). Put $K = K(\xi, r)$ and $K' = \{z \in B | 1 - \operatorname{Re}\langle z, \xi \rangle < r^2\}$. Clearly, $K \subset K'$. Suppose that $K \cap L_{j,k} \neq \emptyset$. Using real coordinates for C^n , we write $\xi = (a', b', a'', b'', a''', b''')$, where $(a', b') = (a_1, b_1, \cdots, a_j, b_j) \in \mathbb{R}^{2j}$, $z_l = a_l + ib_l$, $1 \leq l \leq j$. Similarly, (a'', b'') and (a''', b''') represent points of C^k and C^{n-j-k} , respectively. The inner product in \mathbb{R}^m will be denoted by [x, y], $x, y \in \mathbb{R}^m$. Now take $z \in K' \cap L_{j,k}$. Then z = (x', 0', x'', y'', 0''', 0''') with $|x'|^2 + |x''|^2 + |y''|^2 < 1$ and $1 - \operatorname{Re}\langle z, \xi \rangle = 1 - [(x', x'', y''), (a', a'', b'')] < r^2$. Writing a = (a', a'', b'') and $G = \{x = (x', x'', y'') \in B_{j,k} | 1 - [x, a] < r^2\}$, where $B_{j,k}$ denotes the open unit ball in \mathbb{R}^{j+2k} , we see that

$$I_{j,k}(r) := \mu(K) \leq \int_{K' \cap L_{j,k}} (1 - |z|^2)^lpha dz = \int_{G} (1 - |x|^2)^lpha dx \; .$$

If we put |a| = t, then $0 < t \leq 1$, since $G \neq \emptyset$. Take $P \in O(j + 2k)$ so that $Pe = t^{-1}a$, where $e = (1, 0, \dots, 0) \in \mathbb{R}^{j+2k}$. Let $G' = \{x \in B_{j,k} | 1 - tx_1 < r^2\}$ and $G'' = \{x \in B_{j,k} | 1 - r^2 < x_1 < 1\}$. Then P(G') = G and $G' \subset G''$. Thus, by integration over G'' instead of G and by Fubini's theorem in the case $j+2k \geq 2$, we get $I_{j,k}(r) \leq C(n, j, k, c)r^{2cn}$. To verify (2), let $\alpha = cn - k - 1$. Note that $\alpha > -1$ in all cases. We shall show that μ satisfies (8) for $0 < r < 2^{-1/2}$. We write $\xi = (\xi', \xi'')$ with $\xi' \in C^k$ and put $|\xi'| = t$. Suppose that $K \cap L_{0,k} \neq \emptyset$. Then $2^{-1} < t \leq 1$. Take $U \in U(k)$ so that $Ue = t^{-1}\xi'$, where $e = (1, 0, \dots, 0) \in C^k$. Let $G = \{w \in C^k | |w| < 1, |1 - \langle w, \xi' \rangle | < r^2\}$ and $G' = \{w \in C^k | |w| < 1, |1 - tw_1| < r^2\}$. Then U(G') = G, and

$$I_{k}(r):=\mu(K)=\int_{G'}(1-|w|^{2})^{lpha}dw\;.$$

Using Fubini's theorem when $2 \leq k \leq n$, we have

$$I_k(r) = \mathit{C}(k,\,lpha) {\int_{G''}} (1 - |w_1|^2)^{c_n - 2} dw_1$$
 ,

where $G'' = \{w_1 \in C | |w_1| < 1, |1 - tw_1| < r^2\}$. Modifying the change of variables made in [10, 5.1.4], we define $\phi: w_1 = \phi(\lambda) = t^{-1}(1 - r^2\lambda^{-1}), \lambda \in C - \{0\}$. Since $\phi^{-1}(G'') \subset \{\lambda | \operatorname{Re} \lambda > 0, |\lambda| > 1\}$ and $1 - |\phi(\lambda)|^2 < 2t^{-2}r^2|\lambda|^{-2}\operatorname{Re} \lambda$, it is seen that

$$\int_{G''} (1 - |w_1|^2)^{c_n - 2} dw_1 \leq C(n, c) r^{2c_n} .$$

Suppose that $\alpha < cn - 2^{-1}(j+2k+1)$. Then, for $b = (2c)^{-1}(2\alpha + j + 2k + 1)$, the function $(1 - z_1)^{-b}$ belongs to $H^1(B)$ and it is easily seen that

$$\int_{B\cap L_{j,k}} |1-z_1|^{-bc} (1-|z|^2)^{lpha} dz = +\infty$$
 .

If $-1 < \alpha < cn - k - 1$, then just as in [8], the integral in (2) becomes $+\infty$ for $f(z) = (1 - z_1)^{-b}$ with $b = c^{-1}(\alpha + k + 1)$.

PROOF OF THEOREM 2. This is very similar to the proof of [8, Theorem 2]. Let $w = \Psi(z)$, where $z = (iy_1, \dots, iy_j, z_{j+1}, \dots, z_{j+k}, 0, \dots, 0)$, $y_1 > y_2^2 + \dots + y_j^2 + |z_{j+1}|^2 + \dots + |z_{j+k}|^2$. Then Ψ transforms $D \cap L'_{j,k}$ onto $B \cap L_{j,k}$ and the Jacobian determinant is $2^{j+2k}(y_1 + 1)^{-(j+2k+1)}$, so that the inequality (3) follows. Suppose that $\alpha \neq cn - 2^{-1}(j + 2k + 1)$ and put $b = (2c)^{-1}(2\alpha + j + 2k + 1)$. If $\alpha > cn - 2^{-1}(j + 2k + 1)$ then $(z_1 + i)^{-b} \in H^1(D)$, and if $\alpha < cn - 2^{-1}(j + 2k + 1)$ then $z_1^{-b}(z_1 + i)^{-2n+b} \in H^1(D)$. A simple computation shows that the integrals in (3), with y_1^{α} , become $+\infty$ for these functions. The inequality (4), as well as the uniqueness of the exponent, can similarly be verified.

PROOF OF COROLLARY. (5): By (2), the identity mapping of $H^{\mathfrak{p}}(B)$ into $A^{(n+1)\mathfrak{p}/n}(B)$ is continuous. If $q > n^{-1}(n+1)\mathfrak{p}$, then $(1-z_1)^{-(n+1)/q} \in H^{\mathfrak{p}}(B)$ and $\notin A^q(B)$. (6): From the relation $H^{\mathfrak{p}}(B_k) \subset A^{(k+1)\mathfrak{p}/k}(B_k)$ and [10, 7.2.4, (a)], it follows that $H^{\mathfrak{p}}(B_k)$ is imbedded in $H^{(k+1)\mathfrak{p}/k}(B_{k+1})$ by the operator $E_{k+1,k}$. This procedure gives (6). (7): $A^{\mathfrak{p}}(B)$ is a complete, linear metric space, as will be seen from (19) with $q = +\infty$, k = n. Now assume that $H^{\mathfrak{p}}(B) = A^q(B), q = n^{-1}(n+1)\mathfrak{p}$. The open mapping theorem would imply that, if $\{f_i\}$ is a sequence of holomorphic functions on B, bounded in L^q , then it is also bounded in $H^{\mathfrak{p}}(B)$. Let $g_j(z) = z_1^{2j}, z \in B, j = 1, 2, \cdots$. Then

Here, by Stirling's formula, $I_j \approx j^{-n+1}$ and $J_j \approx j^{-n}$ as $j \to \infty$. Putting $f_j(z) = j^{a(n)}g_j(z)$, $a(n) = ((n+1)p)^{-1}n^2$, we see that $||f_j||_p \to \infty$ as $j \to \infty$, while $||f_j||_{L^q}$ are bounded. Next, (4) implies that $H^p(D) \subset A^{(n+1)p/n}(D)$. Put $b = q^{-1}(n+1)$. If $q < n^{-1}(n+1)p$, then $(z_1 + i)^{-b} \in H^p(D)$ and $\notin A^q(D)$. If $q > n^{-1}(n+1)p$, then $z_1^{-b}(z_1 + i)^{-(2n/p)+b} \in H^p(D)$ and $\notin A^q(D)$. Now, with $q = n^{-1}(n+1)p$, we define Ψ^* by $(\Psi^*g)(z) = 2^{2n/q}g(\Psi(z))(z_1 + i)^{-(2n+2)/q}$, $z \in D$, for $g \in A^q(B)$. Since the Jacobian determinant of Ψ is $2^{2n}|z_1 + i|^{-2n-2}$, we have $\Psi^*g \in A^q(D)$. It is clear that Ψ^* is an isometric isomorphism of

80

 $A^{q}(B)$ onto $A^{q}(D)$. If Ψ^{*} is restricted to $H^{p}(B)$, then this induces the isometric isomorphism of $H^{p}(B)$ onto $H^{p}(D)$, due to [13], up to a constant multiple ([8], (8)). Thus, the rest of the assertion follows.

2. Hardy-Littlewood inequalities. (11) and (12) in the following Theorem 3 generalize a theorem of Hardy and Littlewood ([5], [6]) and are immediate consequences of Theorem 1, (2). The fact that these are the best possible can be seen by reduction to the one variable case ([2], [12]), where Corollary, (6) plays an essential role. Theorem 1, (2) will again be used to complete the proof of Theorem 4. Related results are contained in [4] and [7], in the case k = n.

For a continuous function f on B and for k, $1 \le k \le n$, we define means $M_q(f, k; r)$, $0 \le r < 1$, $0 < q \le +\infty$, as follows:

$$M_{{}_{\infty}}(f,\,k;\,r) = \max_{\zeta \, \epsilon \, \delta \, B_k} |f_{r}(\zeta,\,0')| \,\,,$$
 $M_{q}(f,\,k;\,r) = \left(\int_{\delta \, B_k} |f_{r}(\zeta,\,0')|^q d\sigma_k(\zeta)
ight)^{1/q} \,, \,\,\, 0 < q < +\infty \,\,,$

where σ_k denotes the surface measure on ∂B_k . In the case $q = +\infty$, [10, 7.2.5] implies that, if $f \in H^p(B)$, $0 , and <math>1 \leq k \leq n$, then

,

(9)
$$M_{\infty}(f, k; r) = o((1 - r)^{-n/p}) \text{ as } r \to 1$$

(10)
$$M_{\infty}(f, k; r) \leq A(n, p) \|f\|_{p} (1-r)^{-n/p}, \quad 0 \leq r < 1.$$

In the case k = n, (11) and (12) follow from (9) and (10), since $M_q(f, n; r)^q \leq M_{\infty}(f, n; r)^{q-p}M_p(f, n; r)^p$. Let $(R_{k,n}f)(w) = f(w, 0')$, $w \in B_k$, $1 \leq k \leq n-1$, for a function f on B. If $R_{k,n}f \in H^{kp/n}(B_k)$ for $f \in H^p(B)$, then (11) and (12) would follow from the same argument. But this is not the case, because $H^{kp/n}(B_k) \subseteq R_{k,n}(H^p(B))$, which will be seen in Section 3.

THEOREM 3. Suppose $f \in H^p(B)$, $0 . Let <math>p \leq q < +\infty$ (p < qwhen k = n) and put $\alpha = p^{-1}n - q^{-1}k$, $1 \leq k \leq n$. Then

(11)
$$M_q(f, k; r) = o((1 - r)^{-\alpha}) \quad as \quad r \to 1$$
,

(12)
$$M_q(f, k; r) \leq A(n, k, p, q) \|f\|_p (1 - r)^{-\alpha}, \quad 0 \leq r < 1.$$

The exponent α cannot be replaced by any smaller value. Moreover, (9), (10), (11), and (12) are the best possible in the sense that for any function $\phi(r)$, $0 \leq r < 1$, such that $\phi(r) > 0$ and $\phi(r) \rightarrow 0$ as $r \rightarrow 1$, there exists $f \in H^p(B)$ with $M_q(f, k; r) \neq O(\phi(r)(1 - r)^{-\alpha})$ as $r \rightarrow 1$, $1 \leq k \leq n$.

THEOREM 4. Suppose $f \in H^{p}(B)$, $0 . Let <math>p \leq q \leq +\infty$ (p < qwhen k = n) and put $\alpha = p^{-1}n - q^{-1}k$, $1 \leq k \leq n$. Let $p \leq \lambda < +\infty$. Then

(13)
$$\left(\int_0^1 M_q(f, k; r)^{\lambda} (1-r)^{\lambda \alpha - 1} dr \right)^{1/\lambda} \leq A \| f \|_p,$$

where $A = A(n, k, p, q, \lambda)$. The exponent α is the best possible. If 0 < q < p, then (13) does not hold.

PROOF OF THEOREM 3. We write M(r) for $M_q(f, k; r)^q$, temporarily. Let $c = p^{-1}q$ and $\beta = cn - k - 1$. Then, by integration in polar coordinates, (2) becomes

$$\int_{_{0}}^{_{1}} M(r) (1 - r^{2})^{\beta} r^{2k-1} dr \leq C (\|f\|_{p})^{q} \; .$$

Since M(r) is an increasing function, we can find a constant $A(\beta, k)$, depending only on β and k, such that

$$\int_{0}^{1} M(r)(1-r)^{eta} dr \leq A(eta, k) \int_{0}^{1} M(r)(1-r)^{eta} r^{2k-1} dr \; .$$

Hence we have

(14)
$$\int_{0}^{1} M_{q}(f, k; r)^{q} (1 - r)^{\beta} dr \leq C(||f||_{p})^{q} dr$$

Now, as in [3, (1.3)], we have

$$\int_r^1 \!\!\!M_{q}(f,\,k;\,t)^{q}(1-t)^{eta} dt \geqq (eta+1)^{-1} M_{q}(f,\,k;\,r)^{q}(1-r)^{eta+1} \,, \ \ 0 \leqq r < 1 \,\,,$$

whence (11) and (12) follow. Next, we prove that (9) and (10) are the best possible. Let U be the unit disc in C. Take an arbitrary function $\phi(r)$, $0 \leq r < 1$, with the property that $\phi(r) > 0$ and $\phi(r) \to 0$ as $r \to 1$. Then [12, Theorem 1'] shows that, for $\phi(r)^{1/2}$, there exists $g \in H^{p/n}(U)$ such that $|g(r_j)| \geq C\phi(r_j)^{1/2}(1-r_j)^{-n/p}$, $j = 1, 2, \cdots$, where C is a constant and $\{r_j\}$ is a sequence: $r_1 < r_2 < \cdots$, $r_j \to 1$ as $j \to \infty$. Put $f = E_{n,1}g$. Then $f \in H^p(B)$, by (6), and we see that $M_{\infty}(f, k; r_j) \geq C\phi(r_j)^{-1/2}\phi(r_j)(1-r_j)^{-n/p}$, $j = 1, 2, \cdots, 1 \leq k \leq n$. This means that $M_{\infty}(f, k; r) \neq O(\phi(r)(1-r)^{-n/p})$ as $r \to 1$. The case $0 < q < +\infty$ will be settled after [2], as follows. Taking an $f \in H^p(B)$, as above, for the function $\phi(r^{1/2})$, we see that $M_{\infty}(f, k; r_j^2) \geq C\phi(r_j)(1-r_j)^{-n/p}$, $j = 1, 2, \cdots, 1 \leq k \leq n$. The Cauchy formula implies that, for $0 \leq r < 1$,

$$f_r(w, 0') = C(k) \int_{\partial B_k} (1 - \langle w, \zeta \rangle)^{-k} f_r(\zeta, 0') d\sigma_k(\zeta) , \quad w \in B_k \; .$$

Put $w = r\xi$, $\xi \in \partial B_k$. If $1 < q < +\infty$, then by Hölder's inequality,

$$|f(r^2\xi, 0')| \leq CM_q(f, k; r) \Bigl(\int_{\partial B_k} |1 - \langle r\xi, \zeta
angle |^{-kq'} d\sigma_k(\zeta) \Bigr)^{1/q'}$$

82

The above integral is $\approx (1-r^2)^{-(kq'-k)}$, by [10, 1.4.10], and hence $M_{\infty}(f, k; r^2) \leq CM_q(f, k; r)(1-r)^{-k/q}$. It follows that $M_q(f, k; r_j) \geq C\phi(r_j)$ $(1-r_j)^{-\alpha}, j=1, 2, \cdots$. Similarly, this inequality is seen to hold for q=1. Finally, let 0 < q < 1. If we take $f \in H^p(B)$, for $\phi(r)^q$, so that $M_1(f, k; r_j) \geq C\phi(r_j)^{q}(1-r_j)^{-(n/p)+k}, j=1, 2, \cdots$, then, since $M_1(f, k; r) \leq M_{\infty}(f, k; r)^{1-q}M_q(f, k; r)^q \leq C(1-r)^{(-n/p)(1-q)}M_q(f, k; r)^q$, by (10), the desired result follows.

PROOF OF THEOREM 4. Suppose first that $1 \leq p < +\infty$. If u = P[h], $h \in L^{p}(\partial B)$, then as in (10), we have

 $(15) \qquad M_{\scriptscriptstyle \infty}(u,\,k;\,r) \leq A(n,\,p) \|\,h\,\|_{\scriptscriptstyle p}(1-r)^{-n/p}\,, \ 0 \leq r < 1\,, \ 1 \leq k \leq n\,.$ We are going to show that, for $p \leq q < +\infty$, $1 \leq k \leq n$,

(16)
$$M_q(u, k; r) \leq A(n, k, p, q) \|h\|_p (1 - r)^{-\alpha}, \quad 0 \leq r < 1.$$

By (15), we have

$$M_q(u, \, k; \, r)^q \leq (A \| h \|_p (1 - r)^{-n/p})^{q-p} \int_{\partial B_k} |u(r\zeta, \, 0')|^p d\sigma_k(\zeta) \; .$$

Here, with $z = (r\zeta, 0')$,

$$\int_{\partial B_k} |u(r\zeta, 0')|^p d\sigma_k(\zeta) \leq \int_{\partial B} \Big(|h(\eta)|^p \int_{\partial B_k} P(z, \eta) d\sigma_k(\zeta) \Big) d\sigma(\eta) \,\,,$$

where $P(z, \eta)$ denotes the Poisson kernel for *B*. Putting $\eta = (\xi, \xi'), \xi \in C^k$, we see that

$$egin{aligned} P((r\zeta,\,0'),\,(\xi,\,\xi')) &= C(n)(1\,-\,r^2)^n \,|\, 1-\langle r\zeta,\,\xi
angle|^{-2n} \ &\leq C(n,\,k)(1\,-\,r)^{-n+k}((1\,-\,|\,r\xi\,|^2)|\,1-\langle r\xi,\,\zeta
angle|^{-2})^k \;. \end{aligned}$$

Since $|\partial B_k|^{-1}((1 - |w|^2)|1 - \langle w, \zeta \rangle|^{-2})^k$, $w \in B_k$, $\zeta \in \partial B_k$, is the Poisson kernel for B_k , we get

$$M_q(u, k; r)^q \leq (A \|h\|_p (1-r)^{-n/p})^{q-p} C (1-r)^{-n+k} (\|h\|_p)^p$$
.

Next, following [3], we shall show that, for $1 , <math>p \leq \lambda < +\infty$, and u = P[h] with $h \in L^p(\partial B)$,

(17)
$$\left(\int_{0}^{1} M_{q}(u, k; r)^{\lambda} (1-r)^{\lambda \alpha-1} dr\right)^{1/\lambda} \leq C \|h\|_{p}, \quad 1 \leq k \leq n$$

where $C = C(n, k, p, q, \lambda)$. Suppose, for the moment, that $1 \le p < q \le +\infty$. Fix $k, 1 \le k \le n$. We define a measure ν by $d\nu(r) = (1-r)^{n-1}dr, 0 \le r < 1$. Let $(Th)(r) = M_q(u, k; r)(1-r)^{-k/q}, h \in L^p(\partial B)$. Then the operator T is subadditive and, by (15) and (16), $(Th)(r) \le A ||h||_p (1-r)^{-n/p}, 0 \le r < 1$. Hence, for any $s \ge A ||h||_p$, $G := \{r \in [0, 1) | (Th)(r) > s\} \subset \{r | 1 - (A ||h||_p s^{-1})^{p/n} < r < 1\} =: E$. If $0 < s < A ||h||_p$, then E = [0, 1). Thus

$$u(G) \leq \int_{E} (1-r)^{n-1} dr \leq (C \|h\|_{p} s^{-1})^{p} \; .$$

The Marcinkiewicz interpolation theorem shows that $||Th||_{L^{p}(\nu)} \leq C(n, k, p, q)||h||_{p}$ for $1 . This means that (17) is valid in the case <math>p = \lambda$. Let $p < \lambda$. Then, since $M_{q}(u, k; r)^{\lambda} \leq (A||h||_{p}(1-r)^{-\alpha})^{\lambda-p}M_{q}(u, k; r)^{p}$ by (15) and (16), we obtain (17). Now let $f \in H^{p}(B)$, $0 , and take <math>h \in L^{2}(\partial B)$ with the property that $|f|^{p/2} \leq P[h]$, $(||h||_{2})^{2} = (||f||_{p})^{p}$. Let q, λ be such that $p < q \leq +\infty$, $p \leq \lambda < +\infty$. Then $M_{q}(f, k; r)^{\lambda} \leq M_{(2q)/p}(u, k; r)^{(2\lambda)/p}$, where we put $2p^{-1}q = +\infty$ when $q = +\infty$. Taking 2, $2p^{-1}q$, and $2p^{-1}\lambda$ in place of p, q, and λ in (17), we can get (13). Finally, let $p = q \leq \lambda < +\infty$, $1 \leq k \leq n-1$. Then, putting c = 1 in (14), we obtain (13) with $p = \lambda$. In the case $p < \lambda$, (13) follows from (12). To see that α is the best possible, let $0 < \beta < \alpha$. Then $f(z) := (1-z_{1})^{-\beta-(k/q)} \in H^{p}(B)$, and $M_{q}(f, k; r) \approx (1-r)^{-\beta}$ as $r \to 1$. Thus, the integral in (13) becomes $+\infty$, if α is replaced by β . Suppose 0 < q < p. It is enough to assume that $1 \leq k \leq n-1$ and $q^{-1}(n-1) < p^{-1}n$. Putting $g_{j}(z) = z_{1}^{2j}$, as in the proof of the Corollary, we have

$$egin{aligned} &I_j := \left(\int_{_0}^{^1}\!\!M_q(g_j,\,k;\,r)^{\lambda}(1-r)^{\lambdalpha-1}dr
ight)^{\!1/\lambda} \ &= \left(rac{2\pi^k\Gamma(qj+1)}{\Gamma(qj+k)}
ight)^{\!1/q}\!\!\left(rac{\Gamma(2\lambda j+1)\Gamma(\lambdalpha)}{\Gamma(2\lambda j+1+\lambdalpha)}
ight)^{\!1/\lambda}. \end{aligned}$$

Also, $||g_j||_p = (2\pi^n \Gamma(pj+1)(\Gamma(pj+n))^{-1})^{1/p}$. We can write $I_j(||g_j||_p)^{-1} = C\Delta(j)j^{(1/q)-(1/p)}$, where $\Delta(j) \to 1$ as $j \to \infty$.

3. The weighted Bergman space. This is the class of holomorphic functions f on B such that

where p > 0 and $\delta > -1$, and will be denoted by $A^{p,\delta}(B)$. Note that (2) implies $H^{p}(B) \subset A^{op,on-n-1}(B)$ for c > 1, with $||f||_{op,on-n-1} \leq C ||f||_{p}$, $f \in H^{p}(B)$. We can see that this inclusion is proper, as in the proof of the Corollary, (7).

THEOREM 5. Suppose $f \in A^{p,\delta}(B)$. Let $p \leq q \leq +\infty$ and put $\sigma = p^{-1}(n+1+\delta) - q^{-1}k$, $1 \leq k \leq n$. Then

(18)
$$M_q(f, k; r) = o((1-r)^{-\sigma}) \quad as \quad r \to 1$$

(19) $M_q(f, k; r) \leq A(n, k, p, q, \delta) ||f||_{p,\delta} (1-r)^{-\sigma}, \quad 0 \leq r < 1.$

These are the best possible; namely, for any $\phi(r)$, $0 \leq r < 1$, such that

 $\phi(r) > 0 \text{ and } \phi(r) \to 0 \text{ as } r \to 1, \text{ there exists } f \in A^{p,\delta}(B) \text{ with } M_q(f,k;r) \neq O(\phi(r)(1-r)^{-\sigma}) \text{ as } r \to 1, \ 1 \leq k \leq n.$

PROOF. Suppose first that f is a holomorphic function on B such that $M_p(f, n; r) \leq C(1 - r)^{-\beta}$, $0 \leq r < 1$, with constants β , C > 0. Then, for $1 \leq k \leq n$, $p \leq q \leq +\infty$,

(20)
$$M_q(f, k; r) \leq K(n, k, p, q, \beta)C(1 - r)^{-\alpha - \beta}, \quad 0 \leq r < 1$$
,

where $\alpha = p^{-1}n - q^{-1}k$. Indeed, since $f_r \in H^p(B)$ with $||f_r||_p \leq C(1-r)^{-\beta}$, 0 < r < 1, (10) implies that $M_{\infty}(f_r, k; \rho) \leq A(n, p)C(1-r)^{-\beta}(1-\rho)^{-n/p}$, $0 \leq \rho < 1$, hence, letting $\rho = r$, we have $M_{\infty}(f, k; r^2) \leq A(n, p, \beta)C(1-r^2)^{-(n/p)-\beta}$, proving the case $q = +\infty$. The case $q < +\infty$ is similar, by (12). Next, we can derive (18) and (19) when p = q and k = n, following [11, Theorem B]. Take $f \in A^{p,\delta}$. It is enough to assume that $2^{-1} \leq r < 1$. From

$$(||f||_{p,\delta})^{p} \ge \int_{r}^{1} M_{p}(f, n; t)^{p} (1 - t^{2})^{\delta} t^{2n-1} dt$$
$$\ge C(n, \delta) M_{p}(f, n; r)^{p} (1 - r)^{1+\delta}$$

it follows that

(21)
$$M_p(f, n; r) = o((1 - r)^{-(1+\delta)/p})$$
 as $r \to 1$,

(22)
$$M_p(f, n; r) \leq C \|f\|_{p,\delta} (1-r)^{-(1+\delta)/p}, \quad 0 \leq r < 1.$$

Let $1 \leq k \leq n$ and $p \leq q \leq +\infty$. Then, combining (20) with (22), we obtain (19). Finally, from (21), (10), and (12), we can see that $M_q(f_r, k; \rho) \leq A\varepsilon(r)(1-r)^{-(1+\delta)/p}(1-\rho)^{-\alpha}$, $0 < \rho < 1$, where $\varepsilon(r) \to 0$ as $r \to 1$, whence we get (18). To see that (18) and (19) are the best possible, take an arbitrary $\phi(r)$. Then Theorem 3 shows that there is $f \in H^{(np)/(n+1+\delta)}(B)$ such that $M_q(f, k; r) \neq O(\phi(r)(1-r)^{-\sigma})$ as $r \to 1$. Since $H^{(np)/(n+1+\delta)}(B) \subset A^{p,\delta}(B)$, the proof is completed.

We have mainly been concerned with restrictions of H^p functions from B to B_k . In this respect, H^p and $A^{p,\delta}$ are closely connected in the following manner. The case k = n - 1 is in [10, 7.2.4].

The operator $E_{n,k}$ defines a linear isometry of $A^{p,n-k-1}(B_k)$ into $H^p(B)$, $1 \leq k \leq n-1$, and $R_{k,n}$ is a continuous operator of $H^p(B)$ onto $A^{p,n-k-1}(B_k)$. The latter contains $H^{kp/n}(B_k)$ properly. Indeed, taking $g \in A^{p,n-k-1}(B_k)$, we can see from [8, (7)] that

$$egin{aligned} &\int_{\partial B} |(E_{n,k}g)_r(\zeta,\,\zeta')|^p d\sigma(\zeta,\,\zeta') = |\partial B_{n-k}| \int_{B_k} |g_r(w)|^p (1\,-\,|w\,|^2)^{n-k-1} dw \ &= |\partial B_{n-k}|\,r^{-2k} \!\!\int_{|w| < r} |g(w)|^p (1\,-\,r^{-2}|\,w\,|^2)^{n-k-1} dw \end{aligned}$$

where the integral converges to $(||g||_{p,n-k-1})^p$, increasingly, as $r \to 1$. On the other hand, it follows that $R_{k,n}$: $H^p(B) \to A^{p,n-k-1}(B_k)$ is continuous and onto, from (2) and the relation $R_{k,n} \circ E_{n,k}$ = identity.

References

- P. L. DUREN, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146.
- [2] P. L. DUREN AND G. D. TAYLOR, Mean growth and coefficients of H^p functions, Illinois J. Math. 14 (1970), 419-423.
- [3] T. M. FLETT, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768.
- [4] I. GRAHAM, The radial derivative, fractional integrals, and the comparative growth of means of holomorphic functions on the unit ball in Cⁿ, Ann. Math. Stud. 100, Princeton Univ. Press, 1981, 171-178.
- [5] G. H. HARDY AND J. E. LITTLEWOOD, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
- [6] G. H. HARDY AND J. E. LITTLEWOOD, Some properties of fractional integrals. II, Math. Z. 34 (1932), 403-439.
- [7] J. MITCHELL AND K. T. HAHN, Representation of linear functionals in H^p spaces over bounded symmetric domains in C^N , J. Math. Anal. Appl. 56 (1976), 379-396.
- [8] N. MOCHIZUKI, Fejér-Riesz inequalities for lower dimensional subspaces, Tôhoku Math. J. 38 (1986), 433-439.
- [9] S.C. POWER, Hörmander's Carleson theorem for the ball, Glasgow Math. J. 26 (1985), 13-17.
- [10] W. RUDIN, Function theory in the unit ball of C^n , Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [11] J. H. SHAPIRO, Mackey topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202.
- [12] G.D. TAYLOR, A note on the growth of functions in H^p , Illinois J. Math. 12 (1968), 171-174..
- [13] N.J. WEISS, An isometry of H^p spaces, Proc. Amer. Math. Soc. 19 (1968), 1083-1086.

College of General Education Tôhoku University Kawauchi, Sendai 980

Japan