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Abstract

Some inequalities of Hermite-Hadamard type for h-convex func-
tions defined on convex subsets in real or complex linear spaces are
given. Applications for norm inequalities are provided as well.
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1. Introduction

The following inequality holds for any convex function f defined on R

(b− a)f

µ
a+ b

2

¶
<

Z b

a
f(x)dx < (b− a)

f(a) + f(b)

2
, a, b ∈ R.(1.1)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis
(see [42]). But this result was nowhere mentioned in the mathematical
literature and was not widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of
convex functions, wrote that this inequality was proven by J. Hadamard
in 1893 [5]. In 1974, D. S. Mitrinović found Hermite’s note in Mathesis
[42]. Since (1.1) was known as Hadamard’s inequality, the inequality is
now commonly referred as the Hermite-Hadamard inequality.

For related results, see [10]-[19], [22]-[24], [31]-[34] and [45].

Let X be a vector space over the real or complex number field K and
x, y ∈ X, x 6= y. Define the segment

[x, y] := {(1− t)x+ ty, t ∈ [0, 1]}.

We consider the function f : [x, y]→ R and the associated function

g(x, y) : [0, 1]→ R, g(x, y)(t) := f [(1− t)x+ ty], t ∈ [0, 1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].

For any convex function defined on a segment [x, y] ⊂ X, we have the
Hermite-Hadamard integral inequality (see [20, p. 2], [21, p. 2])

f

µ
x+ y

2

¶
≤
Z 1

0
f [(1− t)x+ ty]dt ≤ f(x) + f(y)

2
,(1.2)

which can be derived from the classical Hermite-Hadamard inequality (1.1)
for the convex function g(x, y) : [0, 1]→ R.

Since f(x) = kxkp (x ∈ X and 1 ≤ p < ∞) is a convex function, then
for any x, y ∈ X we have the following norm inequality from (1.2) (see [45,
p. 106]) °°°°x+ y

2

°°°°p ≤ Z 1

0
k(1− t)x+ tykpdt ≤ kxk

p + kykp
2

.(1.3)
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Motivated by the above results, in this paper we extend the concept
of h-convexity introduced for functions of a real variable in [52] to func-
tions defined on convex subsets of real or complex linear spaces and pro-
vide some Hermite-Hadamard type inequalities generalizing and improving
(1.2). Natural applications that refine the norm inequality (1.3) are also
given.

2. h-Convex Functions on Linear Spaces

We recall here some concepts of convexity that are well known in the liter-
ature. Let I be an interval in R.

Definition 1 ([36]). We say that f : I → R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I
and t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ 1
t
f (x) +

1

1− t
f (y) .(2.1)

Some further properties of this class of functions can be found in [27],
[28], [30], [43], [46] and [47]. Among others, its has been noted that non-
negative monotone and non-negative convex functions belong to this class
of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞)
where C is a convex subset of the real or complex linear space X and the
inequality (2.1) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1) . If the
function f : C ⊆ X → R is non-negative and convex, then is of Godunova-
Levin type.

Definition 2 ([30]). We say that a function f : I → R belongs to the
class P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) .(2.2)

Obviously Q (I) contains P (I) and for applications it is important to
note that also P (I) contain all nonnegative monotone, convex and quasi
convex functions, i. e. nonnegative functions satisfying

f (tx+ (1− t) y) ≤ max {f (x) , f (y)}(2.3)

for all x, y ∈ I and t ∈ [0, 1] .
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For some results on P -functions see [30] and [44] while for quasi convex
functions, the reader can consult [29].

If f : C ⊆ X → [0,∞), where C is a convex subset of the real or
complex linear space X, then we say that it is of P -type (or quasi-convex)
if the inequality (2.2) (or (2.3) holds true for x, y ∈ C and t ∈ [0, 1] .

Definition 3 ([7]). Let s be a real number, s ∈ (0, 1]. A function f :
[0,∞) → [0,∞) is said to be s-convex (in the second sense) or Breckner
s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1], [2], [7], [8], [25],
[26], [37], [39] and [49].

The concept of Breckner s-convexity can be similarly extended for func-
tions defined on convex subsets of linear spaces.

It is well known that if (X, k·k) is a normed linear space, then the
function f (x) = kxkp , p ≥ 1 is convex on X.

Utilising the elementary inequality (a+ b)s ≤ as+ bs that holds for any
a, b ≥ 0 and s ∈ (0, 1], we have for the function g (x) = kxks that

g (tx+ (1− t) y) = ktx+ (1− t) yks ≤ (t kxk+ (1− t) kyk)s

≤ (t kxk)s + [(1− t) kyk]s

= tsg (x) + (1− t)s g (y)

In order to unify the above concepts for functions of real variable, S.
Varošanec introduced the concept of h-convex functions as follows.

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and
f are real non-negative functions defined in J and I, respectively.

Definition 4 ([52]). Let h : J → [0,∞) with h not identical to 0. We say
that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)(2.4)

for all t ∈ (0, 1) .
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For some results concerning this class of functions see [52], [6], [40], [50],
[48] and [51].

This concept can be extended for functions defined on convex subsets
of linear spaces in the same way as above replacing the interval I be the
corresponding convex subset C of the linear space X.

We can introduce now another class of functions.

Definition 5. We say that the function f : C ⊆ X → [0,∞) is of s-
Godunova-Levin type, with s ∈ [0, 1] , if

f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) ,(2.5)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for
s = 1 we obtain the class of Godunova-Levin. If we denote by Qs (C) the
class of s-Godunova-Levin functions defined on C, then we obviously have

P(C) = Q0 (C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1 (C) = Q (C)

for 0 ≤ s1 ≤ s2 ≤ 1.
The cases of equality for various classes of convex functions have been

studied by G. Maksa and Z. Páles in [43], who introduced the concept of
affine functions and gave some characterizations of these functions. How-
ever, we do not present the details here. As observed by the referee, we only
mention the fact that these functions can be used to prove the sharpness
of some of the integral inequalities below.

We can prove now the following generalization of the Hermite-Hadamard
inequality for h-convex functions defined on convex subsets of linear spaces.

Theorem 1. Assume that the function f : C ⊆ X → [0,∞) is an h-convex
function with h ∈ L [0, 1] . Let y, x ∈ C with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1] . Then

1

2h
³
1
2

´f µx+ y

2

¶
≤
Z 1

0
f [(1− t)x+ ty] dt ≤ [f (x) + f (y)]

Z 1

0
h (t) dt.

(2.6)
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Proof. By the h-convexity of f we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y)(2.7)

for any t ∈ [0, 1] .
Integrating (2.7) on [0, 1] over t, we get

Z 1

0
f (tx+ (1− t) y) dt ≤ f (x)

Z 1

0
h (t) dt+ f (y)

Z 1

0
h (1− t) dt

and since
R 1
0 h (t) dt =

R 1
0 h (1− t) dt, we get the second part of (2.6).

From the h-convexity of f we have

f

µ
z + w

2

¶
≤ h

µ
1

2

¶
[f (z) + f (w)](2.8)

for any z, w ∈ C.

If we take in (2.8) z = tx+(1− t) y and w = (1− t)x+ ty, then we get

f

µ
x+ y

2

¶
≤ h

µ
1

2

¶
[f (tx+ (1− t) y) + f ((1− t)x+ ty)](2.9)

for any t ∈ [0, 1] .
Integrating (2.9) on [0, 1] over t and taking into account that

Z 1

0
f (tx+ (1− t) y) dt =

Z 1

0
f ((1− t)x+ ty) dt

we get the first inequality in (2.6). 2

Remark 1. If f : I → [0,∞) is an h-convex function on an interval I of
real numbers with h ∈ L [0, 1] and f ∈ L [a, b] with a, b ∈ I, a < b, then from
(2.6) we get the Hermite-Hadamard type inequality obtained by Sarikaya
et al. in [48]

1

2h
³
1
2

´f µa+ b

2

¶
≤
Z b

a
f (u) du ≤ [f (a) + f (b)]

Z 1

0
h (t) dt.
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If we write (2.6) for h (t) = t, then we get the classical Hermite-
Hadamard inequality for convex functions 1.2.

If we write (2.6) for the case of P -type functions f : C → [0,∞), i.e.,
h (t) = 1, t ∈ [0, 1] , then we get the inequality

1

2
f

µ
x+ y

2

¶
≤
Z 1

0
f [(1− t)x+ ty] dt ≤ f (x) + f (y) ,(2.10)

that has been obtained for functions of real variable in [30].

If f is Breckner s-convex on C, for s ∈ (0, 1) , then by taking h (t) = ts

in (2.6) we get

2s−1f
µ
x+ y

2

¶
≤
Z 1

0
f [(1− t)x+ ty] dt ≤ f (x) + f (y)

s+ 1
,(2.11)

that was obtained for functions of a real variable in [25].

Since the function g (x) = kxks is Breckner s-convex on on the normed
linear space X, s ∈ (0, 1) , then for any x, y ∈ X we have

1

2
kx+ yks ≤

Z 1

0
k(1− t)x+ tyks dt ≤ kxk

s + kxks

s+ 1
.(2.12)

If f : C → [0,∞) is of s-Godunova-Levin type, with s ∈ [0, 1), then

1

2s+1
f

µ
x+ y

2

¶
≤
Z 1

0
f [(1− t)x+ ty] dt ≤ f (x) + f (y)

1− s
.(2.13)

We notice that for s = 1 the first inequality in (2.13) still holds, i. e.

1

4
f

µ
x+ y

2

¶
≤
Z 1

0
f [(1− t)x+ ty] dt.(2.14)

The case for functions of real variables was obtained for the first time
in [30].

3. Refinements

The following representation result holds.

Lemma 1. Let f : C ⊆ X → C where C is a convex subset of the real
or complex linear space X. Let y, x ∈ C with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1] . Then
for any λ ∈ [0, 1] we have the representation
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Z 1

0
f [(1− t)x+ ty] dt = (1− λ)

Z 1

0
f [(1− t) ((1− λ)x+ λy) + ty] dt

+ λ

Z 1

0
f [(1− t)x+ t ((1− λ)x+ λy)] dt.(3.1)

Proof. For λ = 0 and λ = 1 the equality (3.1) is obvious.
Let λ ∈ (0, 1) . Observe thatZ 1

0
f [(1− t) (λy + (1− λ)x) + ty] dt

=

Z 1

0
f [((1− t)λ+ t) y + (1− t) (1− λ)x] dt

and

Z 1

0
f [t (λy + (1− λ)x) + (1− t)x] dt =

Z 1

0
f [tλy + (1− λt)x] dt.

If we make the change of variable u := (1− t)λ+ t then we have

1-u=(1− t) (1− λ) and du = (1− λ) du. ThenZ 1

0
f [((1− t)λ+ t) y + (1− t) (1− λ)x] dt =

1

1− λ

Z 1

λ
f [uy + (1− u)x] du.

If we make the change of variable u := λt then we have du = λdt andZ 1

0
f [tλy + (1− λt)x] dt =

1

λ

Z λ

0
f [uy + (1− u)x] du.

Therefore

(1− λ)

Z 1

0
f [(1− t) (λy + (1− λ)x) + ty] dt

+λ

Z 1

0
f [t (λy + (1− λ)x) + (1− t)x] dt

=

Z 1

λ
f [uy + (1− u)x] du+

Z λ

0
f [uy + (1− u)x] du
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=

Z 1

0
f [uy + (1− u)x] du

and the identity (3.1) is proved. 2

Theorem 2. Assume that the function f : C ⊆ X → [0,∞) is an h-convex
function with h ∈ L [0, 1] . Let y, x ∈ C with y 6= x and assume that the
mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1]. Then
for any λ ∈ [0, 1] we have the inequalities

1

2h
³
1
2

´ ½(1− λ) f

∙
(1− λ)x+ (λ+ 1) y

2

¸
+ λf

∙
(2− λ)x+ λy

2

¸¾

≤
R 1
0 f [(1− t)x+ ty] dt

≤ [f ((1− λ)x+ λy) + (1− λ) f (y) + λf (x)]
R 1
0 h (t) dt

≤ {[h (1− λ) + λ] f (x) + [h (λ) + 1− λ] f (y)}
R 1
0 h (t) dt.

(3.2)

Proof. Since f : C ⊆ X → [0,∞) is an h-convex function, then by
Theorem 1 we have

1

2h
³
1
2

´f ∙(1− λ)x+ (λ+ 1) y

2

¸
≤
Z 1

0
f [(1− t) ((1− λ)x+ λy) + ty] dt

≤ [f ((1− λ)x+ λy) + f (y)]
R 1
0 h (t) dt

(3.3)

and

1

2h
³
1
2

´f ∙(2− λ)x+ λy

2

¸
≤
Z 1

0
f [(1− t)x+ t ((1− λ)x+ λy)] dt

≤ [f (x) + f ((1− λ)x+ λy)]
R 1
0 h (t) dt.
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(3.4)

Now, if we multiply the inequality (2.3) by 1−λ ≥ 0 and (3.4) by λ ≥ 0
and add the obtained inequalities, then we get

1− λ

2h
³
1
2

´f ∙(1− λ)x+ (λ+ 1) y

2

¸
+

λ

2h
³
1
2

´f ∙(2− λ)x+ λy

2

¸

≤ (1− λ)
R 1
0 f [(1− t) ((1− λ)x+ λy) + ty] dt

+λ
R 1
0 f [(1− t)x+ t ((1− λ)x+ λy)] dt

≤ (1− λ) [f ((1− λ)x+ λy) + f (y)]
R 1
0 h (t) dt

+λ [f (x) + f ((1− λ)x+ λy)]
R 1
0 h (t) dt

(3.5)

and by (3.1) we obtain the first two inequalities in (3.2).
The last part is obvious. 2

Remark 2. With the assumptions from Theorem 2, we observe that if we
take either λ = 0 or λ = 1 in the first two inequalities in (3.2), then we get
(2.6).

If we take λ = 1
2 and use the h-convexity of f, then we get from (3.2)

that

1

4h2
³
1
2

´f µx+ y

2

¶
≤ 1

4h
³
1
2

´ ½f µx+ 3y
4

¶
+ f

µ
3x+ y

4

¶¾

≤
R 1
0 f [(1− t)x+ ty] dt

≤
h
f
³
x+y
2

´
+ f(x)+f(y)

2

i R 1
0 h (t) dt

≤
h
h
³
1
2

´
+ 1

2

i
[f (x) + f (y)]

R 1
0 h (t) dt.

(3.6)
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In general, if h (λ) > 0 for λ ∈ (0, 1) , then

(1− λ) f

∙
(1− λ)x+ (λ+ 1) y

2

¸
+ λf

∙
(2− λ)x+ λy

2

¸

=
1− λ

h (1− λ)
h (1− λ) f

∙
(1− λ)x+ (λ+ 1) y

2

¸

+
λ

h (λ)
h (λ) f

∙
(2− λ)x+ λy

2

¸

≥ min
½

1− λ

h (1− λ)
,

λ

h (λ)

¾

×
½
h (1− λ) f

∙
(1− λ)x+ (λ+ 1) y

2

¸
+ h (λ) f

∙
(2− λ)x+ λy

2

¸¾
≥ min

½
1− λ

h (1− λ)
,

λ

h (λ)

¾

×f
∙
(1− λ)

(1− λ)x+ (λ+ 1) y

2
+ λ

(2− λ)x+ λy

2

¸
= min

½
1− λ

h (1− λ)
,

λ

h (λ)

¾
f

µ
x+ y

2

¶

and from (3.2) we get the sequence of inequalities

1

2h
³
1
2

´ min½ 1− λ

h (1− λ)
,

λ

h (λ)

¾
f

µ
x+ y

2

¶

≤ 1
2h( 12)

n
(1− λ) f

h
(1−λ)x+(λ+1)y

2

i
+ λf

h
(2−λ)x+λy

2

io
≤
R 1
0 f [(1− t)x+ ty] dt

≤ [f ((1− λ)x+ λy) + (1− λ) f (y) + λf (x)]
R 1
0 h (t) dt

≤ {[h (1− λ) + λ] f (x) + [h (λ) + 1− λ] f (y)}
R 1
0 h (t) dt.

(3.7)



334 S. S. Dragomir

Corollary 1. Let f : C ⊆ X → [0,∞) be a convex function on the convex
set C in a linear space X. Then for any y, x ∈ C and for any λ ∈ [0, 1] we
have the inequalities

f

µ
x+ y

2

¶
≤ (1− λ) f

∙
(1− λ)x+ (λ+ 1) y

2

¸
+ λf

∙
(2− λ)x+ λy

2

¸
≤
R 1
0 f [(1− t)x+ ty] dt

≤ 1
2 [f ((1− λ)x+ λy) + (1− λ) f (y) + λf (x)]

≤ f(y)+f(x)
2 .

(3.8)

Remark 3. The inequality (3.8) has been obtained for functions of a real
variable by A. El Farissi in [35].

The inequality (3.8) provides the following norm inequality:

°°°°x+ y

2

°°°°p ≤ (1− λ)

°°°°(1− λ)x+ (λ+ 1) y

2

°°°°p + λ

°°°°(2− λ)x+ λy

2

°°°°p
≤
R 1
0 k(1− t)x+ tykp dt

≤ 1
2 [k(1− λ)x+ λykp + (1− λ) kykp + λ kxkp] ≤ kykp+kxkp

2 ,
(3.9)

that holds for any x, y ∈ X, a normed space, p ≥ 1 and λ ∈ [0, 1] .

Corollary 2. Assume that the function f : C ⊆ X → [0,∞) is a Breckner
s-convex function with s ∈ (0, 1) . Let y, x ∈ C with y 6= x and assume that
the mapping [0, 1] 3 t 7→ f [(1− t)x+ ty] is Lebesgue integrable on [0, 1].
Then for any λ ∈ (0, 1) we have the inequalities

2s−1
µ
1

2
−
¯̄̄̄
1

2
− λ

¯̄̄̄¶1−s
f

µ
x+ y

2

¶
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≤ 2s−1
n
(1− λ) f

h
(1−λ)x+(λ+1)y

2

i
+ λf

h
(2−λ)x+λy

2

io
≤
R 1
0 f [(1− t)x+ ty] dt

≤ 1
s+1 [f ((1− λ)x+ λy) + (1− λ) f (y) + λf (x)]

≤ 1
s+1 {[(1− λ)s + λ] f (x) + (λs + 1− λ) f (y)} .

(3.10)

The inequality (3.10) provides the following norm inequality:

2s−1
µ
1

2
−
¯̄̄̄
1

2
− λ

¯̄̄̄¶1−s °°°°x+ y

2

°°°°s
≤ 2s−1

n
(1− λ)

°°° (1−λ)x+(λ+1)y2

°°°s + λ
°°° (2−λ)x+λy2

°°°so
≤
R 1
0 k(1− t)x+ tyks dt

≤ 1
s+1 [k(1− λ)x+ λyks + (1− λ) kyks + λ kxks]

≤ 1
s+1 {[(1− λ)s + λ] kxks + (λs + 1− λ) kyks}

(3.11)

that holds for any x, y ∈ X, a normed space, s ∈ (0, 1) and λ ∈ (0, 1) .
In particular, we have

4s−1
°°°°x+ y

2

°°°°s ≤ 2s−2 ½°°°°x+ 3y4

°°°°s + °°°°3x+ y

4

°°°°s¾
≤
R 1
0 k(1− t)x+ tyks dt

≤ 1
s+1

h°°°x+y2 °°°s + kyks+kxks
2

i
≤ 1+21−s

(s+1)2s (kxk
s + kyks) ,

(3.12)

for any x, y ∈ X and s ∈ (0, 1) .
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Remark 4. Similar inequalities can be stated for functions of s-Godunova-
Levin type, with s ∈ [0, 1), however the details are omitted.

Acknowledgement. The author would like to thank the anonymous
referee for valuable comments that have been implemented in the final
version of the paper.
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plications in numerical analysis, Bull. Math. Soc. Sci. Math. Romanie,
42 (90) (4), pp. 301-314, (1999).

[25] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-
convex functions in the second sense. Demonstratio Math. 32, No. 4,
pp. 687—696, (1999).

[26] S.S. Dragomir and S. Fitzpatrick,The Jensen inequality for s-Breckner
convex functions in linear spaces. Demonstratio Math. 33, No. 1, pp.
43—49, (2000).

[27] S. S. Dragomir and B. Mond, On Hadamard’s inequality for a class of
functions of Godunova and Levin. Indian J. Math. 39, No. 1, pp. 1—9,
(1997).

[28] S. S. Dragomir and C. E. M. Pearce, On Jensen’s inequality for a class
of functions of Godunova and Levin. Period. Math. Hungar. 33, No.
2, pp. 93—100, (1996).

[29] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and
Hadamard’s inequality, Bull. Austral. Math. Soc. 57, pp. 377-385,
(1998).
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