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Inequality Constraints in the Univariate 

GARCH Model 

Daniel B. Nelson and Charles Q. Cao 
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To keep the conditional variances generated by the GARCH(p, q) model nonnegative, Bollerslev 
imposed nonnegativity constraints on the parameters of the process. We show that these 
constraints can be substantially weakened and so should not be imposed in estimation. We 
also provide empirical examples illustrating the importance of relaxing these constraints. 
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1. INTRODUCTION 

Since their introduction by Engle (1982) and Boller- 
slev (1986), respectively, autoregressive conditional 
heteroscedastic (ARCH) and generalized autoregres- 
sive conditional heteroscedastic (GARCH) models have 
found extraordinarily wide use. The survey article by 
Bollerslev, Chou, and Kroner (1982) cited more than 
300 papers applying ARCH, GARCH, and other closely 
related models. As they showed, ARCH and GARCH 
models have been very successful at modeling time- 
varying volatility in financial time series. One nettle- 
some feature of GARCH models, however, has been 
the inequality constraints imposed to keep the condi- 
tional variance nonnegative. As we shall see, estimated 
parameters frequently violate these constraints. This 
article shows that inequality constraints less severe than 
commonly imposed are sufficient to keep the condi- 
tional variance nonnegative. 

Is this important in practice? An ARCH model es- 
timated using quasi-maximum likelihood methods will 
not generate negative conditional variances ot2 in sam- 
ple, since the log quasi-likelihood involves a term in 
ln(o-2), which explodes to -oo as or2 approaches 0 and 
is ill-defined for o-2 0. Nevertheless, an estimated 
ARCH model may have coefficients that allow ,r2 to 
become negative out of sample (or, more precisely, as- 
sign positive probability to the event that cr2 eventually 
becomes negative). Such estimated coefficients must 
either result from sampling error (in which case it may 
be best to impose the parameter constraints in esti- 
mation) or from specification error. In this article, we 
show that empirically relevant violations of Bollerslev's 
inequality constraints may be the result neither of sam- 
pling error nor of misspecification. 

The GARCH(p, q) model sets 

it = -,Zt, 

z, - iid with E(z,) = 0, 
(1) 

var(zt) = 1, (2) 
and 

0-2 = (0 + E fit2-i + E Olat- 
i=l,p j= ,q i ,p j=l,q4 (3) 

where o,2 is the conditional variance of e, given ,_i, 
et-2, ? ? ?, 2- -, 

'2 
-2, .... As a conditional variance, 

t2 must, of course, remain nonnegative with probability 
1. To guarantee this nonnegativity, Bollerslev (1986) 
imposed the conditions 

C) 2 0, (4) 

p3i 0 for all i = 1 top, (5) 

and 

aj 0 for allj = 1 toq. (6) 

Recursively substituting for lagged values of a2 in (3), 
it is easy to see that Conditions (4)-(6) guarantee that 
a2 > 0 whenever the r2_i and 52_ in (3) are non- 
negative. 

Another useful way to guarantee the nonnegativity 
of to is to substitute for the lagged at terms in (3), 
writing oJ2 as an infinite distributed lag of f2 terms- 
that is, in the terminology of Engle (1982), we write 
the GARCH(p, q) model in ARCH(oo) form: 

2 = - > fi,+ >E aj- r 
i=i,p 

o 
_ 

+ 
_i i=l,p j=l,q 

= (L)* + > 
2 

, + C t-k-1 
k=O,xc 

(7) 

where L is the usual lag (or backshift) operator (i.e., 
L(X,) - X_.). It is clear from (7) that, if o* and all 
of the 4k are nonnegative, 0 - r2. The nonnegativity 
of w* and all the 4k is also necessary for o2 to remain 
nonnegative with probability 1 if or2 is strictly stationary 
and if for every positive integer n {2, 2_1, . . . 

t-n}t= --c,c is strictly stationary with support on the 
entire nonnegative orthant of Rn. To make (o* and 
{4k}k=O,c well defined, we assume that 

the roots of 1- _ fiizi) 

lie outside the unit circle. (8) 
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c* is then finite and nonnegative as long as w - 0. We 
also assume that 

the polynomials (1 - 3iZi) and 
i=l1,p 

> acjZj- have no common roots. (9) 
= 1,q 

Under (8)-(9), o)* and {k}k=0,, are well defined and 
finite. This does not, however, guarantee that or2 < oo 
with probability 1 or that {cr2} _- is strictly station- 
ary. The conditions for strict stationarity are stronger; 
these were worked out for the GARCH(1, 1) case by 
Nelson (1990) and for the general GARCH(p, q) case 

by Bougerol and Picard (1992). Under (9), however, 
(8) is necessary for strict stationarity (Bougerol and 
Picard 1992). 

Define q* - max{q, p}, ak 0 for k > q, and pk 
0 for k > p. The 0k terms can then be derived as the 
solution to the difference equation system 

4o = a, 

1 = 1P10 + a2 

02 = 141 + P240 + a3 

(q*-l 
= 

Pl+q*-2 + P2(q*-3 + * * 

+ Pq*-l10 + aq*, (10) 

O1 = PCa1 + a2 - 0, 

2 = 
2 2a, + Pa2 + a3 > 0, 

q-_l = 1q-l1al + Pq-2a2 + ' ' ' 

+ q-_ 1 + aq > 
0, 

and then, for all integer k > q, 

k = k . a1 + 'k-1 * 2 + * * + pk+2-q 

* oq- + pk+1-q . aq 
= k +1-q .q _1 0. 

(13) 

(14) 

(15) 

(16) 

Clearly bq_1 = 0 only if (9) is violated, since in this 
case the model reduces to an ARCH(q). This, com- 
bined with (11)-(16), leads directly to the following 
result: 

Theorem 1. Let (8)-(9) be satisfied. Then co* and 

{k}k-=o,= are all nonnegative iff (a) w > 0, (b) 83 0, 
and (c) for all k = 0 to q - 1, 4k = Ej=O,k aj+ 1pk-j 

0. 

The proof is straightforward and is left to the reader. 
For the popular GARCH(1, 1) model, Theorem 1 

permits no relaxation in (4)-(6). For higher-order models, 
however, Theorem 1 relaxes (6) by allowing ai to be 
negative for i - 2. In the GARCH(1, 2) model, for 
example, the conditions of Theorem 1 [along with (8)- 
(9)] are that (a) w L 0, (b) 0 - ,3 < 1, (c) Pal + a2 
- 0 and (d) a, > 0. Figure 1 plots this region in (,3, a2/ 

a,) space when Ao > 0 and a1 > 0. 

and for integer k > q*, 

Ok = P31k-1 + 324k-2 + + Pq+-k-q. 

Requiring that all of the {k}k-o,=, in (10) be non- 

negative imposes an infinite number of inequality con- 
straints on {aj}j= 1,q and {f3}i= ,p. For practical purposes 
(e.g., in estimation) it is necessary to reduce this to a 
finite number of inequalities. Fortunately, in certain 
cases this is straightforward. The GARCH(0, q) [or 
ARCH(q)] case is trival (i.e., w 2 0, aj -- 0 for all j = 
1 to q) and leads to no relaxation of the inequality 
constraints (4)-(6). In the GARCH(1, q) and GARCH(2, 
q) cases developed in detail in Section 2, however, we 
will see that (4)-(6) can be substantially relaxed. The 
more difficult GARCH(p, q) case for p > 3 is also 

briefly considered in Section 2. We give examples of 
the empirical relevance of the results in Section 2 in 
Section 3. A brief conclusion is found in Section 4. 

2. MAIN RESULTS 

2.1 GARCH(1, q) 

In this case, p1 = 3, and 3i = 0 for i > 2, so our 
inequality constraints become 

o* = o/(l - ?8) - 0, (11) 

2.2 GARCH(2, q) 

In this case it is convenient to reparameterize the 
model. Define Al and A2 to be the roots of (1 - P,Z-~ 
- 132Z-2) so that 

1- /31L - 12L2 = (1 - ALL)(1 - A2L). (17) 

Without loss of generality, we assume that lAll 2 1A21, 
and that A, : 0. If A, = -A2, we take A, > 0. We 
then have the following result: 

Theorem 2. Let (8)-(9) be satisfied. Then Condi- 
tions (18)-(22) are necessary and sufficient for o* - 0 
and k 2> 0 for all nonnegative integer k: 

a* = o/[l 
- A1 

- 2 + A1A2] 0, 

A1 and A2 are real numbers, 

A > 0, 

E A iaj+l > 0, 
j=O,q-1 

(18) 

(19) 

(20) 

(21) 

and 

4k > 0 for k = 0 to q. (22) 

The proof of Theorem 2 is given in the Appendix. 
One interesting special case of the GARCH(2, q) model 
is GARCH(2, 1), which we consider in the following 
corollary: (12) 00 = a,1 

> 0, 
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Figure 1. Admissible Parameter Values: The GARCH(1, 2) Case. 

Corollary. In the GARCH(2, 1) model, Conditions 
(8) and (18)-(22) reduce to: 

o > 0, (23) 

a,i 0, (24) 

0 3,1 (25) 

A1 + 2 < 1, (26) 

and 

32 + 4/32 0. (27) 

Figure 2 illustrates the region of (P,1, 32) space al- 
lowed by the corollary to Theorem 2, assuming that a1 
and co are positive. Again, Conditions (4)-(6) [with the 
unit circle condition (8) imposed as well] are substan- 
tially relaxed. 

2.3 Higher-Order Systems 

Deriving necessary and sufficient conditions for k > 
0 for all k is substantially more difficult when p - 3. 
Sufficient conditions alone are a bit easier. For ex- 
ample, if the roots {A1, . . . A} of (1 - ~3Z-1 - 

P2Z-2 - ... .- pZ-P) are unique, we can write, for 
k - max{q, p}, 

k = q1Ak + 72A2k + '* + pAk, (28) 

where r7,. .. , %rp are constants depending on 41, ..., 
max{q-l,p}- [For example, see Goldberg (1958) or Sar- 

gent (1987). Sargent (1987, pp. 192-194) provided closed- 
form expressions for the {bk}.] If A1 is real and positive 

and if we define * r max{,.=2,Ipjl and A* max,=2,P}|Ai, 
then clearly 

Alk - 1 - (P - 1) T* . (A*/A)k (29) 

If, in addition, Al > lAjl for j = 2 to p and 71 > 0, the 

(positive) first term on the right side of (29) dominates 
the (negative) second term as k -, oo. If the right side 
of (29) is nonnegative for some k*, it remains non- 

negative for all k - k*. Rearranging (29), it is clear 
that the right side of (29) must be positive for any k* 

greater than [ln(rlh) - ln(,r* ? (p - l))]/ln(A*/Ai). In 
this case, therefore, if {Lk}k=o,k is nonnegative, so is 

{kk lk=O,x.- 

Presumably, such sufficient (but not necessary) con- 
ditions should not be imposed in estimation. In practice, 
however, it is usually necessary to impose positivity on 
in-sample fitted values of a-2 to keep nonlinear max- 
imization routines from encountering overflows. For 
the ARCH(p), GARCH(1, q), and GARCH(2, q), the 

inequality constraints of Sections 2.1 and 2.2 should 
suffice. For higher-order GARCH models and multi- 
variate GARCH, some other tactic is required. Prob- 

ably the best method is a version of the penalty function 
method familiar in nonlinear programming (for exam- 

ple, Luenberger 1973): Insert an appropriate "IF" 
statement into the subroutine that evaluates the like- 
lihood function. For each t, the "IF" statement should 
check that r7-1 - a - r for some large positive r/ 
before ln(o2r) is evaluated. If o2 is too large or too small, 
the function evaluation is terminated and some very 
unfavorable function value returned. This approach can 

easily be adapted to the multivariate case. 
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Figure 2. Admissible Parameter Values: The GARCH(2, 1) Case. 

2.4 Start-up Values 

Although the GARCH process r2 as written in (7) 
extends into the infinite past, in practice (e.g., in es- 
timation) it is necessary to compute {cr2} recursively 
beginning at time 0, using (3) and assuming arbitrary 

10- CIP F\ 2 2 .2 62 fixed values for {2 1 , ... . , (, 1 .? , q, . Al- 
though (4)-(6) guarantee that {crt2,=o, remains non- 
negative given arbitrary nonnegative {o2, . . . , orp, 
:2 _,_ . ., 2-q}, the weaker condition that o* and 

{ckk}k=o,= are nonnegative does not guarantee this. For- 

tunately, it is not difficult to select start-up values that 
keep {(r2}t= 0, nonnegative with probability 1 given non- 
negative a* and {4k}k=o,=. One way to do this is to 

arbitrarily choose any >2 2 0 and set t2 _= 2 for all t = 
-1 to - oo. Then set r0-2 a2 for 1 - p < t - 0, where 

c.2 1- a pi + 2 E aj 
i=l,p j=l,q 

= * + 52 k. (30) 
k=O,o 

This keeps or2 nonnegative for all t - 0 with probability 
1, since 

t-=*+ E >kt-k-1 + 2 (k 20. (31) 
k=O,t- 1 k =t, 

If Si= ,p 3i + Ej= ,q aj < 1, (which is not required 
for strict stationarity of {et}), one can set 0'2 and :2 equal 
to their (common) unconditional mean; that is, 

0 =2 - = 
co/( 1 =i .- =E 1 ) (32) 

i=l,p j= 1,q 

3. EMPIRICAL EXAMPLES 

Several violations of Bollerslev's original inequality 
constraints have been reported in the ARCH literature, 
and we suspect that many more would be reported were 
it not that many researchers see these violations as evi- 
dence of misspecification or of sampling error. Unfor- 
tunately, there is no easy way to verify this suspicion; 
unless researchers actually report negative coefficient 
values, it is usually impossible to tell whether the Bol- 
lerslev inequality constraints were imposed or not. In 
the widely circulated GARCH estimation code of Kroner 
(1990), the Bollerslev inequality constraints are not au- 
tomatically imposed but can be imposed at the user's 
option. 

Some of the reported violations of the Bollerslev in- 
equality constraints violate our weaker constraints as 
well. For example, Engle (1983) and Engle, Lilien, and 
Robins (1987) found that they had to impose linearly 
declining weights on the ARCH(p) model to prevent 
some parameters from becoming negative. Our inequal- 
ity constraints are no weaker than Bollerslev's for the 
ARCH(p) case. Hence this violation results from sam- 
pling error or misspecification. [These are the only pos- 
sibilities, since Engle (1983) and Engle et al. (1987) 
assumed conditional normality, making the support of 
the errors unbounded.] 

Violations of the Bollerslev inequality constraints are 
rarer for GARCH models. For example, Bollerslev 
(1986) analyzed the same Consumer Price Index data 
as Engle (1983) but found that a GARCH(1, 1) model 
fit the data well with no inequality constraint violations. 



Several violations of the Bollerslev inequality con- 
straints in GARCH models have been reported, how- 
ever, usually satisfying the weaker inequality con- 
straints of Theorems 1 and 2. 

One example was provided by French, Schwert, and 
Stambaugh (1987, table 5), who estimated a GARCH(1, 
2)-M model for daily capital gains on the Standard and 
Poor's (S&P) 500 from 1928 to 1984 and found estimates 
for the 0-2 process of 

2 = 6.3 . 10-7 + .918 a2_1 

(6 * 10-8) (.003) 

+ .121 . - .043 2-2, (33 

(.007) (.007) 

where , is the time t residual in returns (standard errors 
are in parentheses). The final term on the right side 
of (33) (i.e., a2) is several standard deviations below 
0. French et al. (1987) estimated the model over var- 
ious subperiods and with an alternative specification 
for the conditional mean. In each case, however, the 
estimated a2 was negative, usually significantly so. 
[However, a2 becomes insignificantly different from 0 
when a Student's likelihood is used in place of a normal 
likelihood-see Bailie and DeGennaro (1990)]. Never- 
theless, all of the models that French et al. estimated 
using daily data satisfy the conditions of Theorem 1. 
On the other hand, French et al. (1987, table 6a) also 
estimated GARCH(1, 2)-M models using monthly re- 
turns data, and in one subperiod (1953-1984) the es- 
timated al coefficient was negative (though insignifi- 
cant), violating the conditions of Theorem 1. 

We estimated GARCH models up to the order of 
GARCH(1, 3) and GARCH(2, 2), using S&P 500 daily 
returns data from 1928 to 1989, and found the same 
pattern in all subperiods; significantly negative esti- 
mated a2's are common. We found no examples of neg- 
ative estimated 32's in GARCH(2, q) models, however, 
so for this data the inequality constraint relaxations in 
Theorem 1 are more empirically relevant than those in 
Theorem 2. All of our estimated models satisfied the 
conditions of Theorems 1 and 2. 

One of the models estimated by Engle, Ito, and Lin 
(1990, table IV) provides another example: They esti- 
mated a GARCH(1, 4) model for exchange-rate move- 
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ments, treating the exchange-rate movements in dif- 
ferent world markets as separate observations. Their 
estimated model was 

o2 = 6 * 10-4 + .9581 * a.-2 + .1169 * t2_ 
(2 10-4) (.0087) (.0204) 

- .0627 . t2_2 - .0047 * 23 - .0181 * f2_. 

(.0292) (.0292) (.0103) (34) 

Since only the a2 term is significantly negative, one 
might be tempted to impose the Bollerslev inequality 
constraints in estimation. There is no need, however, 
since the estimated model satisfies the conditions of 
Theorem 1. 

To further check the empirical relevance of Theorems 
1 and 2, we next reconsider the exchange-rate series 
analyzed by Baillie and Bollerslev (1989). Tim Boller- 
slev graciously provided the data. Our estimated model 
is slightly different from Baillie and Bollerslev's; they 
included day-of-the-week dummy variables, which we 
omit, and we use data from June 1, 1973, to January 
28, 1985, whereas they used data from March 1, 1980, 
to January 28, 1985. We estimated GARCH models of 
order up to GARCH(2, 2) and GARCH(1, 3) for the 
British pound/dollar, Deutschmark/dollar, yen/dollar, 
franc/dollar, and lira/dollar exchange rates, respec- 
tively. We encountered many instances of negative es- 
timated a's and 3's in every case satisfying the require- 
ments of Theorems 1 and 2. In three cases out of the 
five, the model selected by the Akaike information cri- 
terion (AIC) (Akaike 1973) involves a negative a, though 
never a negative ,. The results for the models favored 
by the AIC are reported in Table 1. Using the model- 
selection criterion of Schwarz (1978), models involving 
negative estimated a's are selected in two out of five 
cases. In this data, as in the S&P 500 data, Theorem 1 
appears highly empirically relevant, Theorem 2 less so. 

4. CONCLUSION 

Although negative coefficients in GARCH models 
may result from misspecification or sampling error, this 
is not always the case. Our weaker set of sufficient con- 
ditions to guarantee that ot2 - 0 almost surely for all t 
is empirically relevant, as the examples in Section 3 

Table 1. GARCH Models for Daily Exchange Rate (selected by AIC) June 1, 1973-January 28, 1985 

Exchange rate Selected model bo w a, a2 a3 f1 02 LF 

British pound GARCH(1, 2) -.0219 .0060 .1872 -.0812 .8884 -2,289.94 
(.0093) (.0004) (.0141) (.0146) (.0058) 

Deutschmark GARCH(2, 2) -.0009 .0186 .0573 .2262 .3833 .3100 -2,447.24 
(.0091) (.0021) (.0170) (.0203) (.0925) (.0760) 

Japanese yen GARCH(1, 3) .0016 .0002 .1888 .0752 -.2344 .9730 -2,086.27 
(.0067) (.0001) (.0176) (.0236) (.0089) (.0011) 

French franc GARCH(1, 2) -.0002 .0079 .1024 .1444 .7735 -2,356.21 
(.0063) (.0005) (.0175) (.0188) (.0097) 

Italian lira GARCH(1, 3) - .0044 .0003 .3058 - .0485 - .0573 .8451 -1,593.92 
(.0036) (.0001) (.0159) (.0265) (.0210) (.0057) 

NOTE: The numbers in the parentheses are the standard deviations. LF is log-likelihood. The best-fitted models are selected by the Akaike information criterion (Akaike 1973). 100log(st/ 
St-) = bo + Er, tllt-1 ~ N(O, oF), and ao = w + al,i-1 + ? ? ? + aqe_q + B10-1 + * ' + 3pOF-p. 



234 Journal of Business & Economic Statistics, April 1992 

indicate. Practitioners should therefore probably not im- 

pose the Bollerslev inequality constraints in estimation. 

ACKNOWLEDGMENTS 

We thank Phillip Braun, an associate editor, and two 

anonymous referees for helpful comments. The Center 
for Research in Security Prices and the National Science 
Foundation provided financial support. 

APPENDIX: PROOF OF THEOREM 2 

The necessity and sufficiency of (18) for w* - 0 is 

obvious, so we turn to (19). For k - q + 1, 4k evolves 

according to the homogeneous difference equation 
4k = Plik-i + p20k-2- When A1 and A2 are complex, 
we may write (for example, see Fuller 1976, pp. 43- 
45; Goldberg 1958, chap. 3) 

b = b * Ak + b* * A, (A.1) 

where b = r * [cos(y) + i * sin(y)] (with r > 0) is a 
constant depending on )q and q -_1 and b* is its complex 
conjugate; A1 can be written as p * [cos(0) + i . sin(0)] 
(with p > 0, since A1 f 0) and A2 is its complex con- 

jugate. Substituting for Al, A2, b, and b* in (A.1) we 

may write 

p-kOk = 2 * r cos[y + Ok], (A.2) 

which has an oscillating sign as k -- oo unless 0 is either 
an integer multiple of 27r or r = 0. We can rule out 0 

being an integer multiple of 27r, since this would make 
A1 and A2 real numbers. We can also rule out r = 0, 
since this would make 4k = 0 for all sufficiently large 
k, reducing the model to an ARCH(p) for finite p, 
thereby violating (9). Therefore, (19) is proved. 

For the real roots case, note that under condition (8) 

[(1 - A,L)(1 - A2L)]-1 = E A2Li+j 
i=O,oc j=O,o 

= ykLk, (A.3) 
k=0,oc 

where 

k - A1 > (A2/Al)i. (A.4) 
j=O,k 

It is then easy to verify that 

Ok = Yk-j Oj+r1 (A.5) 
j= O,min{k,q - 1} 

First, suppose that A1 = A2- A. Equation (A.5) 
becomes 

=k 
= Ak-j(k - j + 1)* Cra+1 (A.6) 

j = O,min{k,q - 1} 

Obviously, (22) is necessary if 4k - 0 for all k. To see 
that (20) and (21) are also necessary, take k > q - 1, 
and divide (A.6) by IAlk. We obtain 

AI -k(P = sign(Ak) E [A-J(1 - j) 
j=O,q- 

aj+l + k A- - aj+1]. (A.7) 

Clearly the second term in the summation dominates 
as k -> oo unless j=O,q-l A-Jaj+1 

= 0, which would 

violate (9). To keep the sign of this asymptotically dom- 
inant term positive, (20) and (21) are clearly necessary. 

To see that (19)-(22) are also sufficient for k 2 0 

for all k, take k - q - 1 and rewrite (A.7) as 

A-lk(k = (k + 1) * A-i 
j=O,q -1 

*Yj+l - E A-ij ' aj+l 
j=O,q-1 

(A.8) 

Under (19)-(22), the first term on the right side of 

(A.8) is positive and increasing in k, whereas the second 
term is constant, so it is clear that if A-kOk is non- 

negative when k = q, it is nonnegative whenever k > 

q. Clearly therefore (19)-(22) imply 4k 0 for all k. 

Next, suppose that A1 and A2 are real and distinct. 

Equation (A.5) becomes 

k = (A1 - A2)-1 
,min{,q j = 0,min{k,q - 1} 

X (A^k+1 
- Ak+l-j) * 

aj+1. (A.9) 

First we show that (20)-(22) are necessary for (, - 0 

for all k. The necessity of (22) is obvious. To see that 

(20)-(21) are also necessary, suppose first that A1 = 

-A2 > 0. Equation (20) holds trivially, and for k > 
q - 1, the nonnegativity of (A.9) is equivalent to 

2A- kk = A1-J 
j=O,q-1 

x [1 
- 

(-l)k+1-i] a. i +l 0. (A.10) 

Since we require 2A- k4)k 2- 0 and 2A -k-l/k+l - 0, 

clearly the sum 2A1 -kk + 2A-k-lk+l = 2 . 
Yj=0,q-1 

Aljaj+ 1 0, implying (21). Next, suppose that A'i 
-A2. Since |A11 > IA21, the A+j=,q-1 - Alaj+l term 

dominates (A.9) as k -> co. If A1 < 0, the sign of this 

term oscillates as k -> oo unless j=O,q -1 A laj+I = O, 

which would violate (9). To keep this term positive, 
(20) and (21) arn therefore necessary. 

Finally, we show that (19)-(22) are sufficient for 
4k 

- 0 for all k. Again, suppose first that A1 = - A2 > 
0. Clearly, if in (A.10) Ok* > 0 and qk*+l 0, then 
4k - 0 for all k > k*. Therefore if 4k 

- 0 for k = 1 
to q, 4k > 0 for all k. Finally, suppose that Al1 : -A2. 
Under (19)-(22) we may write, for k> q - 1, 

A k 1(A1 - A2)4k 

= A^iaj+l[l 
- (A2/A1)k+ 1-]. 

j=O,q-1 
(A.11) 

By (21), the Ej=0,q-l A-iaij+ term is positive and 

asymptotically dominates the right side of (A.11). The 

-2j=0o,q- A-iciaj+(A2/A)k+l-j term is of declining 
magnitude (but possiblly oscillating sign) as k -> oo. 
Once again, if in (A.11) k* 

- 0, then (k - 0 for all 
k > k*. Therefore if (k - 0 for k = 1 to q, 4k 0 for 
all k. 

The extension to the corollary is straightforward and 
is left to the reader. 

[Received January 1991. Revised September 1991.] 
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