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Abstract. Inequalities are obtained for the elements in the inverse of a tridiagonal matrix

with positive off-diagonal elements.

During an investigation into the convergence properties of natural splines it

was found useful to have bounds on the inverse of a tridiagonal matrix with positive

off-diagonal elements. Matrices of this type arise in other branches of numerical

analysis, in particular in the discrete analogue of certain second-order differential

operators, and so it may be useful to record these results. The matrix is
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where 0 < ar < 1, r = 1(1)» and XrXr+i > 1, r = 1(1)ti — 1.

If the elements of 4_1 are denoted by

-i
Or s r, s = l(l)n

then the following inequalities hold :

1 < a/sXs < Pa/ips — 1) ; s = l(l)n

o< i-iy-'a7i n^<-i!7.
t=t¡ Ps 1

where ii = min (r, s), t2 — max Or, s), and

Ps = min (Xs_iXs, XsX8+i) ,

with pi = XiX2, pn = X„_iX„.

The proof is elementary and will be indicated only. The last column of 4_1 is

given by the solution of the equations :

r, s = 1 (1)72.,    r 9e s ,

s = 2(l)n - 1 ,

(1)

XiXi + (1 — ai)x2 = 0 ,

arXr-i + r\rXr + (1 — ar)xr+i = 0 ,

anXn—1    i    AnXn 1  ,

r = 2(l)7i - 1,
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(where ¡oj has been replaced by  {xr} for simplicity). Now x2 cannot vanish,

otherwise recursively from the first n — 1 equations it would follow that

Xr = 0 ,       r = l(l)n ,

contradicting the final equation. Hence the first equation can be written

— Xi — = I — ai
X2

giving

0< -Ai~< 1.
x2

It will now be shown by induction that

(2) 0<-Xr—<1,       r = 2(l)n-l.
Xr+l

Assume that these inequalities hold for r = 2(l)p — 1, so that in particular

0 < — /\p-ixp-i/xp < 1 .

Now

cxpXp-i + XpXp + (1 — ap)xp+i = 0

and, as xp 9a 0, this can be written, after multiplication by X„_i,

— Xp_iXp = a/kjj—iXp—i/Xj, + (1 — a^Xp—iXp-i-i/xp ,

from which it follows that

(3 y    min (\p-ixp-i/xp, \p_ixp+i/xp) < — \p-i\p < max (\p-iXp-i/xp, \p^ixp+i/xp) .

Consideration of the inequalities

— Xp—iXp <s.      1 ,        Xp—i^p—i/Xj, ̂      1

shows that (3) can be more precisely written as

\p—iXp^.i/xp <     Xp—iXp < \p—iXp—i/xp .

The lower inequality is easily seen to be equivalent to

0 < —Xpxp/xp+i <C 1 ,

thus completing the proof of (2).

Next consider the last equation of (1) which can be written

anXn-lXn—l/Xn  = X»_lXn + \n—l/Xn ,

but as

0 <  — an\n-iXn-i/xn < an < 1

it follows that

0 < X„_iX„ — X„_i/x„ < 1

which can be rewritten, replacing X„_iX„ by p„, as
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(4) 1   <  \On   <  Pnl ip„   -   1)  .

It is now a simple matter to prove by induction using (2) and (4) that

0 < (-l)"-r.i-rXrXr+i ■ • • X„ < pAiPr. - 1) ,       r « n - 1(—1)1 .

For, if this is true when r = p, then

o < (-ír^EpXp • • • x„ < pAiPn - 1) ,

but from (2)

r.    -.   /_\7i-p—1     Xp_lXp  • • •  XnA'p-l .

ü<{    } i-l)*~\,..-\.%xp<1'

and so

0 < (-l)"~p_1Xp-_iXp • • • XnZp-i < (— 1 )"""%, • • ■ X„.rp < pAÍp„ — 1) ,

completing the induction. In an identical fashion it can be shown that the elements

in the first column of 4_1 satisfy

1 < añ'Xi < mi/(mi — 1) ,    where ah = XiXj,

and

0 < (-l)r~Vi1X1X2 • • • Xr < pi/ini - 1) ,       r = 2(l)n .

To prove the inequalities in the general case the following equations for the elements

of the sth column of 4_1 must be considered :

Xi-Ei + (1 — txi)x% = 0 ,

(5) ctrXr-i + Xr.cr + (1 — ar)xr+i = 8,a ,        r = 2(l)n — 1 ,

anXn-l  +  r\nXn   =   0 .

In order to use the previous line of argument it must be shown that neither x2 nor

X„-i vanish. Now if Xn-i = 0, then using the last n — s + 1 equations of (5) it

would follow that

(6) xn = a-n-i = • • • = x,+i = x, = 0 ,        as.xs_i = 1 .

If x2 = 0 the first s + 1 equations would give the contradictory conclusion

Xi = x2 =  ■ ■ ■ = xs-i = x, = 0 , (1 — a/)xs+i = 1 .

Alternatively, if x2 ¿¿ 0, then the argument used to derive (2) could be used again

to prove that

(7) 0 < -XwCrAr+l < 1 , r=l(l)s-l,

and the last of these inequalities contradicts (6).

Similarly, the assumption that x2 = 0 will lead to contradictions, and so x2 -xn-i

9e 0. It follows that (7) holds, and also, coming back from the nth equation of (5),

(8) 0 < —Xr+ia;r+i/a-r < 1 ,        r = s(l)n .
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In particular, from (7) and (8)

0 < —\,-iX,-i/x, < 1,       0 < —\s+ixs+i/xs < 1 ,

which, as Xs_iXs > 1, XsXs+i > 1, are equivalent to

(9) 0 < —.fs_i/Xsxs < l/Xj-iXs,       0 < — xs+i/\sxs < 1/XsXs+i .

Now the sth equation of (5) can be rewritten as

i _ = _    Xe~1 _ (i _     ")Xs+l

/\gX s AsU/g A sX s

and so

min (—x,-i/\sXt, —xs+i/>\sxs) < 1 — l/\sxs < max ( — x,-i/\¡x„ xs+i/\sxs) ,

and, using (9), this implies that

(10) 0 < 1 - 1/Xsxs < max (l/X,_iX„ l/X,X,+i) •

If now

ps = min (X„_iXs, X,X,+i)

then (10) becomes

0 < 1 -1/Xs.ts < 1/Ps,

from which it follows that

(11) 1 < Xä < pAÍPs- 1) •

It remains to use (11) to translate the inequalities (7), (8) into inequalities on the

elements themselves. This can be done by induction as was indicated in the case

when the last column of 4_1 was considered and need not be described.

(Note Added in Proof. The conditions on ax, an can be relaxed to 0 ^ «i < 1,

0 < a» = 1, in which case 1 < a~/\s < p,/'ips — 1) for s = 1, n.)
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