Univ. Beograd. Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. № 577 - № 598 (1977), 96-97.

597. ANALYTIC INEQUALITIES OBTAINED BY QUADRATIC APPROXIMATION* ${ }^{*}$

Robert E. Shafer

In his paper On Quadratic Approximation, the author indicated several elementary quadratic approximations of selected functions without proof [1]. We shall establish these results as analytic inequalities

$$
\begin{equation*}
\operatorname{arctg} x>\frac{8 x}{3+\sqrt{25+\frac{80}{3} x^{2}}} \quad(x>0) . \tag{1}
\end{equation*}
$$

Using a method of L. S. Grinstein, we determine an inequality that the derivative must satisfy:

$$
\begin{equation*}
\frac{1}{1+u^{2}}>\frac{8}{3+\sqrt{25+\frac{80}{3} u^{2}}}-\frac{640 u^{2}}{3 \sqrt{25+\frac{80}{3} u^{2}}\left[3+\sqrt{25+\frac{80}{3} u^{2}}\right]^{2}} . \tag{2}
\end{equation*}
$$

Integrating the inequality (2) from 0 to x, we obtain the desired result.
Let $u^{2}=v+\frac{4}{15} v^{2}, v \geqq 0$, defining the parameter v. Then (2) becomes

$$
\begin{equation*}
\frac{1}{1 \div v+\frac{4}{15} v^{2}}>\frac{1+\frac{v}{5}}{\left(1 \div \frac{8}{15} v\right)\left(1+\frac{1}{3} v\right)^{2}} \tag{3}
\end{equation*}
$$

which is clearly evident. The error is $O\left(x^{7}\right)$ for small values of x. The largest error is at $x=\infty$ with an error of 1.5%.

A related inequality is:

$$
\begin{equation*}
\frac{1}{2} \log \frac{1+x}{1-x}=\operatorname{arth} x<\frac{8 x}{3+\sqrt{25-\frac{80}{3} x^{2}}} \quad\left(0<x \leqq \frac{\sqrt{15}}{4}\right) . \tag{4}
\end{equation*}
$$

In (2), replace u^{2} by $-w^{2}$ and reverse the inequality. Let $w^{2}=v-\frac{4}{15} v^{2}, v \geqq 0$ defining v as before. We get the inequality

$$
\begin{equation*}
\frac{1}{1-v+\frac{4}{15} v^{2}}<\frac{1-\frac{v}{5}}{\left(1-\frac{8}{15} v\right)\left(1-\frac{v}{3}\right)^{2}} \tag{5}
\end{equation*}
$$

which may be easily verified. Again, by integration, we get (4).

[^0]Making a change of variable $x=\frac{z}{2+z}$ we get from (4)

$$
\begin{equation*}
\log (1+z)<\frac{16 z}{6+3 z+\sqrt{100+100 z-\frac{5}{3} z^{2}}} \quad(0<z \leqq 30+8 \sqrt{15}) . \tag{6}
\end{equation*}
$$

The author is indebted to Y. L. Luke for this suggestion.
We directly obtain from (1), an inequality for $\arcsin z$. Let $x=\operatorname{tg} z$. Then

$$
\begin{equation*}
z>\frac{8 \operatorname{tg} z}{3+\sqrt{25+\frac{80}{3} \operatorname{tg}^{2} z}}=\frac{8 \sin z}{3 \cos z+\sqrt{25+\frac{5}{3} \sin ^{2} z}} \tag{7}
\end{equation*}
$$

and so
(8)

$$
\begin{aligned}
\arcsin z & >\frac{8 z}{3 \sqrt{1-z^{2}}+\sqrt{25+\frac{5}{3} z^{2}}} \\
& =\frac{8 z}{3 \sqrt{1-z^{2}+5+\frac{z^{2}}{6}}+\left[\sqrt{\left.25+\frac{5}{3} z^{2}-5-\frac{1}{6} z^{2}\right]}\right.} \\
& >\frac{8 z}{5+\frac{1}{6} z^{2}+3 \sqrt{1-z^{2}}} \quad(0<z \leqq 1) .
\end{aligned}
$$

The error in the last step of the inequality is negligible compared to the total error of the inequality (7).

REFERENCE

1. R. E. Shafer: On Quadratic Approximation. SIAM Journal of Numerical Analysis, April 1974 pp. 447-460.

2536 College Ave.
Berkeley, CA 94704, USA

[^0]: * Presented May 28, 1977 by P. M. Vasić.

