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Inequality constraint in least-squares inversion of geophysical data
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This paper presents a simple, generalized parameter constraint using a priori information to obtain a stable inverse
of geophysical data. In the constraint the a priori information can be expressed by two limits: lower and upper
bounds. This is a kind of inequality constraint, which is usually employed in linear programming. In this paper,
we have derived this parameter constraint as a generalized version of positiveness constraint of parameter, which
is routinely used in the inversion of electrical and EM data. However, the two bounds are not restricted to positive
values. The width of two bounds reflects the reliability of ground information, which is obtained through well
logging and surface geology survey. The effectiveness and convenience of this inequality constraint is demonstrated
through the smoothness-constrained inversion of synthetic magnetotelluric data.

1. Introduction
Geophysical inversion is an ill-posed problem because its

solution is neither unique nor stable. This may come from
an attempt to extract too much information from data. An
effective way to relax the ill-posedness is to introduce a pri-
ori information about unknown parameters. There are many
ways to incorporate a priori information to the inverse prob-
lem. The positiveness constraint of electrical conductivity,
for instance, is helpful to produce a stable inverse (Rijo et al.,
1977). The introduction of a stabilizing functional (Tikhonov
and Arsenin, 1977) is another effective way in introducing
various kinds of a priori information. This procedure seeks a
solution that minimizes simultaneously the stabilizing func-
tional and the misfit between the observed and calculated
data.
Whatever the methods are used to stabilize the geophysi-

cal inverse problem, the solution would be highly influenced
by a priori information included. If the information does not
conflict either with geological attributes or with geophysical
observations, the solution is expected to be physically and ge-
ologically meaningful; otherwise, it may be unrealistic. For
example, smoothness constraint forces a group of unknown
parameters into being close to each other. This is rather a
weak constraint because the parameters are not required to
be close to assumed values, and may be insufficient to stabi-
lize the inversion unless the data contain information about
any single parameter or about the mean of all parameters.
This kind of constraint has been extensively applied to invert
resistivity and electromagnetic data (Constable et al., 1987;
Sasaki, 1989; deGroot-Hedlin and Constable, 1990; Uchida,
1993).
Another kind of constraint demands that the parameters

be closest to the ones of a typical solution. In this con-
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straint each parameter is frozen to be as close as possible
to a typical value. This is a kind of strong constraint, and
certainly there may be severe conflicts between the true val-
ues and the expected values imposed on several parameters.
On the remaining parameters, the condition of continuity is
commonly imposed to obtain a stable inverse solution. Ge-
ological information is, therefore, used only at points where
the information is reliable, and a smooth transition between
these points is assumed. These constraints are analogous to
the situation of interpolation; the interpolating function is
continuous and passes through the data.
In this paper, we present a simple and convenientway to in-

corporate ground truths into least-squares inverse problems.
This technique employs equality and inequality constraints
of model parameters to yield a stable inverse solution, and
is applied to the smoothness-constrained least-squares inver-
sion of magnetotelluric (MT) data.

2. Least-Squares Inversion
Geophysical inverse problems can be expressed as a lin-

earlized system:
δd = Gδm, (1)

where G is a linear operator (usually called Jacobian or sen-
sitivitymatrix) describing the relationship between unknown
model parameter updates δm and data residual δd. Assum-
ing Gaussian a priori probability density functions for the
data and model with covariance matricesCd andCm, respec-
tively, the maximum a posteriori solution to Eq. (1) is given
by (Tarantola, 1987)

δm = (GTC−1
d G + C−1

m )−1GTC−1
d δd. (2)

Cd commonly takes the form of σ 2
d I, where σ 2

d is the esti-
mated data error covariance. Unfortunately,Cm is difficult to
estimate and so the simplest case ofCm = σ 2

mI is often used,
which implies uncorrelated parameters. Alternatively, we
can abandon the statistical interpretation ofCm and construct
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it such that the solution has minimum structure (Constable
et al., 1987; Sasaki, 1989).
A common approach for model parameterization is to di-

vide a model into a number of blocks of distinct physical
property (e.g., Sasaki, 1989; deGroot-Hedlin and Constable,
1990). In electrical and EM problems, to scale both param-
eters and data so that the Jacobian will have a stable inverse,
we usually use logarithms of model resistivities and mea-
sured apparent resistivities. This constraint guarantees the
positiveness of resistivity (Rijo et al., 1977).
Seeking smooth solutions is advantageous in that the com-

puted parameter distribution should not reflect the type of
parameterization and method of solution used. The resulting
model will only have a level of complexity that is required
by the data. Smoothing also improves the numerical sta-
bility of the inversion by preventing unlimited growth of a
single parameter that could lead to divergence. Smoothness
constraints can be incorporated into the objective function as
follows:

U = ‖δd − Gδm‖2 + λ‖r‖2, (3)

where λ is the Lagrange multiplier and ‖r‖2 is the roughness
measure. If the roughness can be represented by a matrix
form as

r = Cδm, (4)

thenminimizing the functionalU produces a system of linear
equations

(GTG + λCTC)δm = GTδd, (5)

where C is the roughening operator. The vector δm is added
to the initial vectorm0 to obtain updated parametersm, i.e.,

mupdated = m0 + δm. (6)

The procedure is repeated until amisfit between themeasured
and modeled data is reduced to an acceptable level of rms
misfit which is given by

S =
√

δdTδd
N

, (7)

where N denotes the number of data points.

3. Constraints with Ground Truths
In practice, we often have access to useful information

through many ways such as well logging and surface geol-
ogy survey. Information obtained from this manner is called
“ground truths” and we need to somehow include them in the
inversion process described above. In this section we explain
two types of parameter constraints: equality and inequality
constraints.
3.1 Equality constraint
We firstly assume that certain values for some blocks are

known as

mi = mi , i = 1, 2, . . . , K . (8)

In this expression it should be noted that the subscripts i’s are
not necessarily sequential. The simplest way to implement
the known information into the inversion consists of directly
enforcing the parameter values to be those of ground truths.
This can be achieved by forcing

δmi = 0 (9)

in the observation or normal equation. However, this tech-
nique may produce an unbalanced or rough image of param-
eter distribution because this constraint has no effect on the
roughness term to make the image smooth.
Lagrangemultiplier technique is a standardmethod for im-

plementing constraints in many mathematical physics prob-
lems. The technique does not directly enforce the constraint,
but it encourages the system to accept the values given by Eq.
(8) as much as possible. This is done by adding an additional
positive functional

K∑

i=1

λ2
i (mi − mi )

2, (10)

so that the total functional to be minimized will become

φ = U +
K∑

i=1

λ2
i (mi − mi )

2, (11)

where U is the original functional shown in Eq. (3) and λi

is the Lagrange multiplier. With this constraint the parame-
ter contained in the resulting solution will not be exactly the
same as given byEq. (8), while the overall parameter distribu-
tionwill be well balanced. However, the Lagrangemultiplier
must be determined in advance to be a proper value.
Anotherway to yield awell-balanced image is to introduce

the equality constraint directly into a roughness measure.
The roughness to be minimized may be defined as a different
form:

‖r‖2 = (Cm)T(Cm). (12)

Rewriting m by m0 + δm and introducing the equality con-
straint (9) yield

‖r‖2 = (Cpδmp + Cm0)
T(Cpδmp + Cm0), (13)

where subscript p indicates the reduced number of param-
eters, M-K , and M is the size of the original roughening
matrix C. This leads to the following normal equations:

(GT
pGp + λCT

pCp)δmp = GT
pδd − λCTCm0. (14)

3.2 Inequality constraint
Next, we assume that certain values for some blocks are

known as

ai < mi < bi , i = 1, 2, . . . , K . (15)

This means that the parameter is bounded by ai and bi . The
constraint (15) may be more convenient and practical than
the assumption (8) since the exact value of physical property
is hardly known. This type of inequality constraint is usually
used in linear programming but seldom found in the com-
munity of least-squares inversion. If ai = 0 and bi = ∞,
then Eq. (15) is equivalent to the positiveness constraint of
parameter. Thus this constraint can be regarded as a general-
ized version of the positiveness constraint. If the difference
between ai and bi becomes small, the inequality constraint
approaches to the equality constraint expressed in Eq. (8).
In this regard, the inequality constraint is more general than
the equality constraint. Note that the condition (15) has no
equal sign as usually used in linear programming and the two
bounds are not restricted in positive values.
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Fig. 1. Demonstration model for equality and inequality constraints (reproduced from Sasaki, 1989).

Fig. 2. Inversion result of synthetic MT data calculated for the model in Fig. 1. All blocks are constrained to positive values of resistivity in the inversion.

Let us define a new parameter x to introduce the a priori
constraint, i.e.,

x = ln
(
m − a

b − m

)
. (16)

Note that the subscript i is dropped in Eq. (16). Then the
perturbation of x required in the inversion process is given
by

δx = b − a

(m − a)(b − m)
δm. (17)

Once the updating vector δx is obtained, the initial parameter
vector x0 will be updated as

x = x0 + δx, (18)

and the parameters are renewed as

mupdated = a(b − m0) + b(m0 − a)eδx

(b − m0) + (m0 − a)eδx
, (19)

where m0 indicates the initial parameter value.

4. Numerical Examples
In order to verify the validity of the equality and inequal-

ity constraints, we used Sasaki’s (1989) model as shown in

Fig. 1. The model consists of three low-resistivity bodies (5,
5, and 10 �·m) and a higher resistivity (100 �·m) body in a
half-space of 50�·m. TenMT stations are sited with a spac-
ing of 2 km and apparent resistivity data are generated for
nine frequencies (0.1–50 Hz) at each site to yield a total of 90
data points. The model used for the smoothness-constrained
inversion has 73 blocks as shown by the thin solid lines. The
inversion scheme used in this study is basically the same as
Sasaki (1989); The Lagrange multiplier λ is fixed to 0.3 and
no artificial noise is added in the inversion experiment. The
primary difference lies in the form of roughness measure;
he used the gradient-amplifying factor αi to represent the
roughness term, while we did not use the factor (i.e., αi was
fixed to 1.0).
Figure 2 shows the inversion result obtained after three it-

erations. The reconstructed resistivity section is nearly iden-
tical to that of Sasaki (1989). The residual error was reduced
from 0.61 to 0.11 and changed insignificantly after three it-
erations. In the inversion all the resistivity parameters are
constrained to positive values.
If some parameters are exactly known a priori, although

it seems not to be practical, we can use the equality con-
straint in the inversion process. This is achieved by simply
excluding the known parameters from unknowns. An exam-
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Fig. 3. Inversion result with equality constraint excluding the shaded block from unknown parameters.

Fig. 4. Inversion result with equality constraint modifying the roughness terms of shaded blocks.

Fig. 5. Inversion result with inequality constraint. The resistivity of shaded block is bounded by 20 and 200 �·m in the inversion.

ple of this parameterization is shown in Fig. 3, in which one
of the bottom blocks is excluded from the model. Because
the excluded block (shaded in the figure) has no effect on
the roughness term, the image around this block becomes
rougher than that in Fig. 2.
A more balanced image can be obtained by introducing

the equality constraint into the roughness term. Figure 4 is
obtained by minimizing the new roughness described in Eq.
(13). The equality constraint is implemented directly in the
roughness terms of the blocks (shaded in the figure) adjacent
to the known bottom block. The image around the known
block is smoother than that in Fig. 3. However, this does not



H. J. KIM et al.: INEQUALITY CONSTRAINT IN LEAST-SQUARES INVERSION OF GEOPHYSICAL DATA 259

mean that the image of Fig. 4 is superior to that of Fig. 3.
The inequality constraint is convenient to use as well as

flexible to introduce ground information in comparison with
the other constraints including the soft equality constraint
(10). In addition, it can easily include the reliability of ground
information by controlling the interval between the upper
and lower bounds. Figure 5 gives an example of using the
inequality constraint. The resistivity of the bottom block
(shaded in the figure) is bounded by 20 and 200 �·m in
the inversion process. Since the lower limit is selected to
be greater than the estimated block resistivity in Fig. 2, the
resistivity of the shaded block in Fig. 5 is slightly better
evaluated than that in Fig. 2.

5. Concluding Remarks
In electrical and EM problems, the logarithm of resistiv-

ity is usually used instead of resistivity itself in the inverse
process to obtain a stable inversion. This parameterization
has an effect of completely excluding negative resistivities
from consideration as possible solutions. In this paper the
positiveness constraint has been generalized to include more
powerful and convenient constraint of parameters with lower
and upper bounds, which are not restricted to positive values.
The interval of two bounds reflects the reliability of ground
information in this inequality constraint. In addition, the in-
equality constraint approaches to the equality constraint if
the width of two bounds becomes small. This generalized

constraint is helpful not only to stabilize the inversion pro-
cess but also to include useful ground information through
well logging and surface geology survey.
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