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Abstract. The Sharp Cusa-Huygens inequality involving the generalized trigonometric functions are 

established. 

Introduction 

It is well known from basic calculus that 
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For 1 ,p< < ∞ We can generalize the above function as follows: 
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The inverse of  arcsin
p

 on [0, / 2]
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π is called the generalized sine function and denoted by sin
p
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It is clear from the definition that 
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It is easy to see that  
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when 2,p =  the p −  functions sin

p
, cos

p
, tan

p
become our familiar trigonometric  functions. 

Recently,  the generalized trigonometric functions have been studied by many mathematicians from 

different viewpoints(see [2,4,5,6,7]). In [5,9], the authors gave basic properties of the generalized 

trigonometric functions. In [6], Klén, Vuorinen and Zhang generalized some classical inequalities for 

trigonometric functions, such as Mitrinović-Adamović’s inequality, Lazarević’s inequality, 

Huygens-type inequalities, and Wilker-type inequalities, to the case of generalized functions. 

 

 

3rd International Conference on Mechatronics and Information Technology (ICMIT 2016) 

© 2016. The authors - Published by Atlantis Press 10



 

The main results of this paper are the following theorems. 

 

Theorem 1 For 1 2,p< ≤ the function 
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Theorem 2  For 1 2,p< ≤ the function 
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Theorem 3  For 1 2,p< ≤  the function 
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Where (log( 2)) / log[( 1) / ]a
p

p pπ= +  and 1β =  are the best constants. 

Remark 4  For 2,p = the above inequalities are due to C.-P. Chen and W.-S. Cheung [8]. 

 

Proof of theorems  

In order to establish our main results we need following lemma: 

 

Lemma 5 ( L’Hopital Monotone Rule see [1] ) Let ,a b−∞ < < < ∞ and let , :[ , ]f g a b → ¡ be continuous 

functions that are differentiable on ( , )a b , with ( ) ( ) 0f a g a= =  or ( ) ( ) 0.f b g b= =  Assume that 

( ) 0g x′ ≠  for each ( , ).x a b∈  

If f g′ ′  is increasing (decreasing) on ( , )a b , then so is f g . 

 

Proof  of  Theorem1  By differention, we have  
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Theorem 2 is proved. 

 

Proof  of  Theorem 3.  Write  
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Theorem 3 is proved. 
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