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Abstract

We explore steady-state inequality in an intergenerational model with altruistically-linked

individuals that experience privately observed taste shocks. When the welfare function only

depends on the initial generation, efficiency requires immiseration: inequality grows without

bound and everyone’s consumption converges to zero. We study other efficient allocations,

where the welfare function values future generations directly, placing a positive but vanishing

weight on their welfare. The social discount factor is then higher than the private one and for

any such difference we find that consumption exhibits mean-reversion and that a steady-state,

cross-sectional distribution for consumption and welfare exists, with no one trapped at misery.
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Introduction

Societies inevitably choose the inheritability of inequality. Some balance between equality of op-

portunity for newborns and incentives for altruistic parents is struck. In this paper, we explore how

this balancing act plays out to determine long-run inequality.

In a model with infinitely-lived agents featuring private information, Atkeson and Lucas (1992)

reached an extreme and surprising conclusion. They proved an immiseration result: inequality

should be perfectly inheritable and rise steadily without bound, with everyone converging to absolute

misery and a vanishing lucky fraction to bliss.1 We depart minimally from this contribution by

adopting the same positive economic model, but using a slightly different normative criterion. In

a generational context, efficient allocations for infinitely-lived agents only characterize the instance

where future generations are not considered directly, but only indirectly through the altruism of

earlier ones. On the opposite side of the spectrum, Phelan (2006) proposes a social planner with

equal weights on all generations that avoids the immiseration result because any allocation that

leads everyone to misery actually minimizes the welfare criterion. Our interest here is in exploring

a large class of Pareto-efficient allocations that also value future generations, but not equally. We

1 This immiseration result is robust; it obtains invariably in partial equilibrium (Green, 1987; Thomas and Worrall,
1990), in general equilibrium (Atkeson and Lucas, 1992), across environments with moral-hazard regarding work effort
or with private information regarding preferences or productivity (Aiyagari and Alvarez, 1995), and requires very
weak assumptions on preferences (Phelan, 1998).
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place a positive and vanishing Pareto weight on the expected welfare of future generations, which

allows us to remain arbitrarily close to Atkeson-Lucas.2

Our welfare criterion captures the idea that it is desirable to insure the unborn against the luck

of their ancestors, or, equivalently, insure the risk of which family they are born into—arguably,

the biggest risk in life. Formally, we show that it is equivalent to a social discount factor that

is higher than the private one. This relatively small change relative to Atkeson-Lucas produces a

drastically different result: long-run inequality remains bounded, in the sense that a steady-state,

cross-sectional distribution exists for consumption and welfare. At the steady state, there is social

mobility and welfare remains above an endogenous lower bound, which is strictly better than misery.

This outcome holds, however small the difference between social and private discounting.

Our positive economy is identical to Atkeson-Lucas’ taste-shock setup. Each generation is

composed of a continuum of individuals who live for one period and are altruistic towards a single

descendant. There is a constant aggregate endowment of the only consumption good in each

period. Individuals are ex-ante identical, but experience idiosyncratic shocks to preferences that are

privately observed. Feasible allocations must be incentive compatible and must satisfy the aggregate

resource constraint in all periods.

2 To make the notion more familiar, note that in overlapping-generation models without altruistic links, all market
equilibria that are Pareto efficient place positive direct weight on future generations. Bernheim (1989) pointed out
that in extensions of these models that incorporate altruism many Pareto efficient allocations are not attainable by
the market.
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When only the welfare of the first generation is considered, the planning problem is equivalent

to that of an economy with infinite-lived individuals. Intuitively, immiseration then results because

rewards and punishments, required for incentives, are best delivered permanently to smooth dynas-

tic consumption over time. As a result, the consumption process inherits a random-walk component

that leads cross-sectional inequality to grow without bound. No steady-state, cross-sectional dis-

tribution with positive consumption exists. Moreover, indefinite spreading of the distribution is

consistent with a constant aggregate endowment only if everyone’s consumption converges to zero.

Interpreted in the intergenerational context, this solution requires a lock-step link between the

welfare of parent and child. This perfect intergenerational transmission of welfare improves parental

incentives, but it exposes future generations to the risk of their dynasty’s history. Future descendants

value insurance against the uncertainty of their ancestors’ past shocks.

By contrast, when future generations are weighted in the social welfare function it remains

optimal to link the fortunes of parents and children, but no longer in lock-step. Rewards and pun-

ishments are distributed over all future descendants, but in a front-loaded manner. This creates

a mean-reverting tendency in consumption—instead of a random walk—that is strong enough to

bound long-run inequality. The result is a steady-state distribution for the cross section of con-

sumption and welfare, with no one at misery. Moreover, mean reversion ensures a form of social

mobility, so that families rise and fall through the ranks incessantly.

It is worth emphasizing that our exercise is not predicated on any paternalistic concern that



Back 6

individuals do not discount the future appropriately. Rather, the difference between social and pri-

vate discounting arises because the social welfare function gives direct weight to future generations.

However, our formal analysis can be applied whatever the motivation, paternalistic or not, for a

difference in social and private discounting. For example, Caplin and Leahy (2004) make a case for

a higher social discount factor within a lifetime.

A methodological contribution of this paper is to reformulate the social planning problem re-

cursively in a way that extends the ideas introduced by Spear and Srivastava (1987) to a general-

equilibrium situation where private and social objectives potentially differ. We are able to reduce

the dynamic program to a one-dimensional state variable, and our analysis and results heavily

exploit the resulting Bellman equation.

The paper most closely related to ours is Phelan (2006), who considered a social planning prob-

lem with no discounting of the future. He shows that if a steady state for the planning problem

exists then it must solve a static maximization problem, and that solutions to this problem have

strictly positive inequality and social mobility. Our paper establishes the existence of a steady-state

distribution for any difference in social and private discounting. Unlike the case with no discount-

ing, there is no valid static problem, so our methods are necessarily quite different. Our work is

also indirectly related to Sleet and Yeltekin (2004), who study a utilitarian planner that lacks com-

mitment and always cares for the current generation only. The best equilibrium allocation without

commitment is equivalent to the optimal one with commitment but with a more patient welfare
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criterion. Thus, our approach and results provide an indirect, but effective, way of characterizing

the problem without commitment and establishing the existence of a steady-state distribution. This

illustrates that lack of commitment or political economy considerations, provide a motivation for

the positive Pareto weights that future generations command.

The rest of the paper is organized as follows. Section 1 contains some simple examples to il-

lustrate why weighing future generations leads to a higher social discount factor, and why mean

reverting forces emerge from any difference between social and private discounting. Section 2 intro-

duces the economic environment and sets up the social planning problem. In Section 3, we develop

a recursive version of the planning problem and establish its relation to the original formulation.

The resulting Bellman equation is then used in Section 4 to characterize the mean-reversion in the

solution. Section 5 contains the main results on the existence of a steady state. Section 6 offers

some conclusions from the analysis. Proofs are contained in the Appendix.

1. Social Discounting and Mean Reversion

In this section, we preview the main forces at work in the full model using a simple deterministic

example. We first explain why weighing future generations maps into lower social discounting.

We then show how this affects the optimal inheritability of welfare across generations. Finally,

we relate the latter to the mean-reversion force, which guarantees a steady state distribution with
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social mobility in the full model. Our discussion also provides intuition for the immiseration result

in Atkeson-Lucas.

Social Discounting. Imagine a two period deterministic economy. The parent is alive in the first

period, t = 0, and replaced by a single child in the next, t = 1. The child derives utility from his

own consumption, so that v1 = u(c1). The parent cares about her own consumption but is also

altruistic towards the child, so that her welfare is v0 = u(c0) + βv1 = u(c0) + βu(c1).

A welfare criterion that weighs both agents, and serves to trace out the Pareto frontier between

v0 and v1, is W ≡ v0 + αv1, for some weight α ≥ 0. Equivalently,

W = u(c0) + (β + α)u(c1) = u(c0) + β̂u(c1),

with the social discount factor given by β̂ ≡ β + α.

The only difference between the welfare criterion and the objective of the parent is the rate of

discounting. Social discounting depends on the weight on future generations α. When no direct

weight is placed on children, so that α = 0, social and private discounting coincide, β̂ = β, which

is the case covered by Atkeson and Lucas (1992). Whenever children are counted directly in the

welfare criterion, α > 0, society discounts less than parents do privately, β̂ > β. The child’s

consumption it is a public good that both generations enjoy, so the utility from it gets more weight.

A Planning Problem. In Section 2 we show that the calculations above generalize to an infinite
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horizon economy and lead to an objective with more patient geometric discounting:
∑∞

t=0 β̂
tu(ct).

We now consider a simple planning problem for such an infinite-horizon version.

Now, suppose there are two dynasties, A and B. In each period, a planner must divide a fixed

endowment 2e between the two dynasties, giving cA,t to A and cB,t = 2e− cA,t to B. Suppose that,

for some reason, the heads of dynasties are promised differential treatment, so that the difference

in their welfare must be ∆. The planner’s problem is

max
{cA,t}

∞
∑

t=0

β̂t
(

1
2
u(cA,t) + 1

2
u(2e− cA,t)

)

subject to

∞
∑

t=0

βtu(cA,t) −
∞
∑

t=0

βtu(2e− cA,t) = ∆.

The first-order conditions for an interior optima are

u′(cA,t)

u′(cB,t)
=

1 + λ(β/β̂)t

1 − λ(β/β̂)t
t = 0, 1, . . . ,

where λ is the Lagrange multipliers on the constraint.
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Imperfect Inheritability. Suppose that the founder of dynasty A has been promised higher

welfare ∆ > 0 so that λ > 0. The first-order condition then reveals that every member of dynasty

A enjoys higher consumption, cA,t > cB,t. If β̂ = β, as in Atkeson and Lucas (1992), consumption

is constant over time for both groups, and initial differences persist forever. The unequal promises

to the first generation have a permanent impact on their descendants. The inheritability of welfare

across generations is perfect: the consumption and welfare of the child moves one-to-one with the

parent’s welfare.

In contrast, when β̂ > β the consumption differences between the two dynasties shrinks over

time. Consumption declines across generations for group A, and rises for the group B. The

inheritability of welfare across generations is imperfect: a child’s consumption rises less than one-

for-one with the parent’s. Indeed, initial differences completely vanishes asymptotically—initial

inequality dies out. Figure 1 illustrates these dynamics for consumption.

In this simple deterministic example, initial inequality ∆ was taken as given. However, the

model below generates similar responses in future consumption in order to provide incentives. That

is, the dynamics after a shock are similar to those illustrated here, and Figure 1 can be loosely

interpreted as an “impulse response” function. If β̂ = β, shocks have a permanent effects on

inequality; consumption inherits a random-walk-like property. If the social welfare function puts

weight directly on all generations so that β̂ > β, then there is mean reversion: the effects of shocks
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decay over time. Moreover the asymptotic rate of decay is β̂/β.3

In our deterministic example, we found that as long as β̂ > β inequality vanishes in the long

run—the unique steady state has no inequality. However, in our full model with ongoing taste

shocks, inequality remains positive in the long-run steady state. The mean-reverting force illustrated

here ensures that long-run inequality remains bounded. By contrast, when β̂ = β, as in Atkeson

and Lucas (1992), there is no mean-reversion. The random walk like property of the allocation

implies that shocks accumulate indefinitely and inequality increases without bound.

2. An Intergenerational Insurance Problem

At any point in time, the economy is populated by a continuum of individuals who have identical

preferences, live for one period, and are replaced by a single descendant in the next. Parents born

in period t are altruistic towards their only child and their welfare vt satisfies

vt = Et−1 [θtU(ct) + βvt+1] ,

3 A simple Taylor expansion yields cA,t/cB,t − 1 ≃ u′(e)
−eu′′(e) (λ

A − λB)(β/β̂)t. Hence, the relative difference in

consumption goes to zero at asymptotic rate β/β̂.
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where ct ≥ 0 is the parent’s own consumption and β ∈ (0, 1) is the altruistic weight placed on

the descendant’s welfare vt+1, and θt ∈ Θ is a taste shock that is assumed to be identically and

independently distributed across individuals and time. We assume the following throughout.

Assumption 1 (a) the set of taste shocks Θ is finite; (b) the utility function U(c) is concave and

continuously differentiable for c > 0 with limc→0 U
′(c) = ∞ and limc→∞ U ′(c) = 0.

This specification of altruism is consistent with individuals having a preference over the entire

future consumption of their dynasty given by

vt =
∞
∑

s=0

βs Et−1 [θt+sU (ct+s)] . (1)

In each period, a resource constraint limits aggregate consumption to be no greater than some

constant aggregate endowment e > 0.

The following notation and conventions will be used. We refer to ut = U(ct) as utility and

the discounted, expected utility vt as welfare. Let p(θ) denote the probability of θ ∈ Θ; we adopt

the normalization that E[θ] =
∑

θ∈Θ θp(θ) = 1. The cost function c(u) is defined as the inverse of

the utility function c ≡ U−1. Dynastic welfare vt belongs to the set u(R+)/(1 − β) with extremes

v ≡ U(0)/(1 − β) and v̄ ≡ limc→∞ U(c)/(1 − β), which may be finite or infinite.
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Taste shock realizations are privately observed, so any mechanism for allocating consumption

must be incentive compatible. The revelation principle allows us to restrict attention to mechanisms

that rely on truthful reports of these shocks. Thus, each dynasty faces a sequence of consumption

functions {ct}, where ct(θ
t) represents an individual’s consumption after reporting the history θt ≡

(θ0, θ1, . . . , θt). It is more convenient to work with the implied allocation for utility {ut} with

ut(θ
t) ≡ U(ct(θ

t)). A dynasty’s reporting strategy σ ≡ {σt} is a sequence of functions σt : Θt+1 → Θ

that maps histories of shocks θt into a current report θ̂t. Any strategy σ induces a history of reports

σt : Θt+1 → Θt+1. We use σ∗ to denote the truth-telling strategy with σ∗
t (θ

t) = θt for all θt ∈ Θt+1.

Following Atkeson-Lucas, we identify each dynasty with a number v, which we interpret as its

founder’s welfare entitlement, v0 = v. We assume that all dynasties with the same entitlement v

receive the same treatment. We then let ψ denote a distribution of v across dynasties. An allocation

is a sequence of functions {uvt } for each v. For any given initial distribution of entitlements ψ and

resources e, we say that an allocation {uvt } is feasible if: (i) it delivers expected utility of v to all

initial dynasties entitled to v:

v =
∞
∑

t=0

∑

θt∈Θt+1

βtθtu
v
t

(

σt(θt)
)

Pr(θt) (2)
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(ii) it is incentive compatible for all v:

∞
∑

t=0

∑

θt∈Θt+1

βtθt

(

uvt
(

σt(θt)
)

− uvt
(

σt(θt)
)

)

Pr(θt) ≥ 0 for all σ; (3)

and (iii) total consumption does not exceed the fixed endowment e in all periods:

∫

∑

θt∈Θt+1

c
(

uvt (θ
t)
)

Pr(θt) dψ(v) ≤ e t = 0, 1, . . . (4)

Define e∗(ψ) to be the lowest endowment e such that there exists an allocation satisfying (2)–(4),

which is precisely the efficiency problem studied in Atkeson and Lucas (1992).

Social Discounting. We have adopted the same preferences, technology and informational as-

sumptions as in Atkeson and Lucas (1992). Our only departure is to introduce the planning objective

∞
∑

t=0

β̂t E−1[θtU(ct)], (5)

for each dynasty, which is equivalent to the preferences in (1), except for the discount factor β̂ > β.

Our motivation for this objective is that it can be derived from a welfare criterion that places direct
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weight on the welfare of future generations. To see this, consider the sum of expected utilities using

strictly positive weights {αt}:

∞
∑

t=0

αt E−1vt =
∞
∑

t=0

δt E−1 [θtU (ct)], (6)

where δt ≡ βtα0 + βt−1α1 + · · · + βαt−1 + αt. Then the discount factor satisfies

δt+1

δt
= β +

αt+1

δt
> β,

so that social preferences are more patient. Future generations are already indirectly valued through

the altruism of the current generation. If, in addition, they are also directly included in the welfare

function the social discount factor must be higher than β.4

In particular, for geometric Pareto weights αt = β̂t with β̂ > β:

∞
∑

t=1

αt E−1vt =
1

β̂ − β

(

∞
∑

t=0

β̂t E−1[ θtU(ct) ] − v0

)

. (7)

4 Bernheim (1989) performs similar intergenerational discount factor calculations in his welfare analysis of a
deterministic dynastic saving model. Caplin and Leahy (2004) argue that these ideas also apply to intra-personal
discounting within a lifetime, leading to a social discount factor that is greater than the private one not only across
generations, but within generations as well.
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The first term is identical to the expression in (5); when initial welfare promises v0 for the founding

generation are given the second term is a constant.

Planning Problem. Define the social optimum as a feasible allocation that maximizes the integral

of the welfare function (5) with respect to distribution ψ. That is, the social planning problem given

an initial distribution of welfare entitlements ψ and an endowment level e is

S(ψ; e) ≡ sup
{uv

t }

∫ ∞
∑

t=0

∑

θt∈Θt+1

β̂tθtut(θ
t) Pr(θt) dψ(v) subject to (2)–(4). (8)

The constraint set is nonempty as long as e ≥ e∗(ψ). If e = e∗(ψ), then the only feasible allocation

is the one characterized by Atkeson-Lucas; we study cases with e > e∗(ψ).

The way we have defined the social planning problem imposes that initial welfare entitlements v

be delivered exactly, in the sense that the promise-keeping constraints (2) are equalities, instead of

inequalities. Alternatively, suppose that the founder of each dynasty is indexed by some minimum

welfare entitlement ṽ, with distribution ψ̃. The Pareto problem maximizes the average welfare

criterion (7) subject to delivering ṽ or more to the founders and incentive compatibility. The two

problems are related: the solution to the Pareto problem solves the social planning problem for some
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distribution ψ that first-order stochastically dominates ψ̃. In particular, it chooses ψ to maximize

S(ψ; e) −

∫

v dψ(v)

subject to ψ(v) ≤ ψ̃(v) for all v. In general, depending on ψ̃, the constraints of delivering the initial

welfare entitlements ṽ or more may be slack, so that ψ 6= ψ̃ may be optimal. However, we shall

show that setting ψ = ψ̃ is optimal for initial distributions of entitlements ψ̃ that are steady states,

as defined below. Our strategy is to work with the social planning problem and then return to its

connection with the Pareto problem.

Steady States. The social planning problem takes the initial distribution of welfare entitlements

ψ as given. In later periods the current cross-sectional distribution of continuation welfare ψt is a

sufficient statistic for the remaining planning problem: the social planning problem is recursive with

state variable ψt. It follows that the solution to the planning problem from any period t onward,

{uvt+s}
∞
s=0, is a time independent function of the current distribution ψt which evolves according to

a stationary recursion ψt+1 = Ψψt, for some fixed mapping Ψ.

Our focus is on distributions of welfare entitlements ψ∗ such that the solution to the planning

problem features, in each period, a cross-sectional distribution of continuation utilities vt that is

also distributed according to ψ∗. In this case, the cross-sectional distribution of consumption also

replicates itself over time. We term any distribution of entitlements ψ∗ with these properties a
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steady state. A steady state corresponds to a fixed point of this mapping, ψ∗ = Ψψ∗.

In the Atkeson-Lucas case, with β = β̂, the non-existence of a steady state with positive con-

sumption is a consequence of the immiseration result: starting from any non-trivial initial distribu-

tion ψ and resources e = e∗(ψ) the sequence of distributions converges weakly to the distribution

having full mass at misery v = U(0)/(1 − β), with zero consumption for everyone. We seek non-

trivial steady states ψ∗ that exhaust a strictly positive aggregate endowment e in all periods.

Using the entire distribution ψt as a state variable is one way to approach the planning problem.

Indeed, this is the method adopted by Atkeson and Lucas (1992). They were able to keep the

analysis manageable, despite the large dimensionality of the state variable, by exploiting the homo-

geneity of the problem with constant relative risk aversion (CRRA) preferences. In contrast, even

in the CRRA case, our model lacks this homogeneity, making such a direct approach intractable.5

Consequently, in the next section, we attack the problem differently, using a dynamic program with

a one-dimensional state variable.6 The idea is that the continuation welfare vt of each dynasty

follows a Markov process, and that steady states are invariant distributions of this process.

5 Indeed, the homogeneity in Atkeson-Lucas is intimately linked to their immiseration result: it implies that
rewards and punishments are permanent and delivered by shifting the entire sequence of consumption up or down
multiplicatively. In our case, even with CRRA preferences, homogeneity breaks down and mean reversion emerges,
preventing immiseration.

6 A similar approach is taken in Atkeson and Lucas (1995), Aiyagari and Alvarez (1995), and others.
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3. A Bellman Equation

In this section we approach the planning problem by studying a relaxed version of it, whose solution

coincides with that of the original problem at steady states. The relaxed problem has two important

advantages. First, it can be solved by studying a set of subproblems, one for each dynasty, thereby

avoiding the need to keep track of the entire distribution ψt in the population. Second, each

subproblem admits a one-dimensional recursive formulation, which we are able to characterize quite

sharply. We believe that the general approach we develop here may be useful in other contexts.

Define a relaxed planning problem by replacing the sequence of resource constraints (4) in the

social planning problem (8) with a single intertemporal constraint

∫ ∞
∑

t=0

Qt

∑

θt∈Θt+1

c
(

uvt (θ
t)
)

Pr(θt) dψ(v) ≤ e

∞
∑

t=0

Qt, (9)

for some positive sequence {Qt} with
∑∞

t=0Qt <∞. One can interpret this problem as representing

a small open economy facing intertemporal prices {Qt}. The original and relaxed versions of the

social planning problem are related in that any solution to the latter that happens to satisfy the

resource constraints (4) is also a solution to the former.7,8 It follows that any steady-state solution

7 This is related to the decentralization result in Atkeson and Lucas (1992, Theorem 1, Section 7), although they
do not use it, as we do here, to characterize the solution.

8 Since the problem is convex, a Lagrangian argument establishes the converse: there must exist some positive
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to the relaxed problem is a steady-state solution to the original one, since at a steady state the

intertemporal constraint (9) implies the resource constraints (4). A steady state requires Qt = β̂t.

Consider then the intertemporal resource constraint (9) with Qt = β̂t:

∫ ∞
∑

t=0

β̂t
∑

θt∈Θt+1

c
(

uvt (θ
t)
)

Pr(θt) dψ(v) ≤ e
∞
∑

t=0

β̂t. (10)

Letting η denote the multiplier on this constraint we form the Lagrangian (omitting the constant

term due to e)

L ≡

∫

Lv dψ(v) where Lv ≡
∞
∑

t=0

∑

θt∈Θt+1

β̂t
(

θtu
v
t (θ

t) − ηc
(

uvt (θ
t)
)

)

Pr(θt). (11)

We study the maximization of L subject to (2) and (3).

The advantage of working with the Lagrangian is that maximizing L is equivalent to the point-

sequence {Qt} such that the solution to the original social planning problem also solves the relaxed problem. This
is analogous to the second theorem of welfare economics for our environment. However, we will not require this
converse result to construct a steady state solution.
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wise optimization, for each v, of the subproblem:

k(v) ≡ sup
{uv

t }

Lv subject to (2) and (3). (12)

We call this subproblem, for a given v and η, the component planning problem. Its connection with

the relaxed problem is that for any e there exists a positive multiplier η such that an allocation

{uvt } solves the relaxed planning problem with endowment e if and only if for each v the allocation

{uvt } solves the component planning problem given v and η.

Our first result characterizes the value function k(v), defined from a sequence problem, showing

that it satisfies a Bellman equation.

Theorem 1 The value function of the component planning problem k(v) defined by equation (12)

is continuous, concave, and satisfies the Bellman equation

k(v) = max
u,w

E
[

θu(θ) − ηc
(

u(θ)
)

+ β̂k
(

w(θ)
)]

(13)

subject to

v = E[θu(θ) + βw(θ)] (14)

θu(θ) + βw(θ) ≥ θu(θ′) + βw(θ′) for all θ, θ′ ∈ Θ. (15)
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This recursive formulation imposes a promise-keeping constraint (14) and an incentive con-

straint (15). Intuitively, the latter rules out one-shot deviations from truth-telling, guaranteeing

that telling the truth today is optimal if the truth is told in future periods. Of course, this is

necessary to satisfy the full incentive-compatibility condition (3). The rest is implicitly taken care

of in (13) by evaluating the value function, defined from the sequence problem, at the continuation

welfare: for any given continuation value w(θ), envision the planner in the next period solving the

remaining sequence problem by selecting an entire allocation that is incentive compatible from then

on; k(w(θ)) represents the value to the planner of this continuation allocation. For any given v, a

pair u(θ) and w(θ) that satisfies (14)–(15), pasted with the corresponding continuation allocations

for each w(θ), describes an allocation that satisfies (2)–(3).

Among other things, Theorem 1 shows that the maximization on the right hand side of the

Bellman equation is uniquely attained by some continuous policy functions gu(θ, v) and gw(θ, v),

for u and w, respectively. We emphasize that these policy functions solve the maximization in

the Bellman equation (13) using the value function k(v) defined from the sequence problem (12).9

For any initial welfare entitlement v, an allocation {ut} can then be generated from the policy

9 If one assumes bounded utility, a standard contraction-mapping argument could be used to establish that the
Bellman equation has a unique solution, which must then coincide with that defined from the sequence problem.
However, we do not assume bounded utility and for our purposes such arguments are not required. Indeed, we never
require solving fixed points of the Bellman equation or showing that it has a unique solution. We work directly with
k(v) defined from the sequence problem (12).
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functions (gu, gw) by ut(θ
t) = gu(θt, vt(θ

t−1)), with v0 = v and vt+1(θ
t) = gw(θt, vt(θ

t−1)). Our next

result provides a connection between allocations generated this way and solutions to the component

planning problem (12).

Theorem 2 For any (v, η), if an allocation {ut} attains the supremum in (12) then it is generated

by (gu, gw). Conversely, if an allocation {ut} generated by (gu, gw) satisfies

lim sup
t→∞

E−1β
tvt
(

σt−1(θt−1)
)

≥ 0 for all σ,

then it attains the supremum in (12).

The first part of Theorem 2 implies either that the solution to the relaxed planning problem is

generated by the policy functions, or that there is no solution at all. The second part of Theorem 2

shows that a solution can be guaranteed if we can verify a certain limiting condition. Note that

this condition is trivially satisfied for all utility functions that are bounded below.10

10 Theorem 2 involves various applications of versions of the Principle of Optimality. For example, for any given
policy functions (gu, gw) and an initial value v0, the individual dynasty faces a recursive dynamic programming
problem with state variable vt. Conditions (14) and (15) then amount to guessing and verifying a solution to the
Bellman equation of the agent’s problem—in particular, that the value function that satisfies the Bellman equation,
with truth telling, is the identity function. However, one also needs to verify that this value function represents the
true optimal value for the dynasty from the sequential problem. This verification is accomplished by the limiting
condition of Theorem 2.
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The next result establishes that k(v) is differentiable and strictly concave with an interior peak.

Proposition 1 The value function k(v) is strictly concave; it is differentiable on the interior of its

domain, with limv→v̄ k
′(v) = −∞. If utility is unbounded below, then limv→v k

′(v) = 1. Otherwise

limv→v k
′(v) = ∞.

The shape of the value function is important because mean-reversion occurs towards the interior

peak, as we show next.

4. Mean Reversion

In this section we use the Bellman equation to characterize the solution to the planning problem

and to show that it displays mean-reversion. Let λ be the multiplier on the the promise-keeping

constraint (14) and let µ(θ, θ′) be the multipliers on the incentive constraints (15). The first-order

condition for u(θ) is

(

1 − ηc′
(

gu(θ, v)
)

)

p(θ) − θλp(θ) +
∑

θ′∈Θ

θµ(θ, θ′) −
∑

θ′∈Θ

θ′µ(θ′, θ) ≤ 0,
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with equality if gu(θ, v) is interior. Given the Inada conditions for k(v) derived in Proposition 1,

the solution for w(θ) must be interior and satisfy the first-order condition

β̂k′
(

gw(θ, v)
)

p(θ) − βλp
(

θ
)

+ β
∑

θ′∈Θ

µ(θ, θ′) − β
∑

θ′∈Θ

µ(θ′, θ) = 0.

Incentive compatibility implies that gu(θ, v) is nondecreasing as a function of θ; similarly, gw(θ, v)

is nonincreasing in θ. Using the envelope condition k′(v) = λ and summing over θ, this becomes

∑

θ∈Θ

k′
(

gw(θ, v)
)

p(θ) =
β

β̂
k′(v). (16)

In sequential notation, this condition is

Et−1

[

k′
(

vt+1

)]

=
β

β̂
k′
(

vt
)

, (17)

where {vt(θ
t−1)} is generated by the policy function gw. Since β/β̂ < 1 the Markov process {k′(vt)}

regresses towards zero. By Proposition 1, the value function k(v) has an interior maximum at v∗,

where k′(v∗) = 0, that is strictly higher than misery v. Reversion occurs towards this interior point.

Economically, this mean-reversion implies an interesting form of social mobility. Divide the
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population into two, those above and those below v∗. Then mobility is ensured between these

groups: descendants of individuals with current welfare above v∗ will eventually fall below it, and

viceversa. This rise and fall of families illustrates one form of intergenerational mobility.

To provide incentives, the planner rewards the descendants of an individual reporting a low taste

shock. Rewards can take two forms and it is optimal to makes use of both. The first is standard

and involves spending more on a dynasty in present-value terms. The second is more subtle and

exploits differences in preferences: it is to allow an adjustment in the pattern of consumption, for

a given present value, in the direction preferred by individuals relative to the planner.11 Since

individuals are more impatient than the planner, this form of reward is delivered by tilting the

consumption profile toward the present. Earlier consumption dates are used more intensively to

provide incentives: rewards and punishments are front-loaded.

Our next result derives upper and lower bounds for the {k′(vt)} process.

Proposition 2 There exists constants γ ≤ γ̄ so that

(a) if utility is unbounded below then for all θ ∈ Θ:

γ
(

1 − k′(v)
)

+

(

1 −
β

β̂

)

≤ 1 − k′
(

gw(θ, v)
)

≤ γ̄
(

1 − k′(v)
)

+

(

1 −
β

β̂

)

(18)

11 Some readers may recognize this last method as the time-honored system of rewards and punishments used by
parents when conceding their child’s favorite snack or reducing their TV-time. In these instances, the child values
some goods more than the parent wishes, and the parent uses them to provide incentives.
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(b) if utility is bounded below, then for k′(v) ≤ 1, the lower bound on 1 − k′
(

gw(θ, v)
)

in (18)

holds; the upper bound holds for sufficiently high v. For k′(v) > 1, gu(θ, v) = U(0) and

gw(θ, v) = (v − U(0))/β > v for all θ ∈ Θ.

Moreover, in the limit γ, γ̄ → β/β̂ as θ, θ̄ → 1.

These bounds are instrumental in proving the existence of an invariant distribution. They also

illustrate a powerful tendency away from misery. For example, they imply that, when utility is

unbounded below, continuation welfare gw(θ, v) remains bounded even as v → −∞. No matter

how much a parent is to be punished, his child is somewhat spared. Given the result that γ̄ → β/β̂

as θ, θ̄ → 1, the bounds also imply that the ergodic set for 1 − k′(vt) is bounded above if the

amplitude of taste shocks is not too wide. This, provides conditions for vt to be bounded away

from v̄.

5. Existence of an Invariant Distribution

In this section we show that a steady-state invariant distribution exists. The proof relies on the

mean-reversion in equation (17) and the bounds in Proposition 2.
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Proposition 3 The Markov process {vt} implied by gw has an invariant distribution ψ∗ with
∫

k′(v)ψ∗(v) = 0 and no mass at misery, ψ∗({v}) = 0, if any of the following holds: utility is

unbounded below, utility is bounded above, γ̄ < 1, or γ > 0.

When combined with the first part of Theorem 2, this proposition leaves only two possibilities.

Either the social planning problem admits a steady-state invariant distribution, or no solution

exists. This contrasts with the Atkeson-Lucas case, with β = β̂, where a solution exists but does

not admit a steady state. Later in this section we verify the second part of Theorem 2 to confirm

that a solution to the planning problem can be guaranteed and a steady state exists.

Our Bellman equation also provides an efficient way of solving the planning problem. We

illustrate this with two examples, one analytical and another numerical.

Example 1. Suppose utility is CRRA with σ = 1/2, so that U(c) = 21/2c1/2, so that c ≥ 0 and

c(u) = u2/2 for u ≥ 0. For β = β̂ Atkeson-Lucas show that the optimum involves consumption

inequality growing without bound and leading to immiseration.

Consider the Bellman equation for the problem that ignores the nonnegativity constraints on u

and w:

k(v) = max
u,w

E
[

θu(θ) − η
2
u(θ)2 + β̂k

(

w(θ)
)]
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subject to (14) and (15). This is a linear-quadratic dynamic programming problem, so the value

function k(v) is quadratic function and the policy functions are linear in v:

gu(θ, v) = γu1 (θ)v + γu0 (θ),

gw(θ, v) = γw1 (θ)v + γw0 (θ).

Furthermore, for taste shocks with sufficiently small amplitude we can guarantee strictly positive

consumption gw(θ, v) on a unique bounded ergodic set for welfare v. The nonnegativity constraints

are then satisfied. It follows that this allocation also solves the problem that imposes these additional

constraints.

Example 2. To illustrate the numerical value of our recursive formulation, we now compute the

solution for the logarithmic utility case U(c) = log(c) with β = 0.9, e = η−1 = 0.6, θh = 1.2,

θl = 0.75, p = 0.5 and several values of β̂. Figure 2 displays steady-state distributions of welfare,

measured in consumption-equivalent units c(v(1− β)). The distributions have a smooth bell-curve

shape. This must be due to the smooth, mean-reverting dynamics of the model, since it cannot be a

direct consequence of our two-point distribution of taste shocks. Dispersion appears to increase for

lower values of β̂, supporting the natural conjecture that as we approach β̂ → β, the Atkeson-Lucas

case, the invariant distributions diverge.
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We now briefly discuss to issues of uniqueness and stability of the invariant distribution guaran-

teed by Proposition 3. This question is of economic interest because it represents an even stronger

notion of social mobility than that implied by the mean-reversion condition (17) discussed in the

previous subsection. Suppose the economy finds itself at a steady state ψ∗. Then convergence

from any initial v0 toward the distribution ψ∗ means that the distribution of welfare for distant

descendants is independent of an individual’s present condition. The past exerts some influence on

the present, but its influence dies out over time. The inheritability of welfare is imperfect and the

advantages or disadvantages of distant ancestors are eventually wiped out.

Indeed, the solution may display this strong notion of social mobility. To see this, suppose the

ergodic set for {k′(vt)} is compact, which is guaranteed if γ̄ < 1. Then, if the policy function

gw(θ, v) is monotone in v, the invariant distribution ψ∗ is unique and stable: starting from any

initial distribution ψ0, the sequence of distributions {ψt}, generated by gw, converges weakly to ψ∗.12

The required monotonicity of the policy functions was satisfied by Examples 1 and 2 and seems

plausible more generally.13 Another approach suggests uniqueness and convergence without relying

on monotonicity of the policy functions. Grunwald, Hyndman, Tedesco, and Tweedie (2000) show

that one-dimensional, irreducible Markov processes with the Feller property that are bounded below

12 This follows since the conditional-expectation equation (17) ensures enough mixing to apply Hopenhayn-
Prescott’s Theorem. See pg. 382-383 in Stokey and Lucas (1989).

13 Indeed, it can be shown that gw(θ, v) must be strictly increasing in v. However, although we know of no
counterexample, we have not found conditions that ensure the monotonicity of gw(θ, v) in v for θ 6= θ.
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and are conditional linear autoregressive, as implied by (17), have a unique and stable invariant

distribution. All their hypotheses have been verified here except for the technical condition of

irreducibility.14 We do not pursue this formally other than to note that the forces for reversion

in (17) might be further exploited to establish uniqueness and convergence.

We have focused on steady states where the distribution of welfare replicates itself over time.

However, for the logarithmic utility case we can also characterize transitional dynamics.

Proposition 4 If utility is logarithmic U(c) = log(c), then for any initial distribution of entitle-

ments ψ there exists an endowment level e = ê(ψ) such that the solution to the social planning

problem is generated by the policy functions (gu, gw). The function ê is increasing, in that if ψb

first-order stochastic dominates ψa then ê(ψa) < ê(ψb).

One can apply this result to the case with no initial inequality, where dynasties are all started

at v∗ solving k′(v∗) = 0. The cross-sectional distribution of welfare and consumption fans out

over time starting from this initial egalitarian position. The issues of convergence and uniqueness

discussed above now acquire an additional economic interpretation. It implies that the transition

is stable, with the cross-sectional distributions of welfare and consumption converging over time to

the steady state.

14 We conjecture that this condition could be guaranteed in an extension with a continuous distribution of taste
shocks.
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As mentioned in Section 3, for any utility function one can characterize the solution for any (ψ, e)

as the solution to a relaxed problem with some sequence {Qt}, that are not necessarily exponential.

That is, imposing the general intertemporal constraint (9) instead of (10). Proposition 4 identifies

the distributions and endowment pairs (ψ, e) that lead to exponential {Qt} in the logarithmic case.

More generally, with logarithmic utility for any pair (ψ, e), we can show that Qt = β̂t+aβt for some

constant a. The entire optimal allocation can then be characterized by the policy functions from a

non-stationary Bellman equation. Since {Qt} is asymptotically exponential (i.e. limt→∞ β̂−tQt = 1)

the long-run dynamics are dominated by the policy functions (gu, gw) from the problem with Qt = β̂t

that we have characterized.

We have shown the existence of a steady state ψ∗ generated by the policy function gw. We

now provide sufficient conditions to ensure that ψ∗ is also a steady state for the social planning

problem. This involves two things. We first establish that allocations generated by the policy

functions are indeed incentive compatible by verifying the limiting condition in Theorem 2; this

guarantees that, given ψ∗ and η, the allocation maximizes the Lagrangian (11). Second, we verify

that average consumption is finite under ψ∗, so that there exists some endowment e for which the

resource constraints (4) and (9) hold. It follows that the allocations generated by (gu, gw) solve the

social planning problem, given e and ψ∗.

Proposition 5 The allocation generated from the policy functions (gu, gw), starting from any v0, is

guaranteed to be incentive compatible in the following cases: (a) utility is bounded above; (b) utility
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is bounded below; (c) utility is logarithmic; or (d) γ̄ < 1 or γ > 0.

Next, we give sufficient conditions to guarantee that total consumption is finite at the steady

state ψ∗. If the ergodic set for welfare v is bounded away from the extremes, then consumption is

bounded and total consumption is finite. Even when a bounded ergodic set for welfare v cannot be

ensured, we can guarantee that total consumption is finite for a large class of utility functions.

Proposition 6 Total consumption is finite under the invariant distribution ψ∗,

∫

∑

θ∈Θ

c
(

gu(θ, v)
)

p(θ) dψ∗(v) <∞,

if either (a) the ergodic set for v is bounded; or (b) utility is such that c′(U(c)) is a convex function

of c.

Condition (a) is guaranteed if the amplitude of taste shocks is not too wide, so that γ̄ < 1.

Condition (b) holds, for example, with constant relative risk aversion utility functions with σ ≥ 1.

The value of average consumption depends on the value of η. For instance, in the case of constant

relative risk aversion utility, average steady state consumption is a power function of η, and thus

has full range. In fact, in this case the entire solution for consumption is homogenous of degree

one in the value of the endowment e. This ensures a steady state solution to the social planning

problem for any endowment level.
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We now return to the Pareto problem and its relation to the social planning problem. Recall

that the former is exactly as the latter except that the promise-keeping constraints are inequalities,

instead of equalities. The next result establishes that these inequality constraints bind for steady

state distributions ψ∗. Thus, the solutions to the Pareto and social planning problems coincide. The

proof relies on the fact that a marginal increase in v contributes k′(v)−1 to the welfare criterion (7)

and that k′(v) < 1.

Proposition 7 Let ψ∗ denote an invariant distribution of the process {vt} generated by the policy

function gw. Then ψ = ψ∗ solves the Pareto problem

max
ψ

{

S(ψ; e) −

∫

v dψ(v)

}

subject to ψ(v) ≤ ψ∗(v) for all v,

if consumption is strictly positive on the support of ψ∗, i.e. c
(

gu(θ, v)
)

> 0 for all v in the support

of ψ∗.

The condition that consumption be strictly positive is automatically satisfied if utility is un-

bounded below; otherwise it is ensured if the amplitude of the taste shocks is not too large, so that

γ̄ > 0.

It follows that if the Pareto problem is started with the distribution ψ̃ = ψ∗, then this distribution

is replicated over time: ψt = ψ∗ for all t = 0, 1, . . . It also implies that the steady state distribution
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ψ∗ is time-consistent, in the sense that in any period t the initial allocation also solves the Pareto

problem, and is, thus, ex-post Pareto efficient.

In our analysis, future generations were valued by attaching a declining Pareto weight on their

expected welfare. The mapping from Pareto weights to their expected welfare is as follows. At a

steady state, the weights αt = β̂t for t ≥ 1 correspond to the constraints that average expected

welfare be no lower than that obtained under the steady state distribution ψ∗:

∫

vt dψt(vt) ≥ V for all t = 1, . . . (19)

where V ≡
∫

v dψ∗(v). In other words, we have characterized the maximization of the expected

welfare of generation t = 1 subject to (19) for all other future generations t = 2, 3, . . ., as well

as the promise-keeping constraints of delivering ṽ or more to the founder of each dynasty, given

some distribution of initial promises ψ̃, and satisfying incentive compatibility. We have constructed

steady states for such a problem: initial entitlement distributions ψ̃ = ψ∗ that replicate themselves

over time. Different values of β̂ translate into different steady states ψ∗ and trace out associated

values for V in this Pareto problem.
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6. Conclusions

How should privately-felt parental altruism affect the social contract? What are the long-run

implications for inequality? To address these questions, we modeled the tradeoff between equality

of opportunity for newborns and incentives for altruistic parents. In our model, society should

exploit altruism to motivate parents, linking the welfare of children to that of their parents. If

future generations are included in the welfare function this inheritability should be tempered and

the existence of a steady-state is ensured, where welfare and consumption are mean-reverting, long-

run inequality is bounded, social mobility is possible and misery is avoided by everyone.

The backbone of our model requires a tradeoff between insurance and incentives. The source for

this tradeoff is inessential. In this paper, we adopted the Atkeson-Lucas taste-shock specification for

purposes of comparison. Farhi and Werning (2006) and Farhi, Kocherlakota, and Werning (2006)

study dynamic Mirrleesian models—with productivity shocks, instead of taste shocks—and find that

a progressive estate tax implements efficient allocations by providing the necessary mean-reversion

across generations.
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Appendix

Proof of Theorem 1

Weak concavity of the value function k(v) follows because the component planning sequence problem

has a concave objective and a convex constraint set. The weak concavity of the value function

k(v) implies its continuity over the interior of its domain. If utility is bounded, continuity at the

extremes can also be established as follows. Define the first-best value function

k∗(v) ≡ max
{ut}

∞
∑

t=0

β̂t E−1

[

θtut(θ
t) − ηc

(

ut(θ
t)
)]

subject to v =
∑∞

t=0 β
t
E−1[θtut(θ

t)]. Then k∗(v) is continuous and k(v) ≤ k∗(v), with equality

at any finite extremes v̄ and v. Then continuity of k(v) at finite extremes follows. Thus, k(v) is

continuous.

We first show that the constraint (10) with q = β̂ implies that utility and continuation welfare

are well-defined. Toward a contradiction, suppose

lim
T→∞

T
∑

t=0

βtEsθtu(ct)
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is not defined, for some s ≥ −1. This implies that limT→∞

∑T
t=0 β

t max{Esθtu(ct), 0} = ∞. Since

utility is concave θU(c) ≤ Ac+B for some A,B > 0, so it follows that

T
∑

t=0

βt max{Esθtu(ct), 0} ≤ A
T
∑

t=0

βt Es[ct] +B ≤ A
T
∑

t=0

β̂t Es[ct] +B

Taking the limit yields limT→∞

∑T
t=0 β̂

t
Es[ct] = ∞. Since there are finitely many histories θs ∈ Θs+1

this implies limT→∞

∑T
t=0 β̂

t
E−1[ct] = ∞. If there is a non-zero measure of such agents this implies

a contradiction of the intertemporal constraint (10), and thus of at least one resource constraint

in (4). Thus, for both the relaxed and original planning problems utility and continuation welfare

are well defined given the other constraints on the problem. This is important for our recursive

formulation below.

We next prove two lemmas that imply the rest of the theorem. Consider the optimization

problem on the right hand side of the Bellman equation:

sup
u,w

E
[

θu(θ) − ηc
(

u(θ)
)

+ β̂k
(

w(θ)
)]

(20)

v = E
[

θu(θ) + βw(θ)
]

(21)

θu (θ) + βw(θ) ≥ θu (θ′) + βw(θ′) for all θ, θ′ ∈ Θ (22)
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Define m ≡ maxc≥0,θ∈Θ(θU(c) − ηc) and k̂ (v) ≡ k (v) − m/(1 − β̂) ≤ 0. The problem in (20) is

equivalent to the following optimization with non-positive objective:

sup
u,w

E
[

θu(θ) − ηc
(

u(θ)
)

−m+ β̂k̂
(

w(θ)
)]

(23)

subject to (21) and (22).

Lemma A.1 The supremum in (20), or equivalently (23), is attained.

Proof. If utility is bounded the result follows immediately by continuity of the objective function

and compactness of the constraint set. So suppose utility is unbounded above and below — similar

arguments apply when utility is only unbounded below or only unbounded above. We first show

that

lim
v→∞

k̂(v) = lim
v→−∞

k̂(v) = −∞ (24)

and then use this result to restrict, without loss, the optimization within a compact set, ensuring a

maximum is attained.

To establish these limits, define

h(v; β̂) ≡ sup
u

∞
∑

t=0

β̂t E−1

[

θtu(θ
t) − ηc

(

u(θt)
)

−m
]
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subject to v = E−1

∑∞
t=0 β

tθtu(θ
t). Since this corresponds to the same problem but without the

incentive constraints it follows that k̂(v) ≤ h(v, β̂). If limv→∞ h(v, β̂) = limv→−∞ h(v, β̂) = −∞,

then the desired limits (24) follow. Since θu− ηc(u) −m ≤ 0 and β < β̂ it follows that

h(v, β̂) ≤ h(v, β) = v − ηC(v, β) −
m

1 − β
, (25)

where

C(v, β) ≡ inf
u

∞
∑

t=0

βt E−1

[

c
(

u(θt)
)]

subject to v =
∑∞

t=0 β
t
E−1[θtu(θ

t)]. Note that C(v, β) is a standard convex first-best allocation

problem, with solution u(θt) = (c′)−1(θtγ(v)) for some positive multiplier γ(v), increasing in v and

such that limv→−∞ γ(v) = 0 and limv→∞ γ (v) = ∞. Then

C(v, β) =
1

1 − β
E

[

c
(

(c′)−1
(

θγ(v)
)

)]

,

so that limv→−∞ h(v, β) = −∞ and limv→∞ h(v, β) = −∞. Using the inequality (25) this establishes

limv→−∞ h(v, β̂) = −∞ and limv→∞ h(v, β̂) = −∞, which, in turn, imply the limits (24).

Fix a v. Take any allocation that verifies the constraints (21) and (22) and let k < ∞ be

the corresponding value of (23). Then, since the objective is non-positive, we can restrict the
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maximization to w(θ) such that k̂(w(θ)) ≥ k̄/(β̂p(θ)). Since k̂(w(θ)) is concave with the limits (24),

this defines a closed, bounded interval for w(θ), for each θ. It follows that there exists Mv,w < ∞

such that we can restrict the maximization to |w(θ)| ≤Mv,w.

Similarly, we can restrict the maximization over u(θ) so that θu(θ) − ηc(u(θ)) − m ≥ k̄/p(θ).

Since (θu − ηc(u)) is strictly concave, with (θu − ηc(u)) → −∞ when either u → ∞ or u → −∞,

this defines a closed, bounded interval for u(θ), for each θ. Thus, there exists an Mv,u < ∞ such

that we can restrict the maximization to |u(θ)| ≤Mv,u.

Hence, we can restrict the maximization in (23) to a compact set. Since the objective function

is continuous over this restricted set, the maximum must be attained.

Lemma A.2 The value function k(v) satisfies the Bellman equation (13)–(15).

Proof. Suppose that for some v

k(v) > max
u,w

E
[

θu(θ) − ηc
(

u(θ)
)

+ β̂k
(

w(θ)
)]

where the maximization is subject to (21) and (22). Then there exists ∆ > 0 such that

k(v) ≥ E
[

θu(θ) − ηc
(

u(θ)
)

+ β̂k
(

w(θ)
)

] + ∆
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for all (u,w) that satisfy (21) and (22). But then by definition

k
(

w(θ)
)

≥
∞
∑

t=0

β̂t E−1

[

θtũt(θ
t) − ηc

(

ũt(θ
t)
)]

for all allocations ũ that yield w (θ) and are incentive compatible. Substituting, we find that

k(v) ≥
∞
∑

t=0

β̂t E−1

[

θtut(θ
t) − ηc

(

ut(θ
t)
)]

+ ∆

for all incentive-compatible allocations that deliver v, a contradiction with the definition of k(v).

Namely, that there should be a plan with value arbitrarily close to k(v0). We conclude that k(v) ≤

maxu,w E[θu(θ) − ηc(u(θ)) + β̂k(w(θ))] subject to (21 ) and (22).

By definition, for every v and ε > 0 there exists a plan {ũt(θ
t; v, ε)} that is incentive compatible

and delivers v with value

∞
∑

t=0

β̂t E−1

[

θtũt(θ
t; v, ε) − ηc

(

ũt(θ
t; v, ε)

)]

≥ k(v) − ε.

Let (u∗(θ), w∗(θ)) ∈ arg maxu,w E[θu(θ) − ηc(u(θ)) + β̂k(w(θ))]. Consider the plan u0(θ0) = u∗(θ0)
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and ut(θ
t) = ũt−1((θ1, . . . , θt);w

∗(θ0), ε) for t ≥ 1. Then

k(v) ≥
∞
∑

t=0

β̂t E−1

[

θtut(θ
t) − ηc

(

ut(θ
t)
)]

= E−1

[

θ0u
∗(θ0) − ηc

(

u∗(θ0)
)

+ β̂
∞
∑

t=0

β̂t E0

[

θt+1ut+1(θ
t+1) − ηc

(

ut+1(θ
t+1)
)]

]

≥ max
u,w

E
[

θu(θ) − ηc
(

u(θ)
)

+ β̂k
(

w(θ)
)]

− β̂ε.

Since ε > 0 was arbitrary it follows that k(v) ≥ maxu,w E[θu(θ) − ηc(u(θ)) + β̂k(w(θ))] subject to

(21) and (22).

Finally, together both inequalities imply k(v) = maxu,w E[θu(θ) − ηc(u(θ)) + β̂k(w(θ))] subject

to (21) and (22).

Proof of Theorem 2

We establish the following results from which the Theorem follows: (a) An allocation {ut} is

optimal for the component planning problem with multiplier λ̂, given v0 = v, if and only if it

is generated by the policy functions (gu, gw) starting at v0, is incentive compatible, and delivers

welfare v0; (b) an allocation {ut} generated by the policy functions (gu, gw), starting at v0, has
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limt→∞ βt E−1[vt(θ
t−1)] = 0 and delivers welfare v0; (c) an allocation {ut} generated by the policy

functions (gu, gw), starting from v0, is incentive compatible if

lim sup
t→∞

E−1β
tvt
(

σt−1(θt−1)
)

≥ 0

for all reporting strategies σ.

Part (a). Suppose the allocation {ut} is generated by the policy functions starting from v0,

is incentive compatible and delivers welfare v0. After repeated substitutions of the Bellman equa-

tion (13), we arrive at

k(v0) =
T
∑

t=0

β̂t E−1[θtut(θ
t) − ηc(ut(θ

t))] + β̂T+1
E−1k(vT+1(θ

T )). (26)

Since k(v0) is bounded above this implies that

k(v0) ≤
∞
∑

t=0

β̂t E−1[θtut(θ
t) − ηc(ut(θ

t))],

so {ut} is optimal, by definition of k(v0).

Conversely, suppose an allocation {ut} is optimal given v0. Then, by definition it must be
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incentive compatible and deliver welfare v0. Define the continuation welfare implicit in the allocation

w0(θ0) ≡
∞
∑

t=1

βt−1
E0[θtut(θ

t)].

and suppose that either u0 (θ) 6= gu (θ; v0) or w0 (θ) 6= gw (θ; v0), for some θ ∈ Θ. Since the original

plan {ut} is incentive compatible, u0 (θ) and w0 (θ) satisfy (21) and (22). The Bellman equation

then implies that

k(v0) = E
[

gu(θ; v0) − ηc
(

gu(θ; v0)
)

+ βk
(

gw(θ; v0)
)]

> E
[

u0(θ) − ηc
(

u0(θ)
)

+ βk
(

w0(θ)
)]

≥ E−1

[

u0(θ0) − ηc
(

u0(θ0)
)]

+
∞
∑

t=1

βt E−1

[

ut(θ
t) − ηc

(

ut(θ
t)
)]

.

The first inequality follows since u0 does not maximize (13), while the second inequality follows

the definition of k(w0 (θ)). Thus, the allocation {ut} cannot be optimal, a contradiction. A similar

argument applies if the plan is not generated by the policy functions after some history θt and t ≥ 1.

We conclude that an optimal allocation must be generated from the policy functions.

Part (b). First, suppose an allocation {ut, vt} generated by the policy functions (gu, gw) starting
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at v0 satisfies limt→∞ βt E−1vt(θ
t−1) = 0. Then, after repeated substitutions of (14), we obtain

v0 =
T
∑

t=0

βt E−1

[

θtut(θ
t)
]

+ βT+1
E−1

[

vT+1(θ
T )
]

. (27)

Taking the limit we get v0 =
∑∞

t=0 β
t
E−1[θtut(θ

t)] so that the allocation {ut} delivers welfare

v0. Next, we show that for any allocation generated by (gu, gw), starting from finite v0, we have

limt→∞ βt E−1vt(θ
t−1) = 0.

Suppose utility is unbounded above and lim supt→∞ βt E−1vt(θ
t−1) > 0. Then β̂ > β implies

that lim supt→∞ β̂t E−1vt(θ
t−1) = ∞. Since the value function k(v) is non-constant, concave and

reaches an interior maximum, we can bound the value function so that k(v) ≤ av + b, with a < 0.

Thus,

lim inf
t→∞

β̂t E−1k
(

vt(θ
t−1)
)

≤ a lim sup
t→∞

β̂t E−1vt(θ
t−1) + b = −∞

and then (26) implies that k(v0) = −∞, a contradiction since there are feasible plans that yield

finite values. We conclude that lim supt→∞ βt E−1vt(θ
t−1) ≤ 0.

Similarly, suppose utility is unbounded below and that lim inft→∞ βt E−1vt(θ
t−1) < 0. Then

lim inft→∞ β̂t E−1vt(θ
t−1) = −∞. Using k(v) ≤ av + b, with a > 0, we conclude that

lim inf
t→∞

β̂t E−1k
(

vt(θ
t−1)
)

= −∞
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implying k(v0) = −∞, a contradiction. Thus, we must have lim inft→∞ βt E−1vt(θ
t−1) ≥ 0.

The two established inequalities imply limt→∞ βt E−1vt(θ
t−1) = 0.

Part (c). Suppose lim supt→∞ βt E−1vt(σ
t−1(θt−1)) ≥ 0 for every reporting strategy σ. Then

after repeated substitutions of (15),

v0 ≥

T
∑

t=0

βt E−1

[

θtut
(

σt(θt)
)]

+ βT+1
E−1

[

vT+1

(

σT (θT )
)]

.

implying

v0 ≥ lim inf
T→∞

T
∑

t=0

βt E−1

[

θtut
(

σt(θt)
)]

.

Therefore, {ut} is incentive compatible, since v0 is attainable with truth telling from part (b).

Proof of Proposition 1

Part (a) (Strict Concavity) Let {ut(θ
t, v0), vt(θ

t−1, v0)} be generated from the policy functions

starting at v0 (note: no claim of incentive compatibility is required). Take two initial welfare values
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va and vb, with va 6= vb. Define the average utilities

uαt (θ
t) ≡ αut(θ

t, va) + (1 − α)ut(θ
t, vb)

vαt (θt) ≡ αvt(θ
t; va) + (1 − α)vt(θ

t; vb)

Theorem 2 part (b) implies that {ut(θ
t, va)} and {ut(θ

t, vb)} deliver va and vb, respectively. This

immediately implies that {uαt (θ
t)} delivers initial welfare vα ≡ αva + (1− α)vb. It also implies that

there exists a finite time T such that

T
∑

t=0

βt E−1

[

θtut(θ
t; va)

]

6=
T
∑

t=0

βt E−1

[

θtut(θ
t; vb)

]

,

so that

ut
(

θt; va
)

6= ut
(

θt; vb
)

, (28)
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for some history θt ∈ Θt+1. Consider iterating T times on the Bellman equations starting from va

and vb:

k(va) =
T
∑

t=0

β̂t E−1

[

θtut(θ
t; va) − ηc

(

ut(θ
t; va)

)]

+ β̂T+1
E−1k

(

vT+1(θ
T ; va)

)

k(vb) =
T
∑

t=0

β̂t E−1

[

θtut(θ
t; vb) − ηc

(

ut(θ
t; vb)

)]

+ β̂T+1
E−1k

(

vT+1(θ
T ; vb)

)

,

and averaging we obtain

αk(va) + (1 − α)k(vb) =
T
∑

t=0

β̂t E−1

[

θtu
α
t (θ

t) − η
[

αc
(

ut(θ
t; va)

)

+ (1 − α)c
(

ut(θ
t; vb)

)]]

+ β̂T+1
E−1

[

αk(vT+1(θ
T ; va)) + (1 − α)k

(

vT+1(θ
T ; vb)

)]

<
T
∑

t=0

β̂t E−1

[

θtu
α
t (θ

t) − ηc
(

uαt (θ
t)
)]

+ β̂T+1
E−1k

(

vαT+1(θ
T )
)

≤ k(vα),

where the strict inequality follows from the strict concavity of the cost function c (u), the fact

that we have the inequality (28), and the weak concavity of the value function k. The last weak

inequality follows from iterating on the Bellman equation for vα since the average plan (uα, vα)
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satisfies the constraints of the Bellman equation at every step. This proves that the value function

k(v) is strictly concave.

(b) (Differentiability) Since the value function k(v) is concave, it is sub-differentiable: there is

at least one subgradient at every point v. Differentiability can then be established by the following

variational envelope arguments.

Suppose first that utility is unbounded below. Fix an interior value v0 for initial welfare. For a

neighborhood around v0 define the test function

W (v) ≡ E
[

θ
(

gu(θ, v0) + (v − v0)
)

− ηc
(

gu(θ, v0) + (v − v0)
)

+ β̂k
(

gw(θ, v0)
)]

.

SinceW (v) is the value of a feasible allocation in the neighborhood of v0 it follows thatW (v) ≤ k(v),

with equality at v0. Since W ′(v0) exists it follows, by application of the Benveniste-Scheinkman

Theorem (see Theorem 4.10, in Stokey and Lucas, 1989), that k′(v0) also exists and

k′(v0) = W ′(v0) = 1 − η E
[

c′
(

u∗(θ)
)]

. (29)

Finally, since c′(u) ≥ 0 this shows that k′(v) ≤ 1. The limit limv→−∞ k′(v) = 1 is inherited

by the upper bound k(v) ≤ h(v, β) + m/(1 − β̂) introduced in the proof of Theorem 1, since

limv→−∞
∂
∂v
h(v, β) = 1.

The limit limv→v̄ k
′(v) = −∞ follows immediately from limv→v̄ k(v) = −∞, if v̄ <∞. Otherwise
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it is inherited by the upper bound k(v) ≤ h(v, β)+m/(1− β̂) introduced in the proof of Theorem 1,

since limv→∞
∂
∂v
h(v, β) = −∞.

Next, suppose utility is bounded below but unbounded above, and without loss in generality

suppose that the utility of zero consumption is zero. Then the argument above establishes differ-

entiability at a point v0 as long as gu(θ, v0) > 0, for all θ ∈ Θ. However, corner solutions with

gu(θ, v0) = 0 are possible here even with Inada assumption on the utility function, so a different

envelope argument is required. We provide one that exploits the homogeneity of the constraint set.

If utility is bounded below, then lim supt→∞ E−1β
tvt(σ

t−1(θt−1)) ≥ 0 for all reporting strategies

σ so that, applying Theorem 2, a solution {ut} to the planner’s sequence problem is ensured. Then,

for any interior v0, the plan {(v/v0)ut} is incentive compatible and attains value v for the agent. In

addition the test function

W (v) ≡
∞
∑

t=0

β̂t E−1

[

θt
v

v0

ut(θ
t) − ηc

(

v

v0

ut(θ
t)

)]

satisfies W (v) ≤ k(v), W (v0) = k(v0) and is differentiable. It follows from the Benveniste-

Scheinkman Theorem, that k′(v0) exists and equals W ′(v0).

The proof of limv→v̄ k
′(v) = −∞ is the same as in the case with utility unbounded below. Finally,
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we show that limv→v k
′(v) = ∞. Consider the deterministic planning problem

k(v) ≡ max
u

∞
∑

t=0

β̂t
(

ut − ηc(ut)
)

subject to v =
∑∞

t=0 β
tut. Note that k(v) is differentiable with limv→v k

′(v) = ∞. Since deterministic

plans are trivially incentive compatible, it follows that k(v) ≤ k(v), with equality at v. Then we

must have limv→v k
′(v) = ∞ to avoid a contradiction.

If utility is bounded above and unbounded below then a symmetric argument, normalizing utility

of infinite consumption to zero, also works. If utility is bounded above and below we can generate

a test function that combines both arguments, one for the v < v0 and another for v ≥ v0.

Proof of Proposition 2

The CLAR equation was shown in the main text, so we focus here on the bounds. Consider the

program

max
u,w

∑

n

p̄n{θ̄nun − ηc(un) + β̂k(wn)}

v =
∑

n

p̄n(θ̄nun + βwn)
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θnun + βwn ≥ θnun+1 + βwn+1 for n = 1, 2, . . . , K − 1,

This problem and its notation require some discussion. We do not incorporate the monotonicity

constraint on u. But this notation allows us to consider bunching in the following way. If any set

of neighboring agents is bunched, then we group these agents under a single index and let p̄n be

the total probability of this group. Likewise let θ̄n represent the conditional average of θ within

this group, which is what is relevant for the promise-keeping constraint and the objective function.

Let θn be the taste shock of the highest agent in the group. The incentive constraint must rule the

highest agent in each group from deviating and taking the allocation of the group above him.

Of course, every combination of bunched agents leads to a different program. The optimal

allocation of our problem must solve one of these programs with a strictly monotone allocation—

since bunching can be characterized by regrouping agents. Thus, below we characterize solutions

to these programs with strict monotonicity of the solution.

The first-order conditions are

p̄n{θ̄n − ηc′(un) − λθ̄n} + θnµn − θn−1µn−1 ≤ 0

p̄n{β̂k
′(wn) − βλ} + β(µn − µn−1) = 0

where, by the envelope condition λ = k′(v).
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Consider first case with utility unbounded below, so that the first order condition for consump-

tion holds with equality. Summing the first-order conditions for consumption, we get

η E
[

c′
(

u(θ)
)]

= 1 − k′(v)

The first-order conditions for n = 1 imply

(1 − λ) +
θ1

θ̄1

µ1

p̄1

=
ηc′(u1)

θ̄1

≤
η E
[

c′(uθ)
]

θ̄1

=
1 − λ

θ̄1

.

This implies
µ1

p̄1

≤
1 − λ

θ1

− (1 − λ)
θ̄1

θ1

.

Using

k′(w1) =
β

β̂
λ−

β

β̂

µ1

p̄1

,

we get

k′(w1) ≥
β

β̂

[

λ−
1 − λ

θ1

+ (1 − λ)
θ̄1

θ1

]

=
β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

k′(v) +
β

β̂

[

θ̄1

θ1

−
1

θ1

]

.
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Similarly, writing the first-order conditions for n = K, we get

(1 − λ) −
θK−1

θ̄K

µK−1

p̄K
=
ηc′ (uK)

θ̄K
≥
η E[c′(uθ)]

θ̄K
=

1 − λ

θ̄K
.

This implies

−
µK−1

p̄K
≥

1 − λ

θK−1

− (1 − λ)
θ̄K
θK−1

.

Using

k′ (wK) =
β

β̂
λ+

β

β̂

µK−1

p̄K
,

we get

k′ (wK) ≤
β

β̂

[

λ−
1 − λ

θK−1

+ (1 − λ)
θ̄K
θK−1

]

=
β

β̂

[

1 +
1

θK−1

−
θ̄K
θK−1

]

k′(v) +
β

β̂

[

θ̄K
θK−1

−
1

θK−1

]

.

For any n, wK ≤ wn ≤ w1,

β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

k′(v) +
β

β̂

[

θ̄1

θ1

−
1

θ1

]

≤ k′ (wn)

≤
β

β̂

[

1 +
1

θK−1

−
θ̄K
θK−1

]

k′(v) +
β

β̂

[

θ̄K
θK−1

−
1

θK−1

]

.
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After rearranging, we obtain

β

β̂

[

1 +
1

θ1

−
θ̄1

θ1

]

(1 − k′(v)) + 1 −
β

β̂
≥ 1 − k′ (gw (θ, v))

≥
β

β̂

[

1 +
1

θK−1

−
θ̄K
θK−1

]

(1 − k′(v)) + 1 −
β

β̂
.

To arrive at the expression in the text we take the worst case scenario: we choose the subproblem

that is most unfavorable to each bound, noting that 1 − k′(v) ≥ 0. Namely we define

γ̄ ≡ (β/β̂) max
1≤n≤N

{(1 + θn − E[θ | θ ≤ θn])/θn}

γ ≡ (β/β̂) min
2≤n≤N

{1 + θn−1 − E[θ | θ ≥ θn]/θn−1}.

Turning to the bounded utility case, note that all the first-order conditions and constraints are

satisfied when λ ≥ 1 with µn = 0 and u (θ) = U(0) and w (θ) = β−1v > v. The first-order condition

for w implies k′(w(θ)) = k′(β−1v) = (β̂/β)k′(v). Since the problem is strictly convex, this represents

the unique solution. Recall that in the arguments above establishing the lower bound involved no

assumption on interior solutions for u, so this holds for all v. The upper bound, on the other hand,

did require u(θ) > U(0) for all θ, which must be true for high enough v, i.e. for low enough k′(v).
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Proof of Proposition 3

Consider first the case with utility unbounded below. Since the derivative k′(v) is continuous and

strictly decreasing, we can define the transition function

Q(x, θ) = k′
(

gw
(

(k′)−1(x), θ
))

for all x < 1 if utility is unbounded below. For any probability distribution µ, let TQ(µ) be the

probability distribution defined by

TQ(µ)(A) =

∫

1{Q(x,θ)∈A} dµ(x) dp (θ)

for any Borel set A. Define

TQ,n ≡
TQ + T 2

Q + · · · + T nQ
n

For example, TQ,n(δx) is the empirical average of {k′(vt)}
n
t=1 over all histories of length n starting

with k′(v0) = x. The following lemma establishes the existence of an invariant distribution by

considering the limits of {TQ,n}.

Lemma A.3 If utility is unbounded below, then for any x < 1 there exists a subsequence of distri-

butions {TQ,φ(n)(δx)} that converges weakly (i.e. in distribution) to an invariant distribution under
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Q on (−∞, 1).

Proof. The bounds (18) derived in Proposition 2 imply that for all θ ∈ Θ

lim
x↑1

Q (x, θ) = lim
v→−∞

k′
(

gw(θ, v)
)

= β/β̂ < 1.

We first extend the continuous transition function Q(x, θ) : (−∞, 1)×Θ → (−∞, 1) to a continuous

transition function Q̂(x, θ) : (−∞, 1] × Θ → (−∞, 1), with Q̂(1, θ) = β/β̂ and Q̂(x, θ) = Q(x, θ),

for all x ∈ (−∞, 1). It follows that TQ̂ maps probability distributions over (−∞, 1] to probability

distributions over (−∞, 1), and TQ(δx) = TQ̂(δx), for all x ∈ (−∞, 1).

We next show that the sequence {TQ̂,n(δx)} is tight, in that for any ε > 0 there exists a compact

set Aε such that TQ̂,n(δx)(Aε) ≥ 1 − ε, for all n. The expected value of the distribution T n
Q̂
(δx)

is simply E−1[k
′(vt(θ

t−1))] with x = k′(v0) < 1. Recall that E−1[k
′(vt(θ

t−1))
]

= (β/β̂)tk′(v0) → 0.

This implies that

min{0, k′(v0)} ≤ E−1

[

k′
(

vt(θ
t−1)
)]

≤ T n
Q̂
(δx)(−∞,−A)(−A) +

(

1 − T n
Q̂
(δx)(−∞,−A)

)

1

for all A > 0. Rearranging,

T n
Q̂
(δx)(−∞,−A) ≤

1 − min{0, x}

A+ 1
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which implies that {T n
Q̂
(δx)}, and therefore {TQ̂,n(δx)}, is tight.

Tightness implies that there exists a subsequence TQ̂,φ(n)(δx) that converges weakly, i.e. in dis-

tribution, to some distribution π. Since Q̂(x, θ) is continuous in x, then TQ̂(TQ̂,φ(n)(δx)) converges

weakly to TQ̂(π). But the linearity of TQ̂ implies that

TQ̂
(

TQ̂,φ(n)(δx)
)

=
T
φ(n)+1

Q̂
(δx) − TQ̂(δx)

φ(n)
+ TQ̂,φ(n)(δx)

and since φ(n) → ∞ we must have TQ̂(π) = π.

Recall that TQ̂ maps probability distributions over (−∞, 1] to probability distributions over

(−∞, 1). This implies that π = TQ̂(π) has no probability mass at {1}. Since TQ and TQ̂ coincide

for such distributions, it follows that π = TQ(π), so that π is an invariant distribution under Q on

(−∞, 1).

The argument for the case with utility bounded below is very similar. Define the transition

function Q(x, θ) as above, but for all x ∈ R, since now k′(v) can take on any real value. If utility

is unbounded above but γ̄ < 1, then there exists an upper bound vH < v̄ for the ergodic set for

v. Define the welfare level v0 > v by k′(v0) = 1. Next, define vL to be the minimum of the policy

function gw over v ∈ [v0, vH ], which is defined since gw is continuous over this compact set. If

utility is bounded above then let vL by the minimum of gw over v ∈ [v0, v̄), which is defined since
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limv→v̄ g
w(θ, v) = v̄. In both cases, since gw > v we must have that this minimum is above misery:

vL > v. Finally, the transition function is continuous with Q(x, θ) ≤ k′(vL) < ∞. The rest of the

argument is then a simple modification of the one above for utility unbounded below, with k′(vL)

playing the role of 1 (things are actually slightly simpler here, since no continuous extension of Q

is required).

If γ > 0 then the bound in (18) implies that k′
(

gw
(

θ̄, v
))

≤ 1 − β/β̂ and the result follows

immediately.

Proof of Proposition 4

Consider indexing the relaxed planning problem by e and setting η = e−1 for the associated com-

ponent planning problem, with associated value function k(v; e). We first show that if an initial

distribution ψ satisfies the condition
∫

k′(v; e) dψ(v) = 0, then the solution to the relaxed and orig-

inal planning problems coincide. We then show that for any initial distribution there exists a value

for e that satisfies this condition.

Since utility is unbounded below, we have k′(vt; e) = Et−1

[

1− ηc′
(

uvt (θ
t)
)]

. Applying the law of

iterated expectations to (17) then yields

E−1

[

1 − ηc′
(

uvt (θ
t)
)]

=

(

β

β̂

)t

k′ (v; e) .
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With logarithmic utility c′(u) = c(u), so that
∫

k′(v; e) dψ(v) = 0 implies
∫

E−1[ct] dψ = η−1 = e for

all t = 0, 1, . . . Then, Proposition 5 implies that the allocation is incentive compatible, and applying

part (c) of Theorem 2, it follows that it must solve the original planning problem.

Now consider any initial distribution ψ. We argue that we can find a value of η = e−1 such that
∫

k′(v; e) dψ(v) = 0. The homogeneity of the sequential problem implies that

k(v; e) =
1

1 − β̂
log(e) + k

(

v −
1

1 − β
log(e); 1

)

Note that k′(v − 1
1−β

log(e); 1) is strictly increasing in e and limits to 1 as e → ∞, and to −∞ as

e→ −∞. It follows that

∫

k′(v; e) dψ(v) =

∫

k′
(

v −
1

1 − β
log(e); 1

)

dψ(v) = 0

defines a unique value of ê for any initial distribution ψ. The monotonicity of ê(ψ) then follows

immediately by using the fact that k′(·; 1) is a strictly decreasing function.
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Proof of Proposition 5

(a) If utility is also bounded below, then the result follows from part (b). So suppose utility is

unbounded below, but bounded above. Then k′(gw(θ̄, ·)) is continuous and Proposition 2 implies

that limv→−∞ k′(gw(θ̄, v)) = 1. It follows that maxv k
′(gw(θ̄, v)) is attained, so there exists a vL >

−∞ such that gw(θ̄, v) > vL.

(b) If utility is bounded below, the result follows immediately from part (c) of Theorem 2.

(c) Using the first-order conditions from the proof of Proposition 2, one can show that:

c′
(

u
(

θ̄
))

c′ (u (θ))
≤
θ̄

θ
.

With logarithmic utility this implies that gu(θ̄, v) − gu(θ, v) ≤ log
(

θ̄/θ
)

. The incentive constraint

then implies that gw(θ, v) − gw(θ̄, v) ≤ (θ̄/β) log(θ̄/θ) ≡ A. It follows that vt(θ̂
t−1) ≥ vt(θ

t−1) − tA

for all pairs of histories θt−1 and θ̂t−1. Then

βt E−1

[

vt
(

σt−1(θt−1)
)]

≥ βt E−1

[

vt(θ
t−1)
]

− βttA.

From part (b) of Theorem 2 we have limt→∞ βt E−1[vt(θ
t−1)] = 0. Since limt→∞ βttA = 0, it follows

that lim supt→∞ βt E−1[vt(σ
t−1(θt−1)] ≥ 0.

(d) If γ > 0 then the bound in (18) implies that k′
(

gw
(

θ̄, v
))

≤ 1 − β/β̂ and the result follows
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immediately. If γ̄ < 1, then we can define κ = 1− (1− β/β̂)/(1− γ̄), and define vH by k′(vH) = κ.

Then for all v ≤ vH we have gw(θ, v) ≤ v. It follows that the unique ergodic set is bounded above

by vH . We can now apply the argument in (a) so there exists a vL > −∞ such that gw
(

θ̄, v
)

> vL.

Proof of Proposition 6

Part (a) is immediate since by continuity of the policy functions, consumption is bounded. For part

(b), recall that
∫

k′(v) dψ∗(v) = 0 under the invariant distribution ψ∗. If utility is unbounded below

then all solutions for consumption are interior. If utility is bounded below, then corner solutions

with gc(θ, v) = 0 for some θ can only occur for low enough levels of v, so that gc(θ, v) is bounded,

for all θ in this compact set. Recall that for interior solutions

1 − k′(v) = η E
[

c′
(

gu(θ, v)
) ]

= η E
[

c′
(

u
(

c
(

gu(θ, v)
))) ]

Applying Jensen’s inequality we obtain

c′
(

u

(
∫

E
[

c
(

gu(θ, v)
)]

dψ∗(v)

))

≤

∫

E
[

c′
(

u
(

c
(

gu(θ, v)
)))]

dψ∗(v) = 1.

The result then follows since c′(U(c)) is an increasing function of c.
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Proof of Proposition 7

Let SR(ψ; e) denote the maximum value attained for the relaxed planning problem with Qt = β̂t,

distribution ψ and endowment e. Note that

S(ψ; e) ≤ SR(ψ; e),

with equality at steady state distributions ψ∗. Since
∫

k(v; η)dψ(v) + ηe/(1 − β̂) represents the

full Lagrangian function (which now includes the omitted term due to e in (11)), by duality (see

Luenberger, 1969, Chapter 8.6)

SR(ψ; e) −

∫

v dψ(v) ≤

∫

k(v; η) dψ(v) + η
e

1 − β̂
−

∫

v dψ(v),

with equality whenever ψ, η and e are such that at the allocation that attains k(v, η) the intertem-

poral resource constraint (10) holds, which is true at the constructed steady state. Integrating the

right-hand side by parts gives

SR(ψ; e) −

∫

v dψ(v) ≤

∫

(1 − ψ(v))(k′(v; η) − 1) dv + η
e

1 − β̂
.
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It follows that

S(ψ; e) −

∫

v dψ(v) −

(

S(ψ∗; e) −

∫

v dψ∗(v)

)

≤ SR(ψ; e) −

∫

v dψ(v) −

(

SR(ψ∗; e) −

∫

v dψ∗(v)

)

≤

∫

(

ψ∗(v) − ψ(v)
)(

k′(v; η) − 1
)

dv.

If k′(v; η) < 1 on the support of ψ∗ then the last term is strictly negative for all ψ with ψ(v) < ψ∗(v)

for all v. Thus, ψ∗ maximizes S(ψ; e) −
∫

v dψ(v) subject to ψ(v) ≤ ψ∗(v) for all v. Proposition 1

implies that k′(v; η) < 1 if utility is unbounded below, in which case consumption is strictly positive.

Proposition 2 implies that when utility is bounded k′(v; η) < 1 if and only if consumption is strictly

positive.
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Figure 1: Consumption paths for groups A and B. Solid lines represent the case with β̂ > β; the
dotted line at c = e = 1 is the steady state. The horizontal dashed lines represent the Atkeson-Lucas
case with β̂ = β.
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Figure 2: Invariant distributions for welfare, measured in consumption-equivalent units c((1−β)v),
for various values of β̂.
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