INEQUALITIES OF HERMITE-HADAMARD TYPE FOR GA-CONVEX FUNCTIONS

S. S. DRAGOMIR ${ }^{1,2}$

Abstract. Some inequalities of Hermite-Hadamard type for $G A$-convex func-
tions defined on positive intervals are given.

1. Introduction

Let $I \subset(0, \infty)$ be an interval; a real-valued function $f: I \rightarrow \mathbb{R}$ is said to be GA-convex (concave) on I if

$$
\begin{equation*}
f\left(x^{1-\lambda} y^{\lambda}\right) \leq(\geq)(1-\lambda) f(x)+\lambda f(y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in I$ and $\lambda \in[0,1]$.
Since the condition (1.1) can be written as
(1.2) $f \circ \exp ((1-\lambda) \ln x+\lambda \ln y) \leq(\geq)(1-\lambda) f \circ \exp (\ln x)+\lambda f \circ \exp (\ln y)$, then we observe that $f: I \rightarrow \mathbb{R}$ is GA-convex (concave) on I if and only if $f \circ \exp$ is convex (concave) on $\ln I:=\{\ln z, z \in I\}$. If $I=[a, b]$ then $\ln I=[\ln a, \ln b]$.

It is known that the function $f(x)=\ln (1+x)$ is $G A$-convex on $(0, \infty)$ [4].
For real and positive values of x, the Euler gamma function Γ and its logarithmic derivative ψ, the so-called digamma function, are defined by

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t \text { and } \psi(x):=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
$$

It has been shown in [54] that the function $f:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
f(x)=\psi(x)+\frac{1}{2 x}
$$

is $G A$-concave on $(0, \infty)$ while the function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x)=\psi(x)+\frac{1}{2 x}+\frac{1}{12 x^{2}}
$$

is $G A$-convex on $(0, \infty)$.
If $[a, b] \subset(0, \infty)$ and the function $g:[\ln a, \ln b] \rightarrow \mathbb{R}$ is convex (concave) on $[\ln a, \ln b]$, then the function $f:[a, b] \rightarrow \mathbb{R}, f(t)=g(\ln t)$ is GA-convex (concave) on $[a, b]$.

Indeed, if $x, y \in[a, b]$ and $\lambda \in[0,1]$, then

$$
\begin{aligned}
f\left(x^{1-\lambda} y^{\lambda}\right) & =g\left(\ln \left(x^{1-\lambda} y^{\lambda}\right)\right)=g[(1-\lambda) \ln x+\lambda \ln y] \\
& \leq(\geq)(1-\lambda) g(\ln x)+\lambda g(\ln y)=(1-\lambda) f(x)+\lambda f(y)
\end{aligned}
$$

showing that f is GA-convex (concave) on $[a, b]$.

[^0]We recall that the classical Hermite-Hadamard inequality that states that

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{f(a)+f(b)}{2} \tag{1.3}
\end{equation*}
$$

for any convex function $f:[a, b] \rightarrow \mathbb{R}$.
For related results, see [1]-[20], [23]-[25], [26]-[35] and [36]-[46].
In [54] the authors obtained the following Hermite-Hadamard type inequality.
Theorem 1. If $b>a>0$ and $f:[a, b] \rightarrow \mathbb{R}$ is a differentiable $G A$-convex (concave) function on $[a, b]$, then

$$
\begin{equation*}
f(I(a, b)) \leq(\geq) \frac{1}{b-a} \int_{a}^{b} f(t) d t \leq(\geq) \frac{b-L(a, b)}{b-a} f(b)+\frac{L(a, b)-a}{b-a} f(a) \tag{1.4}
\end{equation*}
$$

The identric mean $I(a, b)$ is defined by

$$
I(a, b):=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}}
$$

while the logarithmic mean is defined by

$$
L(a, b):=\frac{b-a}{\ln b-\ln a} .
$$

The differentiability of the function is not necessary in Theorem 1 for the first inequality (1.4) to hold. A proof of this fact is proved below after some short preliminaries. The second inequality in (1.4) has been proved in [54] without differentiability assumption.

2. Preliminaries

We recall some facts on the lateral derivatives of a convex function.
Suppose that I is an interval of real numbers with interior $\stackrel{\circ}{I}$ and $f: I \rightarrow \mathbb{R}$ is a convex function on I. Then f is continuous on $i \circ$ and has finite left and right derivatives at each point of $\stackrel{\circ}{I}$. Moreover, if $x, y \in \stackrel{\circ}{I}$ and $x<y$, then $f_{-}^{\prime}(x) \leq$ $f_{+}^{\prime}(x) \leq f_{-}^{\prime}(y) \leq f_{+}^{\prime}(y)$ which shows that both f_{-}^{\prime} and f_{+}^{\prime} are nondecreasing function on $\stackrel{\circ}{I}$. It is also known that a convex function must be differentiable except for at most countably many points.

For a convex function $f: I \rightarrow \mathbb{R}$, the subdifferential of f denoted by ∂f is the set of all functions $\varphi: I \rightarrow[-\infty, \infty]$ such that $\varphi(\stackrel{\circ}{\mathrm{I}}) \subset \mathbb{R}$ and

$$
f(x) \geq f(a)+(x-a) \varphi(a) \text { for any } x, a \in I
$$

It is also well known that if f is convex on I, then ∂f is nonempty, $f_{-}^{\prime}, f_{+}^{\prime} \in \partial f$ and if $\varphi \in \partial f$, then

$$
f_{-}^{\prime}(x) \leq \varphi(x) \leq f_{+}^{\prime}(x) \text { for any } x \in \stackrel{\circ}{I}
$$

In particular, φ is a nondecreasing function.
If f is differentiable and convex on \dot{I}, then $\partial f=\left\{f^{\prime}\right\}$.
Now, since $f \circ \exp$ is convex on $[\ln a, \ln b]$ it follows that f has finite lateral derivatives on $(\ln a, \ln b)$ and by gradient inequality for convex functions we have

$$
\begin{equation*}
f \circ \exp (x)-f \circ \exp (y) \geq(x-y) \varphi(\exp y) \exp y \tag{2.1}
\end{equation*}
$$

where $\varphi(\exp y) \in\left[f_{-}^{\prime}(\exp y), f_{+}^{\prime}(\exp y)\right]$ for any $x, y \in(\ln a, \ln b)$.

If $s, t \in(a, b)$ and we take in $(2.1) x=\ln t, y=\ln s$, then we get

$$
\begin{equation*}
f(t)-f(s) \geq(\ln t-\ln s) \varphi(s) s \tag{2.2}
\end{equation*}
$$

where $\varphi(s) \in\left[f_{-}^{\prime}(s), f_{+}^{\prime}(s)\right]$.
Now, if we take the integral mean on $[a, b]$ in the inequality (2.2) we get

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t-f(s) \geq\left(\frac{1}{b-a} \int_{a}^{b} \ln t d t-\ln s\right) \varphi(s) s
$$

and since

$$
\frac{1}{b-a} \int_{a}^{b} \ln t d t=\ln I(a, b)
$$

then we get

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(s)+(\ln I(a, b)-\ln s) \varphi(s) s \tag{2.3}
\end{equation*}
$$

for any $s \in(a, b)$ and $\varphi(s) \in\left[f_{-}^{\prime}(s), f_{+}^{\prime}(s)\right]$. This is an inequality of interest in itself.

Now, if we take in $(2.3) s=I(a, b) \in(a, b)$ then we get the first inequality in (1.4) for GA-convex functions.

If f is differentiable and GA-convex on (a, b), then we have from (2.3) the inequality

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(s)+(\ln I(a, b)-\ln s) f^{\prime}(s) s \tag{2.4}
\end{equation*}
$$

for any $s \in(a, b)$.
If we take in (2.4) $s=\frac{a+b}{2}=A(a, b)$, then we get

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(A(a, b))-f^{\prime}(A(a, b)) A(a, b) \ln \left(\frac{A(a, b)}{I(a, b)}\right) \tag{2.5}
\end{equation*}
$$

If we assume that $f^{\prime}(A(a, b)) \leq 0$, then, since $I(a, b) \leq A(a, b)$, we get

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(A(a, b)) \tag{2.6}
\end{equation*}
$$

provided that f is differentiable and GA-convex on (a, b).
Also, if we take in (2.4) $s=L(a, b)$, then we get

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(L(a, b))+f^{\prime}(L(a, b)) L(a, b) \ln \left(\frac{I(a, b)}{L(a, b)}\right) \tag{2.7}
\end{equation*}
$$

If we assume that $f^{\prime}(L(a, b)) \geq 0$, then we get from (2.7) that

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(L(a, b)) \tag{2.8}
\end{equation*}
$$

provided that f is differentiable and GA-convex on (a, b).
Now, if we take in (2.4) $s=\sqrt{a b}=G(a, b)$, then we get

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(G(a, b))+f^{\prime}(G(a, b)) G(a, b) \ln \left(\frac{I(a, b)}{G(a, b)}\right) \tag{2.9}
\end{equation*}
$$

Since

$$
\begin{aligned}
\ln \left(\frac{I(a, b)}{G(a, b)}\right) & =\ln I(a, b)-\ln G(a, b) \\
& =\frac{b \ln b-a \ln a}{b-a}-1-\frac{\ln a+\ln b}{2} \\
& =\frac{a+b}{2} \frac{\ln b-\ln a}{b-a}-1=\frac{A(a, b)-L(a, b)}{L(a, b)},
\end{aligned}
$$

then (2.9) is equivalent to

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(G(a, b))+f^{\prime}(G(a, b)) G(a, b) \frac{A(a, b)-L(a, b)}{L(a, b)} \tag{2.10}
\end{equation*}
$$

If $f^{\prime}(G(a, b)) \geq 0$, then we have

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t \geq f(G(a, b)) \tag{2.11}
\end{equation*}
$$

provided that f is differentiable and GA-convex on (a, b).
Motivated by the above results we establish in this paper other inequalities of Hermite-Hadamard type for GA-convex functions. Applications for special means are also provided.

3. New Results

We start with the following result that provide in the right side of (1.4) a bound in terms of the identric mean.

Theorem 2. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a GA-convex (concave) function on $[a, b]$. Then we have

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f(t) d t & \leq(\geq) \frac{(\ln b-\ln I(a, b)) f(a)+(\ln I(a, b)-\ln a) f(b)}{\ln b-\ln a} \tag{3.1}\\
& =\frac{b-L(a, b)}{b-a} f(b)+\frac{L(a, b)-a}{b-a} f(a) .
\end{align*}
$$

Proof. Since is a $G A$-convex (concave) function on $[a, b]$ then $f \circ \exp$ is convex (concave) and we have

$$
\begin{align*}
f(t) & =f \circ \exp (\ln t)=f \circ \exp \left(\frac{(\ln b-\ln t) \ln a+(\ln t-\ln a) \ln b}{\ln b-\ln a}\right) \tag{3.2}\\
& \leq(\geq) \frac{(\ln b-\ln t) f \circ \exp (\ln a)+(\ln t-\ln a) f \circ \exp (\ln b)}{\ln b-\ln a} \\
& =\frac{(\ln b-\ln t) f(a)+(\ln t-\ln a) f(b)}{\ln b-\ln a}
\end{align*}
$$

for any $t \in[a, b]$.
This inequality is of interest in itself as well.
If we take the integral mean in (3.2) we get

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(t) d t \\
& \leq(\geq) \frac{\left(\ln b-\frac{1}{b-a} \int_{a}^{b} \ln t d t\right) f(a)+\left(\frac{1}{b-a} \int_{a}^{b} \ln t d t-\ln a\right) f(b)}{\ln b-\ln a}
\end{aligned}
$$

and since

$$
\frac{1}{b-a} \int_{a}^{b} \ln t d t=\ln I(a, b)
$$

then we obtain the desired result (3.1).
Now, we observe that

$$
\begin{aligned}
\frac{\ln b-\ln I(a, b)}{\ln b-\ln a} & =\frac{\ln b-\frac{b \ln b-a \ln a}{b-a}+1}{\ln b-\ln a} \\
& =\frac{(b-a) \ln b-b \ln b+a \ln a+b-a}{(b-a)(\ln b-\ln a)} \\
& =\frac{b-a-a(\ln b-\ln a)}{(b-a)(\ln b-\ln a)} \\
& =\frac{L(a, b)-a}{b-a}
\end{aligned}
$$

and, similarly

$$
\frac{\ln I(a, b)-\ln a}{\ln b-\ln a}=\frac{b-L(a, b)}{b-a}
$$

which proves the last part of (3.1).
If $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ is a $G A$-convex (concave) on I then we have the inequality

$$
\begin{equation*}
f(\sqrt{x y}) \leq(\geq) \frac{f(x)+f(y)}{2} \tag{3.3}
\end{equation*}
$$

for any $x, y \in I$.
The following refinement of (3.3), which is an inequality of Hermite-Hadamard type, holds (see [44] for an extension for $G A h$-convex functions). For the sake of completeness we give here a short proof.
Lemma 1. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a $G A$-convex (concave) function on $[a, b]$. Then we have

$$
\begin{equation*}
f(\sqrt{a b}) \leq(\geq) \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t \leq(\geq) \frac{f(a)+f(b)}{2} \tag{3.4}
\end{equation*}
$$

Proof. By the definition of $G A$-convex (concave) functions on $[a, b]$ we have

$$
\begin{equation*}
f\left(a^{1-\lambda} b^{\lambda}\right) \leq(\geq)(1-\lambda) f(a)+\lambda f(b) \tag{3.5}
\end{equation*}
$$

for any $\lambda \in[0,1]$.
Integrating the inequality (3.5) on $[0,1]$ we get

$$
\begin{equation*}
\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda \leq(\geq) f(a) \int_{0}^{1}(1-\lambda) d \lambda+f(b) \int_{0}^{1} \lambda d \lambda \tag{3.6}
\end{equation*}
$$

Since

$$
\int_{0}^{1}(1-\lambda) d \lambda=\int_{0}^{1} \lambda d \lambda=\frac{1}{2}
$$

and, by changing the variable $t=a^{1-\lambda} b^{\lambda}, \lambda \in[0,1]$, we have

$$
\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t
$$

then by (3.6) we get the second inequality in (3.4).

By the inequality (3.3) we have

$$
\begin{equation*}
f(\sqrt{a b})=f\left(\sqrt{a^{1-\lambda} b^{\lambda} a^{\lambda} b^{1-\lambda}}\right) \leq(\geq) \frac{1}{2}\left[f\left(a^{1-\lambda} b^{\lambda}\right)+f\left(a^{\lambda} b^{1-\lambda}\right)\right] \tag{3.7}
\end{equation*}
$$

for any $\lambda \in[0,1]$.
Integrating the inequality (3.7) $[0,1]$ we get

$$
\begin{equation*}
f(\sqrt{a b}) \leq(\geq) \frac{1}{2}\left[\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda+\int_{0}^{1} f\left(a^{\lambda} b^{1-\lambda}\right) d \lambda\right] \tag{3.8}
\end{equation*}
$$

Since

$$
\int_{0}^{1} f\left(a^{\lambda} b^{1-\lambda}\right) d \lambda=\int_{0}^{1} f\left(a^{1-\lambda} b^{\lambda}\right) d \lambda=\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t
$$

then by (3.8) we get the first inequality in (3.4).
Remark 1. The inequality (3.3) can be also written for any $d>c>0$ with $c, d \in I$ as

$$
\begin{equation*}
f(\sqrt{c d}) \leq(\geq) \int_{0}^{1} f\left(c^{1-\lambda} d^{\lambda}\right) d \lambda \leq(\geq) \frac{f(c)+f(d)}{2} \tag{3.9}
\end{equation*}
$$

provided GA-convex (concave) function on I.
We have the following representation result:
Lemma 2. Let $g:[x, y] \rightarrow \mathbb{C}$ be a Lebesgue integrable function on $[x, y]$. Then for any $\lambda \in[0,1]$ we have the representation

$$
\begin{align*}
\int_{0}^{1} g[(1-t) x+t y] d t & =(1-\lambda) \int_{0}^{1} g[(1-t)((1-\lambda) x+\lambda y)+t y] d t \tag{3.10}\\
& +\lambda \int_{0}^{1} g[(1-t) x+t((1-\lambda) x+\lambda y)] d t
\end{align*}
$$

Proof. For $\lambda=0$ and $\lambda=1$ the equality (3.3) is obvious.
Let $\lambda \in(0,1)$. Observe that

$$
\begin{aligned}
& \int_{0}^{1} g[(1-t)(\lambda y+(1-\lambda) x)+t y] d t \\
& =\int_{0}^{1} g[((1-t) \lambda+t) y+(1-t)(1-\lambda) x] d t
\end{aligned}
$$

and

$$
\int_{0}^{1} g[t(\lambda y+(1-\lambda) x)+(1-t) x] d t=\int_{0}^{1} g[t \lambda y+(1-\lambda t) x] d t
$$

If we make the change of variable $u:=(1-t) \lambda+t$ then we have $1-u=$ $(1-t)(1-\lambda)$ and $d u=(1-\lambda) d u$. Then

$$
\int_{0}^{1} g[((1-t) \lambda+t) y+(1-t)(1-\lambda) x] d t=\frac{1}{1-\lambda} \int_{\lambda}^{1} g[u y+(1-u) x] d u
$$

If we make the change of variable $u:=\lambda t$ then we have $d u=\lambda d t$ and

$$
\int_{0}^{1} g[t \lambda y+(1-\lambda t) x] d t=\frac{1}{\lambda} \int_{0}^{\lambda} g[u y+(1-u) x] d u
$$

Therefore

$$
\begin{aligned}
& (1-\lambda) \int_{0}^{1} g[(1-t)(\lambda y+(1-\lambda) x)+t y] d t \\
& +\lambda \int_{0}^{1} g[t(\lambda y+(1-\lambda) x)+(1-t) x] d t \\
& =\int_{\lambda}^{1} g[u y+(1-u) x] d u+\int_{0}^{\lambda} g[u y+(1-u) x] d u \\
& =\int_{0}^{1} g[u y+(1-u) x] d u
\end{aligned}
$$

and the identity (3.3) is proved.

Corollary 1. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{C}$ be a Lebesgue integrable function on $[a, b]$. Then for any $\lambda \in[0,1]$ we have the representation

$$
\begin{align*}
& \int_{0}^{1} f\left(a^{1-s} b^{s}\right) d s \tag{3.11}\\
& =(1-\lambda) \int_{0}^{1} f\left(\left[a^{(1-\lambda)} b^{\lambda}\right]^{1-s} b^{s}\right) d s+\lambda \int_{0}^{1} f\left(a^{1-s}\left[a^{(1-\lambda)} b^{\lambda}\right]^{s}\right) d s
\end{align*}
$$

Proof. Using (3.10) we have

$$
\begin{aligned}
& \int_{0}^{1} f\left(a^{1-s} b^{s}\right) d s \\
& =\int_{0}^{1} f \circ \exp ((1-s) \ln a+s \ln b) d s \\
& =(1-\lambda) \int_{0}^{1} f \circ \exp [(1-t)((1-\lambda) \ln a+\lambda \ln b)+t \ln b] d t \\
& +\lambda \int_{0}^{1} f \circ \exp [(1-t) \ln a+t((1-\lambda) \ln a+\lambda \ln b)] d t \\
& =(1-\lambda) \int_{0}^{1} f \circ \exp \left[(1-t) \ln \left[a^{(1-\lambda)} b^{\lambda}\right]+t \ln b\right] d t \\
& +\lambda \int_{0}^{1} f \circ \exp \left[(1-t) \ln a+t \ln \left[a^{(1-\lambda)} b^{\lambda}\right]\right] d t \\
& =(1-\lambda) \int_{0}^{1} f\left(\left[a^{(1-\lambda)} b^{\lambda}\right]^{1-t} b^{t}\right) d t+\lambda \int_{0}^{1} f\left(a^{1-t}\left[a^{(1-\lambda)} b^{\lambda}\right]^{t}\right) d t \\
& =(1-\lambda) \int_{0}^{1} f\left(\left[a^{(1-\lambda)} b^{\lambda}\right]^{1-s} b^{s}\right) d s+\lambda \int_{0}^{1} f\left(a^{1-s}\left[a^{(1-\lambda)} b^{\lambda}\right]^{s}\right) d s
\end{aligned}
$$

and the identity (3.11) is proved.

We are able now to provide a refinement of (3.4) as follows:

Theorem 3. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a GA-convex (concave) function on $[a, b]$. Then for any $\lambda \in[0,1]$ we have

$$
\begin{align*}
f(\sqrt{a b}) & \leq(\geq)(1-\lambda) f\left(a^{\frac{1-\lambda}{2}} b^{\frac{\lambda+1}{2}}\right)+\lambda f\left(a^{\frac{2-\lambda}{2}} b^{\frac{\lambda}{2}}\right) \tag{3.12}\\
& \leq(\geq) \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t \\
& \leq(\geq) \frac{1}{2}\left[f\left(a^{1-\lambda} b^{\lambda}\right)+(1-\lambda) f(b)+\lambda f(a)\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

Proof. We prove the inequalities only for the $G A$-convex case.
Using the inequality (3.9) we have

$$
f\left(\sqrt{a^{1-\lambda} b^{\lambda} b}\right) \leq \int_{0}^{1} f\left(\left[a^{1-\lambda} b^{\lambda}\right]^{1-s} b^{s}\right) d s \leq \frac{f\left(a^{1-\lambda} b^{\lambda}\right)+f(b)}{2}
$$

that is equivalent to

$$
\begin{equation*}
f\left(a^{\frac{1-\lambda}{2}} b^{\frac{\lambda+1}{2}}\right) \leq \int_{0}^{1} f\left(\left[a^{1-\lambda} b^{\lambda}\right]^{1-s} b^{s}\right) d s \leq \frac{f\left(a^{1-\lambda} b^{\lambda}\right)+f(b)}{2} \tag{3.13}
\end{equation*}
$$

for any $\lambda \in[0,1]$.
We also have

$$
f\left(\sqrt{a a^{1-\lambda} b^{\lambda}}\right) \leq \int_{0}^{1} f\left(a^{1-s}\left[a^{1-\lambda} b^{\lambda}\right]^{s}\right) d s \leq \frac{f(a)+f\left(a^{1-\lambda} b^{\lambda}\right)}{2}
$$

that is equivalent to

$$
\begin{equation*}
f\left(a^{\frac{2-\lambda}{2}} b^{\frac{\lambda}{2}}\right) \leq \int_{0}^{1} f\left(a^{1-s}\left[a^{1-\lambda} b^{\lambda}\right]^{s}\right) d s \leq \frac{f(a)+f\left(a^{1-\lambda} b^{\lambda}\right)}{2} \tag{3.14}
\end{equation*}
$$

for any $\lambda \in[0,1]$.
If we multiply (3.13) by $1-\lambda$ and (3.14) by λ and add the obtained inequalities we get, by the identity (3.11), that

$$
\begin{aligned}
& (1-\lambda) f\left(a^{\frac{1-\lambda}{2}} b^{\frac{\lambda+1}{2}}\right)+\lambda f\left(a^{\frac{2-\lambda}{2}} b^{\frac{\lambda}{2}}\right) \\
& \leq \int_{0}^{1} f\left(a^{1-s} b^{s}\right) d s \\
& \leq(1-\lambda) \frac{f\left(a^{1-\lambda} b^{\lambda}\right)+f(b)}{2}+\lambda \frac{f(a)+f\left(a^{1-\lambda} b^{\lambda}\right)}{2} \\
& =\frac{1}{2}\left[f\left(a^{1-\lambda} b^{\lambda}\right)+(1-\lambda) f(b)+\lambda f(a)\right]
\end{aligned}
$$

for any $\lambda \in[0,1]$.
This proves the second and third inequalities in (3.12).
By the $G A$-convexity we have

$$
\begin{aligned}
(1-\lambda) f\left(a^{\frac{1-\lambda}{2}} b^{\frac{\lambda+1}{2}}\right)+\lambda f\left(a^{\frac{2-\lambda}{2}} b^{\frac{\lambda}{2}}\right) & \geq f\left[\left(a^{\frac{1-\lambda}{2}} b^{\frac{\lambda+1}{2}}\right)^{1-\lambda}\left(a^{\frac{2-\lambda}{2}} b^{\frac{\lambda}{2}}\right)^{\lambda}\right] \\
& =f\left(a^{\frac{1}{2}} b^{\frac{1}{2}}\right)
\end{aligned}
$$

which proves the first inequality in (3.12).

By the $G A$-convexity we also have

$$
\begin{aligned}
& \frac{1}{2}\left[f\left(a^{1-\lambda} b^{\lambda}\right)+(1-\lambda) f(b)+\lambda f(a)\right] \\
& \leq \frac{1}{2}[(1-\lambda) f(a)+\lambda f(b)+(1-\lambda) f(b)+\lambda f(a)] \\
& =\frac{f(a)+f(b)}{2}
\end{aligned}
$$

which proves the last inequality in (3.12).
Corollary 2. With the assumptions of Theorem 3 we have

$$
\begin{align*}
f(\sqrt{a b}) & \leq(\geq) \frac{1}{2}\left[f\left(a^{\frac{1}{4}} b^{\frac{3}{4}}\right)+f\left(a^{\frac{3}{4}} b^{\frac{1}{4}}\right)\right] \tag{3.15}\\
& \leq(\geq) \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t \\
& \leq(\geq) \frac{1}{2}\left[f(\sqrt{a b})+\frac{f(b)+f(a)}{2}\right] \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

4. Related Results

The following result also holds:
Theorem 4. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a $G A$-convex (concave) function on $[a, b]$. Then for any $t \in[a, b]$ we have

$$
\begin{align*}
& \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.1}\\
& \leq(\geq) \frac{1}{2}\left[f(t)+\frac{f(b)(\ln b-\ln t)+f(a)(\ln t-\ln a)}{\ln b-\ln a}\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

Proof. We give a proof only for the $G A$-convex case.
From the inequality (2.2) we have that

$$
\begin{equation*}
f(t)-f(s) \geq(\ln t-\ln s) f_{+}^{\prime}(s) s \tag{4.2}
\end{equation*}
$$

for any $s \in(a, b)$ and $t \in[a, b]$.
We divide by $s>0$ and integrate on $[a, b]$ over s to get

$$
\begin{equation*}
f(t) \int_{a}^{b} \frac{1}{s} d s-\int_{a}^{b} \frac{f(s)}{s} d s \geq\left(\int_{a}^{b} f_{+}^{\prime}(s) d s\right) \ln t-\int_{a}^{b} f_{+}^{\prime}(s) \ln s d s \tag{4.3}
\end{equation*}
$$

for any $t \in[a, b]$.
However

$$
\int_{a}^{b} \frac{1}{s} d s=\ln b-\ln a, \int_{a}^{b} f_{+}^{\prime}(s) d s=f(b)-f(a)
$$

and

$$
\int_{a}^{b} f_{+}^{\prime}(s) \ln s d s=\left.f(s) \ln s\right|_{a} ^{b}-\int_{a}^{b} \frac{f(s)}{s} d s=f(b) \ln b-f(a) \ln a-\int_{a}^{b} \frac{f(s)}{s} d s
$$

Therefore, by (4.3) we get

$$
\begin{aligned}
& f(t)(\ln b-\ln a)-\int_{a}^{b} \frac{f(s)}{s} d s \\
& \geq(f(b)-f(a)) \ln t-f(b) \ln b+f(a) \ln a+\int_{a}^{b} \frac{f(s)}{s} d s
\end{aligned}
$$

namely

$$
f(t)(\ln b-\ln a)-(f(b)-f(a)) \ln t+f(b) \ln b-f(a) \ln a \geq 2 \int_{a}^{b} \frac{f(s)}{s} d s
$$

which can be written as

$$
f(t)(\ln b-\ln a)+f(b)(\ln b-\ln t)+f(a)(\ln t-\ln a) \geq 2 \int_{a}^{b} \frac{f(s)}{s} d s
$$

and the first inequality in (4.1) is proved.
Using (3.2) we have

$$
\begin{aligned}
& f(t)+\frac{f(b)(\ln b-\ln t)+f(a)(\ln t-\ln a)}{\ln b-\ln a} \\
& \leq \frac{(\ln b-\ln t) f(a)+(\ln t-\ln a) f(b)}{\ln b-\ln a} \\
& +\frac{f(b)(\ln b-\ln t)+f(a)(\ln t-\ln a)}{\ln b-\ln a} \\
& =f(a)+f(b)
\end{aligned}
$$

for any $t \in[a, b]$ that proves the last part of (4.1).

By taking the integral mean in the inequality (4.1) we have:
Corollary 3. With the assumptions in Theorem 4 we have

$$
\begin{align*}
& \text { 4) } \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.4}\\
& \leq(\geq) \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(t) d t+\frac{f(b)(\ln b-\ln I(a, b))+f(a)(\ln I(a, b)-\ln a)}{\ln b-\ln a}\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2} .
\end{align*}
$$

Since a simple calculation reveals (see the proof of Theorem 2) that

$$
\begin{aligned}
& \frac{f(b)(\ln b-\ln I(a, b))+f(a)(\ln I(a, b)-\ln a)}{\ln b-\ln a} \\
& =\frac{L(a, b)-a}{b-a} f(b)+\frac{b-L(a, b)}{b-a} f(a)
\end{aligned}
$$

then the inequality (4.4) is equivalent to

$$
\begin{align*}
& \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.5}\\
& \leq(\geq) \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(t) d t+\frac{L(a, b)-a}{b-a} f(b)+\frac{b-L(a, b)}{b-a} f(a)\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

Remark 2. Taking specific values for $t \in[a, b]$ in (4.1) we get the following results

$$
\begin{align*}
& \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.6}\\
& \leq(\geq) \frac{1}{2}\left[f\left(\frac{a+b}{2}\right)+\frac{f(b)\left(\ln b-\ln \frac{a+b}{2}\right)+f(a)\left(\ln \frac{a+b}{2}-\ln a\right)}{\ln b-\ln a}\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

$$
\begin{align*}
\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s & \leq(\geq) \frac{1}{2}\left[f(\sqrt{a b})+\frac{f(a)+f(b)}{2}\right] \tag{4.7}\\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.8}\\
& \leq(\geq) \frac{1}{2}\left[f(I(a, b))+\frac{f(b)(\ln b-\ln I(a, b))+f(a)(\ln I(a, b)-\ln a)}{\ln b-\ln a}\right] \\
& =\frac{1}{2}\left[f(I(a, b))+\frac{L(a, b)-a}{b-a} f(b)+\frac{b-L(a, b)}{b-a} f(a)\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.9}\\
& \leq(\geq) \frac{1}{2}\left[f(L(a, b))+\frac{f(b)(\ln b-\ln L(a, b))+f(a)(\ln L(a, b)-\ln a)}{\ln b-\ln a}\right] \\
& \leq(\geq) \frac{f(a)+f(b)}{2}
\end{align*}
$$

Now, observe that

$$
f(b)(\ln b-\ln t)+f(a)(\ln t-\ln a)=0
$$

iff

$$
\ln t=\frac{f(b) \ln b-f(a) \ln a}{f(b)-f(a)}=\ln \left(\frac{b^{f(b)}}{a^{f(a)}}\right)^{\frac{1}{f(b)-f(a)}}
$$

which is equivalent to

$$
t=\left(\frac{b^{f(b)}}{a^{f(a)}}\right)^{\frac{1}{f(b)-f(a)}}
$$

Therefore, if

$$
t=\left(\frac{b^{f(b)}}{a^{f(a)}}\right)^{\frac{1}{f(b)-f(a)}} \in[a, b]
$$

then by (4.1) we get

$$
\begin{equation*}
\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \leq(\geq) \frac{1}{2} f\left(\left(\frac{b^{f(b)}}{a^{f(a)}}\right)^{\frac{1}{f(b)-f(a)}}\right) \leq(\geq) \frac{f(a)+f(b)}{2} \tag{4.10}
\end{equation*}
$$

The following result also holds
Theorem 5. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a $G A$-convex (concave) function on $[a, b]$. Then for any $t \in[a, b]$ we have

$$
\begin{align*}
& \frac{1}{2}\left[f(t)+\frac{f(b) b(\ln b-\ln t)+a f(a)(\ln t-\ln a)}{b-a}\right]-\frac{1}{b-a} \int_{a}^{b} f(s) d s \tag{4.11}\\
& \geq(\leq) \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s-\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \ln t\right]
\end{align*}
$$

Proof. We give a proof only for the $G A$-convex case.
Integrate over s in the inequality (4.2) to get

$$
\begin{equation*}
f(t)(b-a)-\int_{a}^{b} f(s) d s \geq \ln t \int_{a}^{b} f_{+}^{\prime}(s) s d s-\int_{a}^{b} f_{+}^{\prime}(s) s \ln s d s \tag{4.12}
\end{equation*}
$$

for any $t \in[a, b]$.
Observe that, integrating by parts in the Lebesgue integral, we have

$$
\int_{a}^{b} f_{+}^{\prime}(s) s d s=b f(b)-a f(a)-\int_{a}^{b} f(s) d s
$$

and

$$
\begin{aligned}
\int_{a}^{b} f_{+}^{\prime}(s) s \ln s d s & =f(b) b \ln b-f(a) a \ln a-\int_{a}^{b}(s \ln s)^{\prime} f(s) d s \\
& =f(b) b \ln b-f(a) a \ln a-\int_{a}^{b}(\ln s+1) f(s) d s \\
& =f(b) b \ln b-f(a) a \ln a-\int_{a}^{b} f(s) \ln s d s-\int_{a}^{b} f(s) d s
\end{aligned}
$$

Using the inequality (4.12) we get

$$
\begin{aligned}
& f(t)(b-a)-\int_{a}^{b} f(s) d s \\
& \geq \ln t\left(b f(b)-a f(a)-\int_{a}^{b} f(s) d s\right) \\
& -f(b) b \ln b+f(a) a \ln a+\int_{a}^{b} f(s) \ln s d s+\int_{a}^{b} f(s) d s \\
& =b f(b) \ln t-a f(a) \ln t-\ln t \int_{a}^{b} f(s) d s \\
& -f(b) b \ln b+f(a) a \ln a+\int_{a}^{b} f(s) \ln s d s+\int_{a}^{b} f(s) d s
\end{aligned}
$$

that is equivalent to

$$
\begin{aligned}
& f(t)(b-a)-b f(b) \ln t+a f(a) \ln t+f(b) b \ln b-f(a) a \ln a-2 \int_{a}^{b} f(s) d s \\
& \geq \int_{a}^{b} f(s) \ln s d s-\ln t \int_{a}^{b} f(s) d s
\end{aligned}
$$

namely

$$
\begin{aligned}
& f(t)(b-a)+f(b) b(\ln b-\ln t)+a f(a)(\ln t-\ln a)-2 \int_{a}^{b} f(s) d s \\
& \geq \int_{a}^{b} f(s) \ln s d s-\ln t \int_{a}^{b} f(s) d s
\end{aligned}
$$

for any $t \in[a, b]$ and the inequality (4.11) is proved.

Corollary 4. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a GA-convex function on $[a, b]$. Then

$$
\begin{align*}
& \frac{b f(b)(\ln b-\ln I(a, b))+a f(a)(\ln I(a, b)-\ln a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(s) d s \tag{4.13}\\
& \geq \frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s-\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \ln I(a, b) .
\end{align*}
$$

Moreover, if f is monotonic nondecreasing, then

$$
\begin{align*}
& \frac{b f(b)(\ln b-\ln I(a, b))+a f(a)(\ln I(a, b)-\ln a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(s) d s \tag{4.14}\\
& \geq \frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s-\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \ln I(a, b) \geq 0
\end{align*}
$$

Proof. Integrating over t on $[a, b]$ and dividing by $b-a$ in (4.11) we get

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(s) d s+\frac{f(b) b\left(\ln b-\frac{1}{b-a} \int_{a}^{b} \ln t d t\right)+a f(a)\left(\frac{1}{b-a} \int_{a}^{b} \ln t d t-\ln a\right)}{b-a}\right] \\
& -\frac{1}{b-a} \int_{a}^{b} f(s) d s \\
& \geq(\leq) \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s-\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \frac{1}{b-a} \int_{a}^{b} \ln t d t\right]
\end{aligned}
$$

that is equivalent to (4.13).
Now, since f is monotonic nondecreasing on $[a, b]$, then by Čebyšev inequality for synchronous functions, we have

$$
\frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s \geq\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \frac{1}{b-a} \int_{a}^{b} \ln t d t
$$

that proves (4.14).

Corollary 5. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a $G A$-convex function on $[a, b]$. Then

$$
\begin{align*}
& \frac{1}{2}\left[f\left(\exp \left(\mu_{f}\right)\right)+\frac{f(b) b\left(\ln b-\mu_{f}\right)+a f(a)\left(\mu_{f}-\ln a\right)}{b-a}\right] \tag{4.15}\\
& \geq \frac{1}{b-a} \int_{a}^{b} f(s) d s
\end{align*}
$$

where

$$
\mu_{f}:=\frac{\int_{a}^{b} f(s) \ln s d s}{\int_{a}^{b} f(s) d s} \in[\ln a, \ln b]
$$

Proof. Follows by (4.11) on taking

$$
\ln t=\frac{\int_{a}^{b} f(s) \ln s d s}{\int_{a}^{b} f(s) d s} \in[\ln a, \ln b]
$$

Remark 3. If we take $t=\sqrt{a b}$ in (4.11), then we get

$$
\begin{align*}
& \frac{1}{2}\left[f(\sqrt{a b})+\frac{f(b) b+a f(a)}{2 L(a, b)}\right]-\frac{1}{b-a} \int_{a}^{b} f(s) d s \tag{4.16}\\
& \geq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s-\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \ln \sqrt{a b}\right]
\end{align*}
$$

If we take $t=I(a, b)$ in (4.11), then we get

$$
\begin{align*}
& \frac{1}{2}\left[f(I(a, b))+\frac{f(b) b(\ln b-\ln I(a, b))+a f(a)(\ln I(a, b)-\ln a)}{b-a}\right] \tag{4.17}\\
& -\frac{1}{b-a} \int_{a}^{b} f(s) d s \\
& \geq \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f(s) \ln s d s-\left(\frac{1}{b-a} \int_{a}^{b} f(s) d s\right) \ln I(a, b)\right]
\end{align*}
$$

We use the following results obtained by the author in [21] and [22]
Lemma 3. Let $h:[\alpha, \beta] \rightarrow \mathbb{R}$ be a convex function on $[\alpha, \beta]$. Then we have the inequalities

$$
\begin{align*}
& \frac{1}{8}\left[h_{+}^{\prime}\left(\frac{\alpha+\beta}{2}\right)-h_{-}^{\prime}\left(\frac{\alpha+\beta}{2}\right)\right](\beta-\alpha) \tag{4.18}\\
& \leq \frac{h(\alpha)+h(\beta)}{2}-\frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t \\
& \leq \frac{1}{8}\left[h_{-}^{\prime}(\beta)-h_{+}^{\prime}(\alpha)\right](\beta-\alpha)
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{8}\left[h_{+}^{\prime}\left(\frac{\alpha+\beta}{2}\right)-h_{-}^{\prime}\left(\frac{\alpha+\beta}{2}\right)\right](\beta-\alpha) \tag{4.19}\\
& \leq \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(t) d t-h\left(\frac{\alpha+\beta}{2}\right) \\
& \leq \frac{1}{8}\left[h_{-}^{\prime}(\beta)-h_{+}^{\prime}(\alpha)\right](\beta-\alpha) .
\end{align*}
$$

The constant $\frac{1}{8}$ is best possible in (4.18) and (4.19).
Finally, we have
Theorem 6. Let $f:[a, b] \subset(0, \infty) \rightarrow \mathbb{R}$ be a $G A$-convex (concave) function on [a,b]. Then we have

$$
\begin{align*}
& \frac{1}{8}\left[f_{+}^{\prime}(\sqrt{a b})-f_{-}^{\prime}(\sqrt{a b})\right](\ln b-\ln a) \tag{4.20}\\
& \leq(\geq) \frac{f(a)+f(b)}{2}-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \\
& \leq(\geq) \frac{1}{8}\left[f_{-}^{\prime}(b) b-f_{+}^{\prime}(a) a\right](\ln b-\ln a)
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{8}\left[f_{+}^{\prime}(\sqrt{a b})-f_{-}^{\prime}(\sqrt{a b})\right](\ln b-\ln a) \tag{4.21}\\
& \leq(\geq) \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s-f(\sqrt{a b}) \\
& \leq(\geq) \frac{1}{8}\left[f_{-}^{\prime}(b) b-f_{+}^{\prime}(a) a\right](\ln b-\ln a)
\end{align*}
$$

Proof. Consider the function $h:[\ln a, \ln b] \rightarrow \mathbb{R}$ defined by $h(t)=f \circ \exp (t)$. Since f is a $G A$-convex (concave) function on $[a, b]$, then we have the lateral derivatives

$$
h_{ \pm}^{\prime}(t)=\left(f_{ \pm}^{\prime} \circ \exp (t)\right) \exp t, t \in[\ln a, \ln b] .
$$

If we apply the inequality (4.18) for the convex function $f \circ \exp$ on the interval $[\ln a, \ln b]$, then we have

$$
\begin{aligned}
& \frac{1}{8}\left[f_{+}^{\prime} \circ \exp \left(\frac{\ln a+\ln b}{2}\right)-f_{-}^{\prime} \circ \exp \left(\frac{\ln a+\ln b}{2}\right)\right](\ln b-\ln a) \\
& \leq \frac{f \circ \exp (\ln a)+f \circ \exp (\ln b)}{2}-\frac{1}{\ln b-\ln a} \int_{\ln a}^{\ln b} f \circ \exp (t) d t \\
& \leq \frac{1}{8}\left[\left(f_{-}^{\prime} \circ \exp (\ln b)\right) \exp (\ln b)-\left(f_{+}^{\prime} \circ \exp (\ln a)\right) \exp (\ln a)\right](\ln b-\ln a)
\end{aligned}
$$

that is equivalent to

$$
\begin{align*}
& \frac{1}{8}\left[f_{+}^{\prime}(\sqrt{a b})-f_{-}^{\prime}(\sqrt{a b})\right](\ln b-\ln a) \tag{4.22}\\
& \leq \frac{f(a)+f(b)}{2}-\frac{1}{\ln b-\ln a} \int_{\ln a}^{\ln b} f \circ \exp (t) d t \\
& \leq \frac{1}{8}\left[f_{-}^{\prime}(b) b-f_{+}^{\prime}(a) a\right](\ln b-\ln a)
\end{align*}
$$

If we change the variable $s=\exp t$, then $t=\ln s$ and $d t=\frac{d s}{s}$. Therefore

$$
\int_{\ln a}^{\ln b} f \circ \exp (t) d t=\int_{a}^{b} \frac{f(s)}{s} d s
$$

and by (4.22) we get the desired inequality (4.20).
The inequality (4.21) follows by (4.19).
Remark 4. If the function $f: I \subset(0, \infty) \rightarrow \mathbb{R}$ is differentiable and a $G A$-convex function on $[a, b] \subset I$ then we have the following inequalities

$$
\begin{align*}
0 & \leq \frac{f(a)+f(b)}{2}-\frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s \tag{4.23}\\
& \leq \frac{1}{8}\left[f^{\prime}(b) b-f^{\prime}(a) a\right](\ln b-\ln a)
\end{align*}
$$

and

$$
\begin{align*}
0 & \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(s)}{s} d s-f(\sqrt{a b}) \tag{4.24}\\
& \leq \frac{1}{8}\left[f^{\prime}(b) b-f^{\prime}(a) a\right](\ln b-\ln a)
\end{align*}
$$

5. Some Applications

Let $p \neq 0$ and consider the convex function $g(t)=\exp (p t), t \in \mathbb{R}$. Then the function $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=g(\ln t)=\exp (p \ln t)=t^{p}$ is a $G A$-convex function
on $(0, \infty)$. We observe that for $0<a<b$ we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} t^{p} d t & =\left\{\begin{array}{l}
\frac{1}{p+1} \frac{b^{p+1}-a^{p+1}}{b-a}, p \neq-1 \\
\frac{\ln b-\ln a}{b-a}, p=-1
\end{array}\right. \\
& =\left\{\begin{array}{l}
L_{p}^{p}(a, b), p \neq-1 \\
L^{-1}(a, b), p=-1
\end{array}\right.
\end{aligned}
$$

where $L_{p}(a, b)(p \neq-1)$ is the p-Logarithmic mean and L is the logarithmic mean defined in the introduction.

Using the inequality

$$
\frac{1}{b-a} \int_{a}^{b} f(t) d t \leq \frac{b-L(a, b)}{b-a} f(b)+\frac{L(a, b)-a}{b-a} f(a)
$$

for $f(t)=t^{p}(p \neq 0)$, we get

$$
\begin{equation*}
L_{p}^{p}(a, b) \leq \frac{b-L(a, b)}{b-a} b^{p}+\frac{L(a, b)-a}{b-a} a^{p} \tag{5.1}
\end{equation*}
$$

for $p \neq 0$.
Observe that

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} \frac{f(t)}{t} d t & =\frac{1}{b-a} \int_{a}^{b} t^{p-1} d t \\
& =\frac{1}{p} \frac{b^{p}-a^{p}}{b-a}=L_{p-1}^{p-1}(a, b), p \neq 0
\end{aligned}
$$

If we use the inequality

$$
\begin{aligned}
f(\sqrt{a b}) & \leq(1-\lambda) f\left(a^{\frac{1-\lambda}{2}} b^{\frac{\lambda+1}{2}}\right)+\lambda f\left(a^{\frac{2-\lambda}{2}} b^{\frac{\lambda}{2}}\right) \\
& \leq \frac{1}{\ln b-\ln a} \int_{a}^{b} \frac{f(t)}{t} d t \\
& \leq \frac{1}{2}\left[f\left(a^{1-\lambda} b^{\lambda}\right)+(1-\lambda) f(b)+\lambda f(a)\right] \\
& \leq \frac{f(a)+f(b)}{2}
\end{aligned}
$$

for $\lambda \in[0,1]$ and $f(t)=t^{p}(p \neq 0)$, then we get

$$
\begin{align*}
G^{p}(a, b) & \leq(1-\lambda) G^{p}\left(a^{1-\lambda}, b^{\lambda+1}\right)+\lambda G^{p}\left(a^{2-\lambda}, b^{\lambda}\right) \tag{5.2}\\
& \leq L(a, b) L_{p-1}^{p-1}(a, b) \\
& \leq \frac{1}{2}\left[G^{p}\left(a^{2(1-\lambda)}, b^{2 \lambda}\right)+(1-\lambda) b^{p}+\lambda a^{p}\right] \leq \frac{a^{p}+b^{p}}{2}
\end{align*}
$$

for $\lambda \in[0,1]$.
If we use the inequalities (4.23) and (4.24) for $f(t)=t^{p}(p \neq 0)$, then we get

$$
\begin{equation*}
0 \leq \frac{a^{p}+b^{p}}{2}-L(a, b) L_{p-1}^{p-1}(a, b) \leq \frac{1}{8} p^{2} \frac{L_{p-1}^{p-1}(a, b)}{L(a, b)}(b-a)^{2} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq L(a, b) L_{p-1}^{p-1}(a, b)-G^{p}(a, b) \leq \frac{1}{8} p^{2} \frac{L_{p-1}^{p-1}(a, b)}{L(a, b)}(b-a)^{2} \tag{5.4}
\end{equation*}
$$

References

[1] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639-646.
[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions. Int. Math. Forum 3 (2008), no. 37-40, 1965-1975.
[3] G. A. Anastassiou, Univariate Ostrowski inequalities, revisited. Monatsh. Math., 135 (2002), no. 3, 175-189.
[4] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294-1308.
[5] N. S. Barnett, P. Cerone, S. S. Dragomir, M. R. Pinheiro, and A. Sofo, Ostrowski type inequalities for functions whose modulus of the derivatives are convex and applications. Inequality Theory and Applications, Vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll. 5 (2002), No. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].
[6] E. F. Beckenbach, Convex functions, Bull. Amer. Math. Soc. 54(1948), 439-460.
[7] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58 (2009), no. 9, 1869-1877.
[8] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13-20.
[9] W. W. Breckner and G. Orbán, Continuity properties of rationally s-convex mappings with values in an ordered topological linear space. Universitatea "Babeş-Bolyai", Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.
[10] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York. 135-200.
[11] P. Cerone and S. S. Dragomir, New bounds for the three-point rule involving the RiemannStieltjes integrals, in Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al. (Eds.), World Science Publishing, 2002, 53-62.
[12] P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Mathematica, 32(2) (1999), 697712.
[13] G. Cristescu, Hadamard type inequalities for convolution of h-convex functions. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 8 (2010), 3-11.
[14] S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1) (1999), 127-135.
[15] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38 (1999), 33-37.
[16] S. S. Dragomir, On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7 (2000), 477-485.
[17] S. S. Dragomir, On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. E Appl., 4(1) (2001), 33-40.
[18] S. S. Dragomir, On the Ostrowski inequality for Riemann-Stieltjes integral $\int_{a}^{b} f(t) d u(t)$ where f is of Hölder type and u is of bounded variation and applications, J. KSIAM, 5(1) (2001), 35-45.
[19] S. S. Dragomir, Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure \& Appl. Math., 3(5) (2002), Art. 68.
[20] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp.
[21] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31.
[22] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No.3, Article 35.
[23] S. S. Dragomir, An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2) (2003), 373-382.
[24] S. S. Dragomir, Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1
[25] S. S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang, A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie, 42(90) (4) (1999), 301-314.
[26] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[27] S.S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43-49.
[28] S. S. Dragomir and B. Mond, On Hadamard's inequality for a class of functions of Godunova and Levin. Indian J. Math. 39 (1997), no. 1, 1-9.
[29] S. S. Dragomir and C. E. M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin. Period. Math. Hungar. 33 (1996), no. 2, 93-100.
[30] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc. 57 (1998), 377-385.
[31] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[32] S. S. Dragomir and Th. M. Rassias (Eds), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.
[33] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{1}-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28 (1997), 239-244.
[34] S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
[35] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_{p}-norm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40 (3) (1998), 245-304.
[36] A. El Farissi, Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq. 4 (2010), No. 3, 365-369.
[37] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985
[38] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100-111.
[39] E. Kikianty and S. S. Dragomir, Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press)
[40] U. S. Kirmaci, M. Klaričić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26-35.
[41] M. A. Latif, On some inequalities for h-convex functions. Int. J. Math. Anal. (Ruse) 4 (2010), no. 29-32, 1473-1482.
[42] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[43] D. S. Mitrinović and J. E. Pečarić, Note on a class of functions of Godunova and Levin. C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 33-36.
[44] M. A. Noor, K. I. Noor and M. U. Awan, Some inequalities for geometrically-arithmetically h-convex functions, Creat. Math. Inform. 23 (2014), No. 1, $91-98$.
[45] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92-104.
[46] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin and some refinements of Jensen integral inequality. Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Univ. "Babeş-Bolyai", Cluj-Napoca, 1989.
[47] J. Pečarić and S. S. Dragomir, A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103-107.
[48] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions. Math. Inequal. Appl. 12 (2009), no. 4, 853-862.
[49] M. Z. Sarikaya, A. Saglam, and H. Yildirim, On some Hadamard-type inequalities for hconvex functions. J. Math. Inequal. 2 (2008), no. 3, 335-341.
[50] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67-82.
[51] M. Z. Sarikaya, E. Set and M. E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions. Acta Math. Univ. Comenian. (N.S.) 79 (2010), no. 2, 265-272.
[52] M. Tunç, Ostrowski-type inequalities via h-convex functions with applications to special means. J. Inequal. Appl. 2013, 2013:326.
[53] S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326 (2007), no. 1, 303-311.
[54] X.-M. Zhang, Y.-M. Chu and X.-H. Zhang, The Hermite-Hadamard type inequality of GAconvex functions and its application, Journal of Inequalities and Applications, Volume 2010, Article ID 507560, 11 pages.
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428 , Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computational \& Applied Mathematics, University of the WitwaterSrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 1991 Mathematics Subject Classification. 26D15; 25D10.
 Key words and phrases. Convex functions, Integral inequalities, GA-Convex functions.

