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Abstract

In this article, new estimates on generalization of Hermite-Hadamard-
like type inequalities for functions whose second derivatives in absolute
value at certain powers are convex and concave are established.

Mathematics Subject Classification: 26D15, 26A51

Keywords: Hermite-Hadamard inequality; Convex functions; Holder in-
equality; Power-mean inequality; Special means

1 Introduction

Recall that a function f : I € R — R is said to be convex on [ if the
inequality

fltz+ 1 =t)y) <tf(x)+ 1 —1)f(y) (1)

holds for all x,y € I and t € [0,1], and f is said to be concave on [ if the
inequality (1) holds in reversed direction.

Many inequalities have been established for convex functions but the most
famous is the Hermite-Hadamard inequality, due to its rich geometrical signif-
icance and applications, which is stated as follow:
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Let f: I C R — R be a convex function define on an interval I of real
numbers, and a,b € I with a < b. Then the following double inequalities hold:

a b a
(50 < o [ o< 9210 ©)

Both inequalities hold in the reversed direction if f is concave.

It was first discovered by Hermite in 1881 in the Journal Mathesis. This
inequality (2) was nowhere mentioned in the mathematical literature untill
1893. In [1], Beckenbach, a leading expert on the theory of convex functions,
wrote that the inequality (2) was proved by Hadamard in 1893. In 1974,
Mitrinovi¢ found Hermite and Hadamard’s note in Mathesis. That is why,
the inequality (2) was known as Hermite-Hadamard inequality. We note that
Hermite-Hadamard’s inequality may be regarded as a refinements of the con-
cept of convexity and it follows easily from Jensen’s inequality. This inequality
(2) has been received renewed attention in recent years and a remarkable va-
riety of refinements and generalizations have been found in [2]-[17].

In recent paper[14], Tseng et. al established the following result which
gives a refinement of (2):

3a+b a+3b b
f(‘“b><f< ) I >§bia/ f(2)ds

2 - 2
Lrratby  fla)+ ) _ fla)+ f(b)
Sﬁ[f(2>+ 2 ]S 2 ®)
where f : [a,b] — R is a convex function.

In[9], Latif established some new Hadamard-type inequalities for whose
derivatives in absolute values are convex:

Theorem 1.1. Let f : I C R — R be a differentiable function define on the
interior I° of an interval I in R such that ' € L([a,b]), where a,b € I° with
a <b. If| f |7 is convex on [a,b] for some fixzed ¢ > 1, then the following
inequality holds:

o) + L=DOL =IO 2 [ g
INre—a)? g 5] f(2)]7+ ]| f(a)]7 2
<@ G )
Jr(|f(96’)| ESH(CLH);}
(=2 ¢ 51 7)1+ | 5/0) 9 2
+ b—a {( 6 )
NVETEIVIIOn, n

for all x € [a,b).
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Here, if we choose x = “+b in (4), we have some Hermite-Hadamard inequal-
ities which gives an estimate between ﬁ fab f(z)dx and %[ f (GTH’) + w}

for functions whose derivatives in absolute value are convex.

In this article, a new general identity for continuously twice differentiable
functions is established. By making use of this equality, author has obtained
new estimates on generalization of Hermite-Hadamard-like type inequalities
for functions whose second derivatives in absolute value at certain powers are
convex and concave.

2  Main results
In this section, for the simplicity of the notation, let

I¢(z,a,b)
_—/f du— x)_(b_x)f(bztgx_a)f(a)

L e =’ (f(@) = /(@) + (b= 2)*(S'(b) = f'(x))
A4(b = a)

for any x € [a, b].
In order to prove our main results, we need the following lemma:

Lemma 1. Let f : I C R — R be a twice differentiable function on the interior
I° of an interval I such that f* € Ly[a,b], where a,b € I with a < b. Then,
for any x € [a,b] we have the following identity:

If(2,a,b)
(x—a)3/12 g1+t 11—t
=7 [y
8(b—a) J, {f( vt )
t 1+1¢
T+

" f~(1— o) b
+ / { ,, 1+t 1;tb)
+f”( 2t

1+t
+— b)}dt.

Proof. By integration by parts and making use of the substitution u =
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%x + %a, we can state

(0) (r —a)? /1t2f"(1+tx+1_ta)dt
0

8(b—a) 92 5
- ib__“i) f'(x) - "Z:Zf(:c) +5 E - /+ fu)du. (5)

By similar way we get

(id) ggb__a;)/o t2f”(1;tx+1+ta)dt

(x — a)? r—a 2

_ —mf’(a) — o f@)+ f(u)du, (6)

_ )3l _
(i) ga _x;)/o tzf”(l—;tl‘—i— ! . ")at

-2, | b-u 2 [
__mf(:c)—b_af(x)Jr / f(u)du, (7)

b—a
b— )’ ! 2 ¢ B
) Sk [
= O 0 [ S ©

By the equalities (5)-(8), we get the desired result.

Theorem 2.1. Let f : I C [0,00) = R be a twice differentiable function on
the interior I of an interval I such that f* € Li[a,b], where a,b € I° with
a<b. If| f" | is convex on [a,b], then the following inequality holds:

(x —a)’

24(b a){|f”(a)\+]f”(x)}}
{1+ o)) o)

‘ff(x,a, b)‘ <

+
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Proof. From Lemma 1, we have
‘[f(x,a,b)‘
g ]
+’f (I;t:ﬁl;t )‘}dt
+§Z{—fa/ {)f e+
’f 5 +1—2Hb)‘}dt.

Since | f” | is convex on [a, b], we have

o)

< bl [ e+ o o
- [ e l“\f (@[}

SO [ e ]+ o]
o [ e )+ H’f\f o) Ja

s gl el gl
gl @]+ gl @]
b—ax¥r( 7

+E(S(b—c>z) Hﬂ‘f ‘+24‘f (b)‘}

el glrof]

which completes the proof.

Corollary 2.1. Under the conditions of Theorem 2.1, if we choose v = “T“Lb
in the inequality (9), by the inequalities (2) and (3) we have

b
‘If a—|—

,a b)‘

_“’195 (@] + 20 (0 + 1))
1@+ 1))

S(b a)
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Remark 2.1. By letting x = a (or x = b) in Theorem 2.1, we have:

’ 1 /a f(U)d’LL— f(a);‘f(b) _|_ (b_a’) (f/(b)_f/(a))’

b—a 8
<L @)+ 1))

Theorem 2.2. Let f : I C [0,00) = R be a twice differentiable function on
the interior I° of an interval I such that f' € Li[a,b], where a,b € I° with
a<b. If | f" |7 is convex on [a,b] for some fired ¢ > 1 with % +% =1, then
for any x € [a,b] the following inequality holds:
’If(x,a, b)‘

1( 1 )i [<I— a)3{<\f”(a)|q+3\f”(~”6)}q)é
8\2p+1 b—a 4

+ (3!f”(a)}q+ \f”(fﬂ)lq>é}

4
(b—a)* g Lf" @)+ 3["(0) "\ 5
Sl )
b—a 4
3| " (x q + "(p q é

+<!f()|4\f()|)}] (10)

Proof. From Lemma 1 and using the well-known Hoélder inequality, we have

Iy(z,a,b)]
Séfb__aﬂ/oltzpdt)’l’(/ol e 1 )
8(b—a)</01t2pdt>;</01 f,,(1;t$+ 1;%)
S ([ ([ e )’

([ (] e
14t 1t th>;

f”( 5 x+ 5 a)

IN

144 1-1

0| =

—~ N
[\
i)
_.I_

+

—~ =8

[ ]|

IS
2l -

/N

o\,;

~
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Since | f” | is convex on [a, b], by using (2) we have

0 [t Lt far < L)
q 3/ (a)|" + | (=) |

2 2 4 ’
! 1—t 1+t
¥ " dt <
(m)/o f ( 5 T+ 5 a) < 1 ,

(iz’i)/o f”(1+tx+1_tb)’th§ 310" ()" + 117 (0)] (14)

(12)

f'// (

and

2 2 4 ’
@) [ 7 Cgte s Bty far < VOLEIOE

By substituting (12)-(15) in (11), we get the desired result.

Corollary 2.2. Under the conditions of Theorem 2.2, if we choose v = =
in the inequality (10), by the inequalities (2) and (3) we have

i [ su— 5 - HOIO o ) ]
= <2p1+1)p(bg4a)

//a ”i % " ,,% L
X{(!J“(Hj}f 2|> (3\f(|z}f |>
+(If”(%)l Z3|f”( \)é (3\f”( )\4+!f”( |>3]

< (557) () (o st o) @)+ ) )
Proof. By using the fact that
Yo (ug +ox)® <X (ug)® + X5y (vr)® (16)

for ug, vy, > 0,1 <k <nand0<s<1, weget

(177 @)+ 31" (D) + (@) + 17 (D)’
(1D 8 @1) + (1 D o))
< (3) (e85t ) @]+ 101}

which implies that the second inequality holds.
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Theorem 2.3. Let f: I C [0,00) = R be a twice differentiable function on
the interior I of an interval I such that f* € Li[a,b], where a,b € I° with
a<b. If| f"|? is convex on [a,b] for some fized ¢ > 1, then for any x € |a, b
the following inequality holds:

‘If(m,a,b)‘

Si[(:c—a)?’
241 b—a
(b— )’
b—a

{(!f”(a)\qzﬂf”(w)!q)é . <7|f”(a)\q; !f”(x)}q>é}
{<7|f”(fv)\ +]f"(0)] )é+(|f”(ﬁf)\ +7(0)] )H

8 8

+

Proof. Suppose that ¢ > 1. From Lemma 1 and using the well-known
power-mean inequality, we have

1+t +1—t>
x a
2 2

th) g

1 1—t¢

7 ( 5t 3 b)

b
(
( ! 1+t
(

1+1

t2

f/l(

)

_t q 1

5o+ —5a)

1+

t 1—¢ (9. \3
dt)q

2

x+2a)

1

1

f/l ( 2

1+1

21:—1—219)

x +

2

)| at)’

1

th) ‘ }] .

Since | f” |7 is convex on [a, b], by using (2) we have

W[ e

f//( €T _|_

14+t

1—t
2 54

q
}dtg

(@) + 71 (@)

24 ’

(17)
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and

1< @ + @)

(i1) /01t2 f”(lgtwr 1'2”@) dt < o . (19)
i) /01t2 f,,(1—2kt$+ 1;tb)‘th . 7\f”(9f:)|q2;r EHOIN (20)
(iv)/01t2 f”(lgtaﬁ—l— 1;tb)‘th < ’f,/($)}q;r47|f/,(b)‘q. (21)

By substituting (18)-(21) in (17), we get the desired result.
ath

Corollary 2.3. Under the conditions of Theorem 2.3, if we choose x = 3=,
by the inequalities (2),(3) and (16) we have

‘%/abf(u)du_ﬂa;b)_f(a);f(b)
O o)~ 1)}
()

NN (d @)+ D))

< (1 @1+ 715
(T @)+ (17D )]

K
< <1l6>1<1+7q+9q+15 >( 195)2{}]“ (a )|+|f”(b)\}.

Theorem 2.4. Let f : I C [0,00) — R be a twice differentiable function on
the interior I of an interval I such that f* € Li[a,b], where a,b € I° with
a<b. If| f"1]9is concave on [a,b] for some fixred ¢ > 1 with % + % =1, then
for any x € [a,b] the following inequality holds:

‘[f(:z:,a,b)’
<3(o7) =2+ s )
Sl P

Proof. From Lemma 1 and using the well-known Holder inequality for ¢ > 1
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with 117 + % =1, we have

1y(,0,0)
(z—a)*r (15 N\ /‘1 S+t 1=t o N
B[ ([ e )
a

1-— 1

“at)"Y]. 22)

Since | f” |7 is concave on [a, b], we can use the Jensen’s integral inequality

to obtain:
(M, Lt 1=t e a4+ 3w, |
@ [ |5 te s e < [ () (23)
0
and
Yyl —t 1+t e 3a+ x4
(u)/ f/( 5 T 5 a) dt < f”(%) , (24)
0
N LI = S B T L 3w+ by e
(m)/ f( 5 x 5 b) dt < |f (xT) , (25)
0
N SR PP R A RN L2+ 3by e
(w)/ f' (5= + —b)| dt < | (=) (26)
0

By substituting (23)-(26) in (22), we get the desired result.

Corollary 2.4. Under the conditions of Theorem 2.4, if we choose x = “T*b,
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then we have
2 [ fwau— 5 - L0

2
( _a) / /
2w - r@}]
5a + 3b

< () S [l D) + [ )
n f”(a;?b)’-i- f,,(3a;—6b)H.

Theorem 2.5. Let f : I C [0,00) = R be a twice differentiable function on
the interior I° of an interval I such that f' € Li[a,b], where a,b € I° with
a<b. If| f" |9 is concave on [a,b] for some fized ¢ > 1, then for any x € |a, b
the following inequality holds:

’[f(a:,a,b)‘
<ol 5ot

+(%:? {

f,,(a+87x)’
el

Proof. From Lemma 1, we have

el

rED) 7

N1+t 1—t

‘If x,a,b)‘
T+ 5 a))

:r;—a) /
( 1+ta)‘}dt
/‘ ”1+t Ly Lt

> )
L*%M}&. (28)
Since | f” | is concave on |[a, b], we have
o [ e @]+ @) far
1 . Loo(14t 1 ta)d
o ([ ra (B
1

§ fl/(

/‘\

1-1

a4+ Tx
5|

(29)
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e - 1 Ly, 7
i) [ e @]+ S @ fa< g () )
ool 1- Ly, Tx+0
(m')/o t2{%t () +Tt f”(b)‘}dtﬁ 2 f”(%)‘, (31)
o[t al—=ty,, 1+t|,, 1(,,,x+7b
R e IR F O R G R
By substituting (29)-(32) in (28), we get the desired result.
a+b

Corollary 2.5. Under the conditions of Theorem 2.5, if we choose x = 432,
then we have

+ ) - )]
(b—a)?r|,,,9a+Tb ,15a+0b
T SR ]
Ta + 9D

()] + 5]

<

References

[1] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc., 54 (1948)
439-460. http://dx.doi.org/10.1090 /50002-9904-1948-08994-7

[2] S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard
integral inequalities and applications, Melbourne and Adelaide, December
(2000).

[3] S. S. Dragomir, S. Fitzpatrick, The Hadamard’s iequality for s-convex
functions in the second sense, Demonstratio Math., 32(4) (1999) 687-696.

[4] S. S. Dragomir, R. P. Agarwal Two inequalities for differentiable
mappings and applications to special means of real numbers and
to trapezoidal formula, Applied Math. Lett., 11(5) (1998) 91-95.
http://dx.doi.org/10.1016/s0893-9659(98)00086-x

[5] Imdat Iscan, New estimates on generalization of some integral inequalities
for ds-convex functions and their applications, Int. J. Pure Appl. Math.,
86(4) (2013) 727-746. http://dx.doi.org/10.12732 /ijpam.v86i4.11

[6] Imdat Iscan, On generalization of different type integral inequalities for
s-convex functions via fractional integrals presented



Inequalities of Hermite-Hadamard-like type 13

[7]

H. Kavurmaci, M. Avei, M. E. Ozdemir, New inequalities of Hermite-
Hadamard’s type for convex functions with applications , Journ. of In-
equal. and Appl., 2011:86 (2011). http://dx.doi.org/10.1186,/1029-242x-
2011-86

U. S. Kirmaci, K. Klarri¢i¢, M. E. Ozdemir, J. Pecari¢, Hadamard-type
inequalities for s-convex functions, Appl. Math. Comput., 193(1) (2007)
26-35. http://dx.doi.org/10.1016/j.amc.2007.03.030

M. A. Latif, Inequalities of Hermite-Hadamard type for func-
tions whose derivatives in absolute value are convex with
applications, Arab J. Math. Sci., (2014) Article in press.
http://dx.doi.org/10.1016/j.ajmsc.2014.01.002

V. G. Mihegan, A generalization of the convexity, Seminar on Functional
FEquations, Approz. and Convez, Cluj-Napoca, Romania (1993).

M. E. Ozdemir, M. Avic, H. Kavurmaci, Hermite-Hadamard type inequal-
ities for s-convex and s-concave functions via fractional integrals, arXiv:

1202.0380v1 [math.CA] .

Jaekeun Park, Generalization of some Simpson-like type inequalities via
differentiable s-convex mappings in the second sense, Inter. J. of Math.
and Math. Sci., 2011 Art No: 493531, 13 pages. doi:10.1155/2011/493531.

M. Z. Sarikaya, E. Set, H. Yildiz, N. Bagsak, Hermite-Hadamard’s inequal-
ities for fractional integrals and related fractional inequalities, Math. and
Comput. Model., 2011 (2011). doi:10.1016/j.mcm.2011.12.048.

K. L. Tseng, S. R. Hwang, S. S. Dragomir, Fejér-type inequali-
ties(I), J. Inequal. Appl., 2010 (2010), Art ID: 531976, 7 pages.
http://dx.doi.org/10.1155/2010/531976

Gh. Toader, On a generalization of the convexity, Mathematica, 30(53)
(1988), 83-87.

M. Tung, On some new inequalities for convex functions, Turk. J. Math.,
35 (2011), 1-7.

M. Tung, New integral inequalities for s-convex func-
tions, RGMIA  Research  Report  Collection,  13(2) (2010),
http://ajmaa.org/RGMIA /v13n2.php.

Received: November 25, 2014; Published: December 22, 2014



