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Abstract While making location decisions, the distribution of distances (outcomes) among
the service recipients (clients) is an important issue. In order to comply with the mini-
mization of distances as well as with an equal consideration of the clients, mean-equity
approaches are commonly used. They quantify the problem in a lucid form of two criteria:
the mean outcome representing the overall efficiency and a scalar measure of inequality of
outcomes to represent the equity (fairness) aspects. The mean-equity model is appealing to
decision makers and allows a simple trade-off analysis. On the other hand, for typical dis-
persion indices used as inequality measures, the mean-equity approach may lead to inferior
conclusions with respect to the distances minimization. Some inequality measures, however,
can be combined with the mean itself into optimization criteria that remain in harmony with
both inequality minimization and minimization of distances. In this paper we introduce gen-
eral conditions for inequality measures sufficient to provide such an equitable consistency.
We verify the conditions for the basic inequality measures thus showing how they can be
used in location models not leading to inferior distributions of distances.

Keywords Location · Multiple criteria · Efficiency · Equity · Fairness · Inequality
measures

1 Introduction

The spatial distribution of public goods and services is influenced by facility location
decisions and the issue of equity (or fairness) is important in many location decisions.
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Especially, various public facilities (or public service delivery systems) like schools, li-
braries, health-service centers etc. require some spatial equity while making location-
allocation decisions (Coulter 1980; Mayhew and Leonardi 1982; O’Brien 1969). Equity
is usually quantified with the so-called inequality measures to be minimized. Inequality
measures were primarily studied in economics (Atkinson 1970; Sen 1973; Young 1994).
The simplest inequality measures are based on the absolute measurement of the spread
of outcomes. Variance is the most commonly used inequality measure of this type and it
was also widely analyzed within various location models (Maimon 1986; Berman 1990;
Carrizosa 1999). However, many various measures have been proposed in the literature
to gauge the level of equity in facility location alternatives (Marsh and Schilling 1994)
or spatial equity in general (Hay 1995). In economics one usually considers relative in-
equality measures normalized by mean outcome. Among many inequality measures perhaps
the most commonly accepted by economists is the Gini index (Lorenz measure), which
has been also analyzed in the location context (Berman and Kaplan 1990; Erkut 1993;
Maimon 1988; Mandell 1991). One can easily notice that a direct minimization of typi-
cal inequality measures (especially relative ones) contradicts the minimization of individual
outcomes. As noticed by Erkut (1993), it is rather a common flaw of all the relative inequal-
ity measures that while moving away from the clients to be serviced one gets better values
of the measure as the relative distances become closer to one-another. As an extreme, one
may consider an unconstrained continuous (single-facility) location problem and find that
the facility located at (or near) infinity will provide (almost) perfectly equal service (in fact,
rather lack of service) to all the clients.

Although minimization of the inequality measures contradicts the minimization of indi-
vidual outcomes, the inequality minimization itself can be consistently incorporated into
locational models. The notion of equitable multiple criteria optimization (Kostreva and
Ogryczak 1999b) introduces the preference structure that complies with both the outcomes
minimization and with the inequality minimization rules (Sen 1973; Young 1994). The eq-
uitable efficient solutions represent a subset of all efficient (Pareto-optimal) solutions which
takes into account the inequality minimization according to the Pigou–Dalton approach.
The equitable optimization is well suited for the locational analysis (Kostreva and Ogryczak
1999a; Ogryczak 2000). It turns out that equitably efficient solution concepts may be mod-
eled with the standard multiple criteria optimization applied to the cumulative ordered out-
comes. The center solution concept represent only first criterion and in order to guarantee
the equitable efficiency of a selected location pattern one needs to take into account all
the ordered outcomes like in the lexicographic center (Ogryczak 1997a) which is a lexico-
graphic refinement of the center solution concept. The entire multiple criteria ordered model
is rich with various equitably efficient solution concepts (Ogryczak and Zawadzki 2002;
Kostreva et al. 2004). Although the cumulated ordered outcomes can be expressed with lin-
ear programming models (Ogryczak and Tamir 2003), these approaches requires the disag-
gregation of location problem with the client weights which usually dramatically increases
the problem size.

For typical inequality measures a simplified bicriteria mean-equity model is computa-
tionally very attractive since both the criteria are well defined directly for the weighted
location problem without necessity of its disaggregation but it may result in solutions which
are inefficient. Therefore, we are interested in a proper use of the mean-equity models in a
way to guarantee the equitable efficiency of selected solutions. It turns out that, under the as-
sumption of bounded trade-offs, the bicriteria mean-equity approaches for selected absolute
inequality measures (maximum upper deviation, mean semideviation or mean absolute dif-
ference) comply with the rules of equitable multiple criteria optimization (Ogryczak 2000).
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In other words, several inequality measures can be combined with the mean itself into the
optimization criteria generalizing the concept of the worst outcome and generating equitably
consistent underachievement measures. We generalize those findings by introducing simple
sufficient conditions for inequality measures to keep this consistency property. It allows us
to identify more inequality measures which can be effectively used to incorporate equity
factors into various location while preserving the consistency with distance minimization.
Among others the standard upper semideviation turns out to be such a consistent inequality
measure.

The paper is organized as follows. In the next section we introduce the problem and the
basic inequality measures. In Sect. 3 the equitable optimization with the preference structure
that complies with both the efficiency (Pareto-optimality) principle and with the Pigou–
Dalton principle of transfers is discussed and the underachievement criteria are introduced.
Further, in Sect. 4, the equitable consistency of the underachievement criteria is analyzed
and sufficient conditions for the inequality measures to keep this consistency property are
introduced. There is shown that properties of convexity and positive homogeneity together
with some boundedness condition is sufficient for a typical inequality measure to guarantee
the corresponding equitable consistency. We verify the properties for the basic inequality
measures used in location problem thus showing how they can be applied not leading to
inferior distributions of distances.

2 Efficiency and inequality measures

The generic location problem that we consider may be stated as follows. There is given a set
I = {1,2, . . . ,m} of m clients (service recipients). Each client is represented by a specific
point in the geographical space. There is also given a set Q of location patterns (location
decisions). For each client i (i ∈ I ) a function fi(x) of the location pattern x has been de-
fined. This function, called the individual objective function, measures the outcome (effect)
yi = fi(x) of the location pattern for client i (Marsh and Schilling 1994). In the simplest
problems an outcome usually expresses the distance. However, we emphasize to the reader
that we do not restrict our considerations to the case of outcomes measured as distances.
They can be measured (modeled) as travel time, travel costs as well as in a more subjec-
tive way as relative travel costs (e.g., travel costs by clients incomes) or ultimately as the
levels of clients dissatisfaction (individual disutility) of location decisions. Several special-
ized measures of proximity or accessibility have been developed for public service delivery
systems (Abernathy and Hershey 1972; Malczewski 2000; Mayhew and Leonardi 1982;
Tsou et al. 2005). In typical formulations of location problems related to desirable facilities
a smaller value of the outcome (distance) means a better effect (higher service quality or
client satisfaction). This remains valid for location of obnoxious facilities if the distances
are replaced with their complements to some large number or other (decreasing) disutility
function of distances. Therefore, without loss of generality, we can assume that each individ-
ual outcome yi is to be minimized. This allows us to consider the generic location problem
as the multiple criteria minimization (Ogryczak, 1997a, 1999):

min{f(x) : x ∈ Q} = min{y : y ∈ A}, (1)

where f = (f1, . . . , fm) is a vector-function that maps feasible decisions (locations) x ∈
Q into the outcome space Y = Rm and A = {y ∈ Y : y = f(x), x ∈ Q} denotes the set of
attainable outcome vectors.
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We do not assume any special form of the problem constraints allowing the feasible
set to be a general, possibly discrete (nonconvex), set. Similarly, we do not assume any
special form of the individual objective functions nor their special properties (like convexity)
while analyzing properties of the solution concepts. We have only assumed a finite set of
clients for the minimization of the individual outcomes. Therefore, the results of our analysis
apply to various classes of location problems covering continuous as well as discrete and
special network models (c.f., Love et al. 1988; Francis et al. 1992; Current et al. 1990;
Mirchandani and Francis 1990; Labbé et al. 1996).

Model (1) only says that we are interested in the minimization of all outcome functions
fi for i ∈ I . In order to make it operational, one needs to assume some solution concept.
Typical solution concepts for locations problems are based on the minimization of some
scalar achievement function C(y) of outcome vectors y. Most classical location studies focus
on the minimization of the mean (or total) distance (the median concept) or the minimization
of the maximum distance (the center concept) to the service facilities (Morrill and Symons
1977).

Since for each outcome the smaller value is preferred, some outcome vectors are clearly
dominated by others. We say that outcome vector y′ (Pareto) dominates y′′, iff y ′

i ≤ y ′′
i for

all i ∈ I where at least one strict inequality holds. We say that a location pattern x ∈ Q is an
Pareto-efficient solution of the multiple criteria problem (1), iff y = f(x) is nondominated.
The latter refers to the commonly used definition of the efficient solutions as feasible solu-
tions for which one cannot improve any criterion without worsening another (e.g., Vincke
1992).

Frequently, one may be interested in putting into location models some additional client
weights vi > 0. Typically the model of distribution weights is introduced to represent the
service demand thus defining distribution of outcomes yi = fi(x) according to measures
defined by the weights vi for i = 1, . . . ,m. Note that such distribution weights allows us
for a clear interpretation of weights as the client repetitions at the same place. Splitting a
client into two clients sharing the demand at the same geographical point does not cause any
change of the final distribution of outcomes. For theoretical considerations one may assume
that the problem is transformed (disaggregated) to the unweighted one (that means all the
client weights are equal to 1). Note that such a disaggregation is possible for integer as well
as rational client weights, but it usually dramatically increases the problem size. Therefore,
we are interested in solution concepts which can be applied directly to the weighted problem.

Alternatively, scaling weights could be used as client importance factors thus defining
outcomes yi = vifi(x) uniformly distributed for i = 1, . . . ,m. Such an usage of weights
represents actually redefinition of outcome values. Recall that we consider the outcome
values fi(x) as distance dependent but allowing any specific form of this function thus any
weighted scaling is already taken into account within the outcomes definition. Actually, the
distance scaling model means the use of unweighted location problem with a very simple
modification of distances. Therefore, our analysis is focused on the model of distribution
(demand) weights.

As mentioned, for some theoretical considerations it might be convenient to disaggregate
the weighted problems into the unweighted one. Therefore, to simplify the analysis we will
assume integer weights vi , although while discussing solution concepts we will use the
normalized client weights

v̄i = vi

/ m∑
i=1

vi for i = 1,2, . . . ,m
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rather than the original quantities vi . Note that, in the case of unweighted problem (all
vi = 1), all the normalized weights are given as v̄i = 1/m. Furthermore, to avoid possi-
ble misunderstandings between the weighted outcomes and the corresponding unweighted
form of outcomes we will use the following notation. Index set I will always denote un-
weighted clients (with possible repetitions if originally weighted) and vector y = (yi)i∈I =
(y1, y2, . . . , ym) will denote the unweighted outcomes. While directly dealing with the
weighted problem (without its disaggregation to the unweighted one) we will use Iv to
denote the set of clients and the corresponding outcomes will be represented by vector
y = (yvi

)i∈Iv . We illustrate this with the following small example.

Example 1 Let us consider a weighted single facility location problem with two clients C1
and C2 having assigned demand weights v1 = 1 and v2 = 9, respectively. Their distances to
two potential locations P1 and P2 are given as follows:

C1 C2

P1 0 10
P2 10 10

Hence, Iv = {1,2} and the potential locations generate two outcome vectors y′ = (01,109)

and y′′ = (101,109), respectively. The demand weights are understood as clients repeti-
tions. Thus, the problem is understood as equivalent to the unweighted problem with 10
clients (I = {1,2, . . . ,10}) where the first one corresponds to C1 and the further nine un-
weighted clients correspond to single demand units of the original client C2. In this dis-
aggregated form, the outcome vectors generated by two locations P1 and P2 are given as
y′ = (0,10,10,10,10,10,10,10,10,10) and y′′ = (10,10,10,10,10,10,10,10,10,10),
respectively. Note that outcome vector y′′ with all the distances 10 is obviously worse than
unequal vector y′ with one distance reduced to 0. Actually, y′ Pareto dominates y′′.

The classical solution concepts of median and center are well defined for aggregated
location models using (distribution) demand weights vi > 0. Exactly, the median solution
concept is defined by minimization the mean outcome

μ(y) = 1

m

∑
i∈I

yi =
∑
i∈Iv

v̄iyvi
, (2)

i.e., by the optimization problem

min{μ(f(x)) : x ∈ Q}. (3)

The center solution concept is defined by minimization of the maximum (worst) outcome

M(y) = max
i∈I

yi = max
i∈Iv

yvi
, (4)

thus resulting in the optimization problem

min{M(f(x)) : x ∈ Q}. (5)

Note the maximum outcome M(y) is not affected by the distribution weights at all and the
same applies to center solution itself. The weighted center solution concepts considered in
some location models (Labbé et al. 1996) represent distance scaling weights rather than the
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distribution weights. In our analysis such scaling weights are considered as included within
the outcome functions fi(x).

The individual outcomes in our multiple criteria location model express the same quan-
tity (usually the distance) for various clients. Thus the outcomes are uniform in the sense of
the scale used and their values are directly comparable. Moreover, especially when locating
public facilities, we want to consider all the clients impartially and equally. Thus the distri-
bution of distances (outcomes) among the clients is more important than the assignment of
several distances (outcomes) to the specific clients. Both the center and the median solution
concepts minimize only simple scalar characteristics of the distribution: the maximum (the
worst) outcome and the mean outcome, respectively.

Equity is, essentially, an abstract socio-political concept that implies fairness and justice
(Young 1994). Nevertheless, equity is usually quantified with the so-called inequality mea-
sures to be minimized. Inequality measures were primarily studied in economics (Sen 1973).
However, Marsh and Schilling (1994) described twenty different measures proposed in the
literature to gauge the level of equity in facility location alternatives. Typical inequality
measures are some deviation type dispersion characteristics. They are translation invariant

�(y + ae) = �(y) for any outcome vector y and real number a (6)

where e denotes the vector of units (1, . . . ,1), thus being not affected by any shift of the
outcome scale. Moreover, the inequality measures are also inequality relevant which means
that they are equal to 0 in the case of a perfectly equal outcomes while taking positive values
for any unequal one.

The simplest inequality measures are based on the absolute measurement of the spread of
outcomes, like the mean absolute difference also called the Gini’s mean difference (López-
de-los-Mozos and Mesa 2003; Ogryczak 2000)

D(y) = 1

2m2

∑
i∈I

∑
j∈I

|yi − yj | = 1

2

∑
i∈Iv

∑
j∈Iv

|yvi
− yvj

|v̄i v̄j (7)

or the maximum (absolute) difference

S(y) = max
i,j∈I

|yi − yj | = max
i,j∈Iv

|yvi
− yvj

|. (8)

In the location framework better intuitive appeal may have inequality measures related to
deviations from the mean outcome (Mulligan 1991) like the mean (absolute) deviation

δ(y) = 1

m

∑
i∈I

|yi − μ(y)| =
∑
i∈Iv

|yvi
− μ(y)|v̄i (9)

or the maximum (absolute) deviation (López-de-los-Mozos and Mesa 2001)

R(y) = max
i∈I

|yi − μ(y)| = max
i∈Iv

|yvi
− μ(y)|. (10)

Note that the standard deviation σ (or the variance σ 2) represents both the deviations and
the spread measurement as

σ(y) =
√

1

m

∑
i∈I

(yi − μ(y))2 =
√√√√ 1

2m2

∑
i∈I

∑
j∈I

(yi − yj )2
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=
√∑

i∈Iv

(yvi
− μ(y))2v̄i =

√√√√1

2

∑
i∈Iv

∑
j∈Iv

(yvi
− yvj

)2v̄i v̄j . (11)

Deviational measures may be focused on the upper semideviations as related to worsen-
ing of outcome while ignoring downside semideviations related to improvement of outcome.
One may define the maximum (upper) semideviation

Δ(y) = max
i∈I

(yi − μ(y)) = max
i∈Iv

(yvi
− μ(y)), (12)

and the mean (upper) semideviation

δ̄(y) = 1

m

∑
i∈I

(yi − μ(y))+ =
∑
i∈Iv

(yvi
− μ(y))+v̄i , (13)

where (·)+ denotes the nonnegative part of a number. Similarly, the standard (upper) semi-
deviation is given as

σ̄ (y) =
√

1

m

∑
i∈I

(yi − μ(y))2+ =
√∑

i∈Iv

(yvi
− μ(y))2+v̄i . (14)

One may notice that, due to the mean definition, the mean absolute semideviation is always
equal to half of the mean absolute deviation (δ̄(y) = 1

2δ(y)) but similar symmetry property
does not apply to the maximum semideviation or the standard semideviation.

In income economics, relative inequality measures (normalized by mean outcome) are
commonly used with the Gini coefficient D(y)/μ(y) as a typical example. The latter is a
relative measure of the mean absolute difference and has been also analyzed in the loca-
tion context (Mandell 1991; Mulligan 1991; Erkut 1993). One can easily notice that direct
minimization of relative inequality measures contradicts the minimization of individual out-
comes (Erkut 1993). Unfortunately, the same applies to all dispersion type inequality mea-
sures, including the upper semideviations. This can be illustrated by a simple example of
discrete location problem.

Recall the single facility location problem from Example 1 where the perfectly equal
outcome vector y′′ with all the distances 10 is Pareto dominated by y′ with one distance
reduced to 0. Actually, y′′ is obviously worse than y′ as it allows us to reduce the distance to
one client without worsening the others. Typical needs for equity of outcomes are caused by
the necessity to guarantee a good quality of service to all clients, like in emergency systems.
There is no justification, however, to enforce worse quality of service for one client if it
does not allow us to improve the service for any other. Nevertheless, �(y′′) > 0 for any
dispersion type inequality measure � while �(y′) = 0 for each such a measure. Hence, the
second location pattern is clearly optimal while directly minimizing the inequality measure
min{�(f(x)) : x ∈ Q}.

In order to overcome the flaws of direct minimization of inequality measures, following
Mandell (1991), the bicriteria mean-equity model:

min{(μ(f(x)), �(f(x))) : x ∈ Q} (15)

is usually considered. The model takes into account both the efficiency with minimization
of the mean outcome μ(y) and the equity with minimization of an inequality measure �(y).
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For typical inequality measures bicriteria model (15) is computationally very attractive since
both the criteria are well defined directly for the weighted location problem without ne-
cessity of its disaggregation. Unfortunately, the bicriteria mean-equity model still does not
completely eliminate contradiction to the minimization of individual outcomes. When con-
sidering the discrete location problem from Example 1, for any dispersion type inequality
measure one gets �(y′′) > 0 = �(y′) while μ(y′′) = 9 < 10 = μ(y′). Hence, y′′ is not bicri-
teria dominated by y′ and vice versa. Nevertheless, one must accept that for any dispersion
type inequality measure �, location P2 with obviously worse outcome vector than that for
location P1 is a Pareto-optimal solution in the corresponding bicriteria mean-equity model.
This leads us a crucial question how to prevent the model from possible selection of such
an obviously worse location. We answer this question in two steps. First, we recall the con-
cept of equitable efficiency which is based on extension of the standard Pareto-efficiency
concept with the Pigou–Dalton equity theory and when applied to location problems it re-
mains in harmony with both inequality minimization and distances (outcomes) minimiza-
tion, Next, we introduce general conditions under which various inequality measures can be
used together with the mean in bicriteria optimization to maintain the equitably efficiency
of selected locations.

3 Equitable efficiency and underachievement criteria

As pointed out in the previous section, direct use of the inequality measure minimization
may result in locations strictly worsening all the distances. In other words, the inequal-
ity measures minimization may contradict the outcomes minimization. It does not mean,
however, that the inequality minimization itself cannot be consistently incorporated into the
location models. There exist models of equitable optimization based on the majorization
theory (Hardy et al. 1934; Marshall and Olkin 1979) which are consistent both with the
Pareto-efficiency and theories of inequality measurement (in particular the Pigou–Dalton
approach). Namely, the Pareto dominance relation is transitive and can be transitively ex-
tended with additional relations representing inequality minimization (Ogryczak 1997b;
Kostreva and Ogryczak 1999b). The resulting notion of equitable multiple criteria opti-
mization is based on the preference structure that complies with both the Pareto-efficiency
and with the inequality measurement rules, and it is well suited for the locational analysis
(Kostreva and Ogryczak 1999a; Ogryczak 2000).

The preference model consists of three binary relations (Vincke 1992): strict preference
≺, indifference ∼= and weak preference � representing the union of two former (y′ � y′′ ⇔
y′ ≺ y′′ ∨ y′ ∼= y′′). The indifference relation is reflexive (y ∼= y) while the strict preference
relation is asymmetric (y′ ≺ y′′ ⇒ y′′ �≺ y′). We assume that the preference model is tran-
sitive which means that y′ ≺ y′′ ∧ y′′ ≺ y′′′ ⇒ y′ ≺ y′′′, and y′ ∼= y′′ ∧ y′′ ∼= y′′′ ⇒ y′ ∼= y′′′,
as well as, y′ ∼= y′′ ∧ y′′ ≺ y′′′ ⇒ y′ ≺ y′′′, and y′ ≺ y′′ ∧ y′′ ∼= y′′′ ⇒ y′ ≺ y′′′. Actually,
the preference model is completely characterized by the relation of weak preference, as
y′ ≺ y′′ ⇔ y′ � y′′ ∧ y′′ �� y′, and similarly, y′ ∼= y′′ ⇔ y′ � y′′ ∧ y′′ � y′. Therefore, it is
commonly identified with the weak preference relation � (Vincke 1992). However, for clear
understanding of equitable preference we introduce this model with directly given properties
of relations ≺ and ∼=.

Let us focus on the location problem with the unweighted outcomes (disaggregated if
necessary). A transitive preference model � is called equitably rational if it fulfills the
following requirements (axioms):
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(i) strict monotonicity

y − εei ≺ y for ε > 0; i ∈ I (16)

where ei denotes the i-th unit vector;
(ii) impartiality (anonymity, symmetry)

(yτ(1), yτ(2), . . . , yτ(m)) ∼= (y1, y2, . . . , ym) for any τ ∈ Π(I) (17)

where Π(I) is the set of all permutations of the set I ;
(iii) principle of transfers

yi′ > yi′′ ⇒ y − εei′ + εei′′ ≺ y for 0 < ε < yi′ − yi′′ ; i ′, i ′′ ∈ I. (18)

The requirement of strict monotonicity (16) represents the basic rationality assumption
that for any outcome smaller value is preferred (minimization). When considered for a tran-
sitive preference model it guarantees its consistency with Pareto-dominance in the sense
that y′ ≤ y′′ ∧ y′ �= y′′ ⇒ y′ ≺ y′′. Note that the median solution concept fulfills the strict
monotonicity requirement as μ(y − εei ) < μ(y) while the center concept meets it only for
a specific case of decreasing the uniquely defined largest outcome and generally it satisfies
only the weak monotonicity condition M(y − εei ) ≤ M(y). Therefore, the median model
always generates Pareto-efficient locations whereas the center solution can be Pareto domi-
nated by some alternative optimum to the center problem. However, the center model can be
regularized to a strictly monotonic solution concept of the lexicographic center (Ogryczak
1997a).

The next two requirements are related to the inequality minimization (Young 1994). The
equity or inequality are considered as properties of a distribution of outcomes. Hence, any
two outcome vectors characterized by the same distribution of outcomes must be indifferent
with respect to the inequality measurement. Within the class of problems with unweighted
outcomes this means ignoring their ordering or individual assignment as expressed with the
impartiality axiom (17) which guarantees impartial treatment of all the clients. For instance,
two outcome vectors (0,3,0,5) and (5,0,3,0) represent the same distribution of outcomes:
two outcomes 0, one 3 and one 5. Therefore, they are indifferent with respect to the in-
equality measurement, though, quite different from the perspective of any individual client.
Note that impartiality axiom is satisfied by all typical inequality measures as enumerated in
Sect. 2 as well as by the standard location concepts of the center and the median. A transfer
of any small amount from an outcome to any other relatively worse-off outcome (so-called
equitable transfer) represents the simplest (basic) construction decreasing inequality among
outcomes while preserving their mean (total). The principle of transfers (18) requiring that
such a transfer results in a more preferred outcome vector is the commonly accepted Pigou–
Dalton axiom for inequality minimization. Unfortunately, not all widely used inequality
measures fulfill completely this axiom in the sense that �(y − εei′ + εei′′) < �(y). Actu-
ally, among the measures enumerated in Sect. 2 only the mean absolute difference D(y)

and the standard deviation σ(y) (or the variance) satisfy completely the axiom (for any
equitable transfer). Upper semideviations, generally, do not fulfill the axiom for equitable
transfers between two outcomes below the mean. The mean absolute deviation δ(y) reacts
only to transfers from an outcome above the mean to an outcome below the mean while the
maximum upper deviation Δ(y) is only sensitive to transfers from the largest outcome (if
unique). Nevertheless, no inequality measure contradicts the principle of transfers, as for any
equitable transfer they all satisfy the weak condition �(y − εei′ + εei′′) ≤ �(y). This weak
condition is also satisfied by solution concepts of the median and the center. Actually, the
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median is completely neutral with respect to any transfer μ(y − εei′ + εei′′) = μ(y) while
the center concept, similar to the maximum deviation Δ(y) is sensitive to transfers from the
largest outcome (if unique).

The requirements of impartiality (17) and equitability (expressed with the principle of
transfers (18)) themselves do not contradict monotonicity (16). Therefore, they could be
unified by the transitivity rule to a consistent concept of the equitably rational preference
model. The corresponding equitable dominance model (�e) is defined as the relation valid
for all equitably rational preference models thus representing the weakest relation satisfying
axioms (16–18). That means y′ ≺e y′′ if and only if y′ ≺ y′′ is valid for all equitably rational
preference models �, and y′ ∼=e y′′ if and only if y′ ∼= y′′ for all equitably rational preference
models. This leads to the following definition of the equitable dominance relation (Ogryczak
1997b; Kostreva and Ogryczak 1999b).

Definition 1 We say that outcome vector y′ equitably dominates y′′ (y′ ≺e y′′) if and only
if, there exists a finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′

k
+

εkei′′
k
, 0 ≤ εk ≤ yk−1

i′
k

− yk−1
i′′
k

for k = 1,2, . . . , t and there exists a permutation τ such that

y ′
τ(i) ≤ yt

i for all i ∈ I , where at least one εk > 0 or at least one inequality y ′
τ(i) ≤ yt

i is strict.

Outcome vectors y′ and y′′ are equitably indifferent (y′ ∼=e y′′) if and only if, there ex-
ists a permutation τ ∈ Π(I) such that y ′

τ(i) = y ′′
i for all i ∈ I . Hence, the relation of weak

equitable dominance y′ �e y′′ denotes that either there exists a permutation τ ∈ Π(I) such
that either (y ′

τ(1), . . . , y
′
τ(m)) = y′′ or (y ′

τ(1), . . . , y
′
τ(m)) ≤ yt where sequence of vectors y0 =

y′′,y1, . . . ,yt satisfies all the requirements of Definition 1. Thus, y′ �e y′′ if and only if, there
exists a finite sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′

k
+ εkei′′

k
,

0 ≤ εk ≤ yk−1
i′
k

− yk−1
i′′
k

for k = 1,2, . . . , t and there exists a permutation τ such that y ′
τ(i) ≤ yt

i

for all i ∈ I .

Example 2 Let us consider a simple single facility location problem with three clients (C1,
C2, and C3) and three potential locations (P1, P2 and P3). The distances (say in kilometers)
between several clients and potential locations are given as follows:

C1 C2 C3
P1 4 2 12
P2 6 6 6
P3 5 3 1

Hence, the potential locations generate the outcome vectors y′ = (4,2,12), y′′ = (6,6,6)

and y′′′ = (5,3,1), respectively. Note that the perfectly equal outcome vector y′′ with all
the distances 6 equitably dominates that for location P1 since y′′ = (6,6,6) can be obtained
from y′ = (4,2,12) by application of two equitable transfers. On the other hand, outcome
vector y′′ is obviously worse than unequal vector y′′′ with all the distances smaller than 6.
Actually, the perfectly equal outcome vector y′′ is equitably dominated by unequal vector
y′′′ since y′′′ = (5,3,1) ≤ (6,6,6) = y′′. One may also notice that despite location P1 is not
Pareto dominated by P3, it is equitably dominated since vector y′′′ appropriately rearranged
(permuted) to (3,1,5) gets all the outcomes smaller than the corresponding outcomes of
y′ = (4,2,12).

Figure 1 presents the structure of equitable dominance for two-dimensional outcome
vectors. For any outcome vector y = (y1, y2), the symmetric (permuted) vector (y2, y1) is
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Fig. 1 Structure of the equitable
dominance: W(y)—the set
equitably dominated by y,
S(y)—the set of outcomes
equitably dominating y

equitably indifferent with y. Set W(y) of outcome vectors dominated by y contains all vec-
tors Pareto dominated by y or by its symmetric copy, as well as vectors lying further from
the perfect equity line y2 = y1. Set S(y) of outcome vectors dominating y consists of vectors
Pareto dominating y or its symmetric copy, as well as vectors closer to the perfect equity
line. Note that set S(y) is always convex.

We say that a location pattern x ∈ Q is equitably efficient, if and only if there does not
exist any x′ ∈ Q such that f(x′) equitably dominates f(x). In other words, a location pattern is
equitably efficient if one cannot improve the distribution of its outcomes either by decreasing
some of them or by any sequence of equitable transfers. Note that every equitably efficient
location pattern is also Pareto-efficient but not vice versa. In Example 2 both locations P1
and P3 are Pareto-efficient but only P3 is equitably efficient.

The relation of equitable dominance �e can be expressed as a vector inequality on
the cumulative ordered outcomes. For the unweighted problem this can be mathemati-
cally formalized as follows. First, we introduce the ordering map Θ : Rm → Rm such that
Θ(y) = (θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ · · · ≥ θm(y) and there exists a per-
mutation τ of set I such that θi(y) = yτ(i) for i = 1,2, . . . ,m. This allows us to focus on
distributions of outcomes impartially. Next, we apply cumulation to the ordered outcome
vectors to get quantities

θ̄i (y) =
i∑

j=1

θj (y) for i = 1,2, . . . ,m (19)

expressing, respectively, the largest outcome, the total of the two largest outcomes, the to-
tal of the three largest outcomes, etc. Pointwise comparison of the cumulated ordered out-
comes Θ̄(y) was extensively analyzed within the theory of majorization (Marshall and Olkin
1979), where it is called the relation of weak submajorization. The theory of majorization in-
cludes the results which allows one to derive the following theorem (Kostreva and Ogryczak
1999b).
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Theorem 1 Outcome vector y′ ∈ Y equitably dominates y′′ ∈ Y , if and only if θ̄i (y′) ≤ θ̄i (y′′)
for all i ∈ I where at least one strict inequality holds.

The equitable dominance for general weighted problems can be derived by their disag-
gregation to the unweighted ones. It can be mathematically formalized as follows. First, we
introduce the left-continuous right tail cumulative distribution function (cdf):

Fy(d) =
∑
i∈Iv

v̄iδi(d) where δi(d) =
{

1 if yvi
≥ d,

0 otherwise
(20)

which for any real (outcome) value d provides the measure of outcomes greater or equal
to d . Note that the requirement of impartiality means that two outcome vectors y′ and y′′
resulting in identical cdf are indifferent. Next, we introduce the quantile function F (−1)

y as
the right-continuous inverse of the cumulative distribution function Fy:

F (−1)
y (β) = sup{η : Fy(η) ≥ β} for 0 < β ≤ 1.

By integrating F (−1)
y one gets:

F (−2)
y (0) = 0 and F (−2)

y (β) =
∫ β

0
F (−1)

y (α)dα for 0 < β ≤ 1, (21)

where F (−2)
y (1) = μ(y). Graphs of functions F (−2)

y (β) (with respect to β) take the form of
concave curves, the (upper) absolute Lorenz curves. The absolute Lorenz curve defines the
relation (partial order) equivalent to the equitable dominance. Exactly, outcome vector y′
equitably dominates y′′, if and only if F

(−2)

y′ (β) ≤ F
(−2)

y′′ (β) for all β ∈ (0,1] where at least
one strict inequality holds. Note that for the expanded form to the unweighted outcomes,
the absolute Lorenz curve is completely defined by the values of the (cumulated) ordered
outcomes. Hence, θ̄i (y) = mF(−2)

y (i/m) for i = 1,2, . . . ,m, and pointwise comparison of
cumulated ordered outcomes is enough to justify equitable dominance. Figure 2 presents the
absolute Lorenz curves for distance distributions of three locations from Example 2. One
can easily see that vector of perfectly equal distances y′′ = (6,6,6) dominates vector y′ =
(4,2,12), but it is further dominated by vector y′′′ = (5,3,1) of unequal smaller distances.

Alternatively, the equitable dominance can be expressed on the cumulative distribution
functions. Having introduced the left-continuous right tail cumulative distribution function
(20), one may further integrate it to get the second order cumulative distribution function
F (2)

y (η) = ∫ ∞
η

Fy(ξ)dξ for η ∈ R, representing average exceed over any real target η. Graphs

of functions F (2)
y (η) (with respect to η) take the form of convex decreasing curves (Ogryczak

1997b). By the theory of convex conjugate functions (Rockafellar 1970), the pointwise com-
parison of the second order cumulative distribution functions provides an alternative charac-
terization of the equitable dominance relation (Ogryczak and Ruszczyński 2002). Exactly,
y′ equitably dominates y′′, if and only if F

(2)

y′ (η) ≤ F
(2)

y′′ (η) for all η where at least one strict
inequality holds.

Furthermore, the classical results of Hardy et al. (1934) allow us to refer the equitable
dominance to the mean utility. For any convex, increasing utility function u : R → R, if
outcome vector y′ equitably dominates y′′, then

1

m

m∑
i=1

u(y ′
i ) =

∑
i∈Iv

v̄iu(y ′
vi
) ≤ 1

m

m∑
i=1

u(y ′′
i ) =

∑
i∈Iv

v̄iu(y ′′
vi
).
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Fig. 2 Equitable dominance and the absolute Lorenz curves: y′′′ ≺e y′′ ≺e y′ for Example 2

Finally, there are three alternative analytical characterizations of the relation of equitable
dominance as specified in the following theorem. Note that according to condition (iii), the
equitable dominance is actually the so-called increasing convex order which is more com-
monly known as the second degree stochastic dominance (SSD) or stop loss order (Mueller
and Stoyan 2002).

Theorem 2 For any outcome vectors y′,y′′ ∈ A each of the three following conditions is
equivalent to the (weak) equitable dominance y′ �e y′′:

(i) F
(−2)

y′ (β) ≤ F
(−2)

y′′ (β) for all β ∈ (0,1];
(ii) F

(2)

y′ (η) ≤ F
(2)

y′′ (η) for all real η;
(iii)

∑
i∈Iv

v̄iu(y ′
i ) ≤ ∑

i∈Iv
v̄iu(y ′′

i ) for any convex, increasing function u.

We say that a solution concept (achievement function) C(y) is equitably consistent if

y′ �e y′′ ⇒ C(y′) ≤ C(y′′). (22)

The relation of equitable consistency is called strong if, in addition, the following holds
y′ ≺e y′′ ⇒ C(y′) < C(y′′). Note that an equitably consistent solution concept has to assign
equal values to vectors representing identical distribution of outcomes, i.e. it must be a
symmetric function of unweighted outcomes C(yτ(1), yτ(2), . . . , yτ(m)) = C(y1, y2, . . . , ym)

for any permutation τ ∈ Π(I). Further, for strong equitably consistency a solution concept
should assign larger (worse) values C(y′) > C(y) to all equitably dominated vectors y′ ∈
W(y), as well as smaller (better) values C(y′) < C(y) to all equitably dominating vectors
y′ ∈ S(y). Although various equitably consistent solution concepts may differently classify
other outcomes vectors from white areas in Fig. 1.
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Note that from the strong equitable consistency of a solution concept C(y) it follows
C(y′) ≤ C(y′′) ⇒ y′′ �≺e y′. Hence, every optimal location generated by the solution con-
cept C(y) is equitably efficient. In the case of (weak) equitable consistency (22) only a
weaker implication C(y′) < C(y′′) ⇒ y′′ �≺e y′ holds. Thus, any optimal location ȳ gener-
ated by the solution concept C(y) cannot be equitably dominated by a nonoptimal location
with a larger value C(y) but it may be dominated by an alternative optimal location with
the same value of C(y). Certainly, the strong consistency is more desirable property but
a very few solution concepts are strongly equitably consistent, similarly to a very few in-
equality measures satisfying completely the principle of transfers. Moreover, any equitably
consistent solution concept may be regularized to reach the strong consistency and thereby
to guarantee the equitable efficiency of the optimal location. Therefore, we do not restrict
our analysis to strong consistency, though, paying special attention to identify this relation
whenever possible.

According to condition (iii) of Theorem 2, for any convex, increasing function
u : R → R, the solution concept defined by achievement function C(y) = ∑m

i=1 u(yi) is
equitably consistent. In the case of strictly increasing and strictly convex function u the
consistency is strong. Various convex functions u can be used to define such equitable solu-
tion concepts. In the case of the outcomes restricted to positive values, any p-power yp is a
strictly increasing and convex function for p > 1. This justifies the lp norms as a source of
equitable solution concepts, since the minimization of any such norm ‖y‖p is then equivalent
to the minimization of ‖y‖p

p = ∑m

i=1 y
p

i .
Condition (i) of Theorem 2 (or directly Theorem 1) permits one to seek equitably effi-

cient location patterns as efficient solutions of the multiple criteria problem with objectives
Θ̄(f(x)) (c.f. Kostreva and Ogryczak 1999a):

min{(θ̄1(f(x)), θ̄2(f(x)), . . . , θ̄m(f(x))) : x ∈ Q}. (23)

The worst outcome (4) and the mean outcome (2) correspond, respectively, to the first and to
the last (m-th) criterion in problem (23). Thus both the center and the median concepts use
only a single objective from the multiple criteria problem (23). It means that both concepts
are equitably consistent in the sense of (22)

y′ �e y′′ ⇒ μ(y′) ≤ μ(y′′) and M(y′) ≤ M(y′′).

However, they are not strongly consistent and the solutions can be equitably dominated by
some alternative center or median solutions, respectively. In order to guarantee the equi-
table efficiency of a selected location pattern one need to take into account all the criteria
of (23) like in the lexicographic center (Ogryczak 1997a). The lexicographic center is a re-
finement of the center solution concept which corresponds to the lexicographic approach to
multicriteria optimization in (23) (Kostreva and Ogryczak 1999a). The cumulated ordered
outcomes (19) are convex piecewise linear functions of y (Kostreva and Ogryczak 1999b)
and they can be expressed with linear programming models (Ogryczak and Tamir 2003).
Nevertheless, the multicriteria ordered model (23) is, in general, rather hard to implement
as it requires the disaggregation of a location problem with client weights vi which usually
dramatically increases the problem size.

As a simplified approach one may consider a bicriteria mean-equity model (Mandell
1991): (15) taking into account both the efficiency with minimization of the mean outcome
μ(y) and the equity with minimization of an inequality measure �(y). For typical inequality
measures bicriteria model (15) is computationally very attractive since both the criteria are
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well defined directly for the weighted location problem without necessity of its disaggrega-
tion. Unfortunately, as pointed out in the previous section, for any dispersion type inequality
measures the bicriteria mean-equity model is not consistent with the outcomes minimiza-
tion, and therefore is not consistent with the equitable dominance. Note that the lack of
consistency with the equitable dominance applies also to the maximum semideviation Δ(y)

(12) whereas adding this measure to the mean μ(y) + Δ(y) = M(y) = θ̄1(y) results in the
worst outcome and thereby the first criterion of the ordered multicriteria model (23). In other
words, although a direct use of the maximum semideviation contradicts the efficiency, the
measure can be used complementary to the mean leading to the worst outcome criterion
which is equitably consistent. This construction can be generalized for various (dispersion
type) inequality measures. For any inequality measure � we introduce the corresponding un-
derachievement function defined as the sum of the mean outcome and the inequality measure
itself, i.e.

M�(y) = μ(y) + �(y). (24)

In the case of maximum semideviation the corresponding underachievement MΔ(y) function
represents the worst outcome M(y). Similarly, in the case of mean semideviation one gets
the underachievement function

Mδ̄(y) = μ(y) + δ̄(y) = 1

m

∑
i∈I

max{yi,μ(y)} =
∑
i∈Iv

v̄i max{yvi
,μ(y)}

representing the mean underachievement. Further, due to |yi −yj | = 2 max{yi, yj }−yi −yj ,
one gets an alternative formula for the mean absolute difference

D(y) = 1

m2

∑
i∈I

∑
j∈I

max{yi, yj } − μ(y) =
∑
i∈Iv

∑
j∈Iv

v̄i v̄j max{yvi
, yvj

} − μ(y) (25)

and the corresponding underachievement function

MD(y) = μ(y) + D(y) = 1

m2

∑
i∈I

∑
j∈I

max{yi, yj } =
∑
i∈Iv

∑
j∈Iv

v̄i v̄j max{yvi
, yvj

}

representing the mean pairwise worse outcome. Both the above underachievement measures
Mδ̄(y) and MD(y) are equitably consistent (Ogryczak 2000). This leads us to a very impor-
tant problem of identification of some clear conditions for inequality measures � sufficient
to guarantee that the corresponding underachievement measures are equitably consistent.

4 Consistency results

Inequality measures in mean-equity models are translation invariant (6) and inequality rele-
vant deviation type measures (dispersion parameters). Thus, they are not affected by any
shift of the outcome scale and they are equal to 0 in the case of perfectly equal out-
comes while taking positive values for any unequal one. Moreover, they depend only on
the distribution of outcomes thus in terms of the unweighted location model they are im-
partial, i.e., �(yτ(1), yτ(2), . . . , yτ(m)) = �(y1, y2, . . . , ym) for any permutation τ . Unfortu-
nately, as discussed earlier, such inequality measures are not consistent with the equi-
table optimization or axiomatic models of equitable preferences (Marshall and Olkin 1979;
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Kostreva and Ogryczak 1999a). Indeed, in the bicriteria mean-equity model its efficient set
may contain equitably inferior locations characterized by a small inequality but also very
high distances.

This flaw can be overcome by replacing the original mean-equity bicriteria optimization
(15) with the following bicriteria problem:

min{(μ(f(x)),μ(f(x)) + �(f(x))) : x ∈ Q} (26)

where the second objective represents the corresponding underachievement measure M�(y)

(24). Note that for any inequality measure �(y) ≥ 0 one gets M�(y) ≥ μ(y) thus really
expressing underachievements (comparing to mean) from the perspective of outcomes being
minimized.

The equitable consistency of inequality measures may be formalized as follows. We say
that inequality measure �(y) is mean-complementary equitably consistent if the correspond-
ing underachievement measure M�(y) is equitably consistent, i.e.,

y′ �e y′′ ⇒ μ(y′) + �(y′) ≤ μ(y′′) + �(y′′). (27)

The relation of equitable (mean-complementary) consistency is called strong if, in addition
to (27), the following holds

y′ ≺e y′′ ⇒ μ(y′) + �(y′) < μ(y′′) + �(y′′). (28)

Theorem 3 If the inequality measure �(y) is mean-complementary equitably consistent
(27), then except for outcomes with identical values of μ(y) and �(y), every efficient solu-
tion of the bicriteria problem (26) is an equitably efficient location. In the case of strong
consistency (28), every location x ∈ Q efficient to (26) is, unconditionally, equitably effi-
cient.

Proof Let x0 ∈ Q be an efficient solution of (26). Suppose that x0 is not equitably effi-
cient. This means, there exists x ∈ Q such that y = f(x) ≺e y0 = f(x0). Then, it follows
μ(y) ≤ μ(y0), and simultaneously μ(y) + �(y) ≤ μ(y0) + �(y0), by virtue of the mean-
complementary equitable consistency (27). Since x0 is efficient to (26) no inequality can
be strict, which implies μ(y) = μ(y0) and μ(y) + �(y) = μ(y0) + �(y0) (and thereby
�(y) = �(y0)).

In the case of the strong mean-complementary equitable consistency (28), the supposi-
tion y = f(x) ≺e y0 = f(x0) implies μ(y) ≤ μ(y0) and μ(y) + �(y) < μ(y0) + �(y0) which
contradicts the efficiency of x0 with respect to (26). Hence, x0 is equitably efficient. �

An important advantage of mean-equity approaches is the possibility of a pictorial trade-
off analysis. Having assumed a trade-off coefficient λ between the inequality measure �(y)

and the mean outcome, one may directly compare real values of μ(y) + λ�(y). Note that
(1 − λ)μ(y) + λ(μ(y) + �(y)) = μ(y) + λ�(y). Hence, the complete weighting parame-
terization of the mean-underachievement model (26) with 0 < λ < 1 is equivalent to the
bounded trade-off analysis of the bicriteria mean-equity model (15). This allows us to use
Theorem 3 to derive the consistency results for the trade-off approach defined by solving the
optimization problem

min{μ(f(x)) + λ�(f(x)) : x ∈ Q}. (29)
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Corollary 1 If the inequality measure �(y) is mean-complementary equitably consistent
(27), then except for location patterns with identical values of μ(y) and �(y), every optimal
solution of problem (29) with 0 < λ < 1 is an equitably efficient solution. In the case of
strong consistency (28), every location pattern x ∈ Q optimal to (29) with 0 < λ < 1 is,
unconditionally, equitably efficient.

Typical dispersion type inequality measures are convex, i.e.

�(λy′ + (1 − λ)y′′) ≤ λ�(y′) + (1 − λ)�(y′′) for any y′,y′′ and 0 ≤ λ ≤ 1.

Actually, convexity of an inequality measure on equally distributed outcomes is necessary
for its mean-complementary equitable consistency. Note, that for any two vectors y′ and y′′
representing the same distribution of outcomes as y (i.e., y′ = (yτ ′(1), . . . , yτ ′(m)) for some
permutation τ ′ and y′′ = (yτ ′′(1), . . . , yτ ′′(m)) for some permutation τ ′′) due to convexity of
θ̄i (y), one gets θ̄i (λy′ + (1 − λ)y′′) ≤ λθ̄i(y′) + (1 − λ)θ̄i(y′′) = θ̄i (y) for all i ∈ I and any
0 ≤ λ ≤ 1. Hence, λy′ + (1 − λ)y′′ �e y and M�(λy′ + (1 − λ)y′′) ≤ M�(y) is necessary for
the equitable consistency. Thus, due to equal means μ(λy′ + (1 − λ)y′′) = μ(y′) = μ(y′′) =
μ(y), the inequality measure depending only on distribution �(y′) = �(y′′) = �(y) must sat-
isfy �(λy′ + (1 − λ)y′′) ≤ �(y) = λ�(y′) + (1 − λ)�(y′′) which represents the convexity of
�(y). Certainly, the underachievement function M�(y) must be also monotonic for the equi-
table consistency which enforces more restrictions on the inequality measures. We will show
further that convexity together with positive homogeneity and some boundedness of an in-
equality measure is sufficient to guarantee monotonicity of the corresponding underachieve-
ment measure and thereby to guarantee the mean-complementary equitable consistency of
the inequality measure itself.

We say that (dispersion type) inequality measure �(y) ≥ 0 is Δ-bounded if it is upper
bounded by the maximum upper deviation, i.e.,

�(y) ≤ Δ(y) ∀y. (30)

Moreover, we say that �(y) ≥ 0 is strictly Δ-bounded if inequality (30) is a strict bound,
except from the case of perfectly equal outcomes, i.e.,

�(y) < Δ(y) for any y such that Δ(y) > 0. (31)

Theorem 4 Let �(y) ≥ 0 be a convex, positively homogeneous and translation invariant
(dispersion type) inequality measure. If the measure is additionally Δ-bounded (30), then
the corresponding underachievement function M�(y) = μ(y) + �(y) is:

(i) monotonous: y′ ≤ y′′ implies M�(y′) ≤ M�(y′′),
(ii) convex: M�(λy′ + (1 − λ)y′′) ≤ λM�(y′) + (1 − λ)M�(y′′) for any 0 ≤ λ ≤ 1,

(iii) positively homogeneous: M�(hy) = hM�(y) for positive real number h,
(iv) translation equivariant: M�(y + ae) = M�(y) + a, for any real number a.

If the inequality measure �(y) is strictly Δ-bounded (31), then the corresponding under-
achievement function M�(y) is:

(i′) strictly monotonous: y′ ≤ y′′ and y′ �= y′′ implies M�(y′) < M�(y′′).

Proof If �(y) ≥ 0 is a convex, positively homogeneous and translation invariant (dispersion
type) inequality measure, then the underachievement function M�(y) = μ(y) + �(y) does
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satisfy the requirements of translation equivariance, positive homogeneity, and convexity.
Further, if y′ ≤ y′′, then y′ = y′′ + (y′ − y′′) and y′ − y′′ ≤ 0. Hence, due to convexity and
positive homogeneity, M�(y′) ≤ M�(y′′) + M�(y′ − y′′). Moreover, due to the bound (30),
M�(y′ − y′′) ≤ μ(y′ − y′′) + Δ(y′ − y′′) ≤ μ(y′ − y′′) + 0 − μ(y′ − y′′) = 0. Thus, M�(y)

satisfies also the requirement of monotonicity.
Note that strict upper bound (31) causes that M�(y′ −y′′) < 0 for y′ �= y′′, thus showing strict
monotonicity of M�(y). �

Monotonicity and convexity of the underachievement function turns out to be sufficient
for its equitable consistency. Therefore, the following assertion is valid.

Theorem 5 Let �(y) ≥ 0 be a convex and Δ-bounded positively homogeneous inequality
measure. Then �(y) is mean-complementary equitably consistent in the sense of (27), i.e.

y′ �e y′′ ⇒ μ(y′) + �(y′) ≤ μ(y′′) + �(y′′).

Proof The relation of equitable dominance y′ �e y′′ denotes that there exists a finite se-
quence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′

k
+ εkei′′

k
, 0 ≤ εk ≤ yk−1

i′
k

−
yk−1

i′′
k

for k = 1,2, . . . , t and there exists a permutation τ such that y ′
τ(i) ≤ yt

i for all i ∈ I .

Note that the underachievement function M�(y), similar as �(y) depends only on the distrib-
ution of outcomes and, due to Theorem 4, is monotonous. Hence, M�(y′) ≤ M�(yt ). Further,
let us notice that yk = λȳk−1 + (1−λ)yk−1 where ȳk−1 = yk−1 − (yi′

k
−yi′′

k
)ei′

k
+ (yi′

k
−yi′′

k
)ei′′

k

and λ = ε/(yi′
k
− yi′′

k
). Vector ȳk−1 has the same distribution of coefficients as yk−1 (actu-

ally it represents results of swapping yi′ and yi′′ ). Hence, due to convexity of M�(y), one
gets M�(yk) ≤ λM�(ȳk−1) + (1 − λ)M�(yk−1) = M�(yk−1). Thus, M�(y′) ≤ M�(y′′) which
justifies the mean-complementary equitable consistency of the inequality measure �(y). �

For strict equitable consistency some strict monotonicity and convexity properties of the
achievement function are needed. Obviously, there does not exist any inequality measure
which is positively homogeneous and simultaneously strictly convex. However, one may
notice from the proof of Theorem 5 that only convexity properties on equally distributed
outcome vectors are important for monotonous achievement functions. We say that function
C(y) is strictly convex on equally distributed outcome vectors, if

C(λy′ + (1 − λ)y′′) < λC(y′) + (1 − λ)C(y′′) for 0 < λ < 1

for any two vectors y′ �= y′′ but representing the same outcomes distribution as some y,
i.e., y′ = (yτ ′(1), . . . , yτ ′(m)) for some permutation τ ′ and y′′ = (yτ ′′(1), . . . , yτ ′′(m)) for some
permutation τ ′′.

Theorem 6 Let �(y) ≥ 0 be a convex and strictly Δ-bounded positively homogeneous in-
equality measure. If �(y) is also strictly convex on equally distributed outcomes, then it is
mean-complementary equitably strongly consistent in the sense that of (28), i.e.

y′ ≺e y′′ ⇒ μ(y′) + �(y′) < μ(y′′) + �(y′′).

Proof The relation of weak equitable dominance y′ �e y′′ denotes that there exists a finite
sequence of vectors y0 = y′′,y1, . . . ,yt such that yk = yk−1 − εkei′

k
+ εkei′′

k
, 0 ≤ εk ≤ yk−1

i′
k

−
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yk−1
i′′
k

for k = 1,2, . . . , t and there exists a permutation τ such that y ′
τ(i) ≤ yt

i for all i ∈ I . The

strict equitable dominance y′ ≺e y′′ means that y ′
τ(i) < yt

i for some i ∈ I or at least one εk

is strictly positive. Note that the underachievement function M�(y) is strictly monotonous
and strictly convex on equally distributed outcome vectors. Hence, M�(y′) < M�(y′′) which
justifies the mean-complementary equitable strong consistency of the inequality measure
�(y). �

Corollary 2 Let �(y) ≥ 0 be a convex, positively homogeneous and Δ-bounded (dispersion
type) inequality measure. Then except for location patterns with identical mean μ(y) and in-
equality measure �(y), every efficient solution to the bicriteria problem (26) is an equitably
efficient solution of the location problem (1). If the measure is also strictly Δ-bounded and
strictly convex on equally distributed outcome vectors, then every location x ∈ Q efficient to
(26) is, unconditionally, equitably efficient.

As mentioned, typical inequality measures are convex and many of them are positively
homogeneous. Moreover, the measures such as the mean absolute (upper) semideviation
δ̄(y) (13), the standard upper semideviation σ̄ (y) (14), and the mean absolute difference
D(y) (7) are Δ-bounded. Indeed, one may easily notice that yi −μ(y) ≤ Δ(y) and therefore

δ̄(y) ≤ 1

m

∑
i∈I

Δ(y) = Δ(y),

σ̄ (y) ≤
√

Δ(y)2 = Δ(y),

D(y) = 1

m2

∑
i∈I

∑
j∈I

(max{yi, yj } − μ(y)) ≤ Δ(y)

where the last formula is due to (25). Actually, all these inequality measures are strictly
Δ-bounded since for any unequal outcome vector at least one outcome must be below the
mean thus leading to strict inequalities in the above bounds. Obviously, Δ-bounded (but not
strictly) is also the maximum absolute upper deviation Δ(y) itself. The same applies to the
quantile generalization of the maximum upper deviations, i.e. to the worst conditional k/m-
semideviation defined as the average of k largest semideviations (Ogryczak and Zawadzki
2002):

Δk/m(y) = 1

k

k∑
i=1

(θi(y) − μ(y)) (32)

for unweighted problems while generalized to Δβ(y) = 1
β

∫ β

0 (F (−1)
y (α) − μ(y))dα for

weighted problems and any real 0 < β ≤ 1. Thus, the following assertion is valid.

Corollary 3 The following inequality measures �(y) are mean-complementary equitably
consistent in the sense of (27):

1. the maximum upper deviation Δ(y) (12),
2. the mean absolute (upper) semideviation δ̄(y) (13),
3. the standard upper semideviation σ̄ (y) (14),
4. the mean absolute difference D(y) (7),
5. the worst conditional k/m-semideviation Δk/m(y) (32).
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We emphasize that, despite the standard semideviation is a mean-complementary equi-
tably consistent inequality measure, the consistency is not valid for variance, semivariance
and even for the standard deviation. These measures, in general, do not satisfy all assump-
tions of Theorem 5. Corollary 3 enumerates only the simplest inequality measures studied
in the locational context which satisfy the assumptions of Theorem 5 and thereby they are
mean-complementary equitably consistent. Theorem 5 allows one to show this property for
many other measures. In particular, one may easily find out that any convex combination
of mean-complementary equitably efficient inequality measures remains also consistent. On
the other hand, among typical inequality measures the mean absolute difference seems to be
the only one meeting the stronger assumptions of Theorem 6 and thereby maintaining the
strong consistency.

Corollary 4 The mean absolute difference D(y) (7) is mean-complementary equitably
strongly consistent in the sense of (28).

Note that the mean absolute semideviations are symmetric in the sense that the upper
semideviation is always equal to the downside one. In other words, δ̄(y) = 1

2δ(y) and thereby
Theorem 3 justifies also equitable consistency of the half mean absolute deviation. In gen-
eral, one may just consider α�(X) as a basic inequality measure, like the mean absolute
semideviation equal to the half of the mean absolute deviation itself. In order to avoid cre-
ation of new inequality measures by simple scaling we rather parameterize the equitable
consistency concept. We will say that an inequality measure � is equitably α-consistent if

y′ �e y′′ ⇒ μ(y′) + α�(y′) ≤ μ(y′′) + α�(y′′). (33)

The relation of equitable α-consistency will be called strong if, in addition to (33), the
following holds

y′ ≺e y′′ ⇒ μ(y′) + α�(y′) < μ(y′′) + α�(y′′). (34)

Note that the equitable 1-consistency represent our basic relation of the mean-complement-
ary equitable consistency. On the other hand, the equitable α-consistency of measure �(y)

is equivalent to the mean-complementary equitable consistency of measure α�(y). Thus the
following assertion is valid.

Corollary 5 If the inequality measure �(y) is equitably α-consistent (33), then except for
outcomes with identical values of μ(y) and �(y), every efficient solution of the bicriteria
problem

min{(μ(f(x)),μ(f(x)) + α�(f(x))) : x ∈ Q} (35)

is an equitably efficient location. In the case of strong consistency (28), every location x ∈ Q

efficient to (35) is, unconditionally, equitably efficient.

In terms of the trade-off approach it leads us to the following statement.

Corollary 6 If the inequality measure �(y) is equitably α-consistent (33), then except for
location patterns with identical values of μ(y) and �(y), every optimal solution of problem
(29) with 0 < λ < α is an equitably efficient solution. In the case of strong α-consistency
(34), every location pattern x ∈ Q optimal to (29) with 0 < λ < α is, unconditionally, equi-
tably efficient.
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Directly from Theorems 5 and 6 applied to the measures α�(y) as in definition of α-
consistency one gets the following sufficient conditions.

Theorem 7 Let �(y) ≥ 0 be a convex, positively homogeneous and translation invariant
(dispersion type) inequality measure. If α�(y) is Δ-bounded, then �(y) is equitably α-
consistent in the sense of (33), i.e.

y′ �e y′′ ⇒ μ(y′) + α�(y′) ≤ μ(y′′) + α�(y′′).

Theorem 8 Let �(y) ≥ 0 be a convex and positively homogeneous inequality measure. If
�(y) is also strictly convex on equally distributed outcomes and α�(y) is strictly Δ-bounded,
then �(y) is equitably strongly α-consistent in the sense of (34), i.e.

y′ ≺e y′′ ⇒ μ(y′) + α�(y′) < μ(y′′) + α�(y′′).

Note that the equitable ᾱ-consistency of measure �(y) actually guarantees the mean-
complementary equitable consistency of measure α�(y) for all 0 < α ≤ ᾱ, and the same
remain valid for the strong consistency properties. It follows from a possible expression of
μ(y) + α�(y) as the convex combination

μ(y) + α�(y) = α

ᾱ
(μ(y) + ᾱ�(y)) +

(
1 − α

ᾱ

)
μ(y)

with 0 < α/ᾱ ≤ 1. Hence, for any y′ �e y′′, due to μ(y′) ≤ μ(y′′) one gets μ(y′) + α�(y′) ≤
μ(y′′) + α�(y′′) in the case of the equitable ᾱ-consistency of measure �(y) (or respective
strict inequality in the case of strong consistency). Therefore, while analyzing specific in-
equality measures we seek the largest values α guaranteeing the corresponding equitable
efficiency.

As mentioned, the mean absolute semideviation is twice the mean absolute upper semi-
deviation which means that αδ(y) is Δ-bounded for any 0 < α ≤ 0.5. The symmetry of
mean absolute semideviations δ̄(y) = ∑

i∈I (yi − μ(y))+ = ∑
i∈I (μ(y) − yi)+ can be also

used to derive some Δ-boundedness relations for other inequality measures. In particular,
one may find out that for m-dimensional outcome vectors of unweighted location problem,
any downside semideviation from the mean cannot be larger than m − 1 upper semide-
viations. Hence, the maximum absolute deviation satisfies the inequality 1

m−1R(y) ≤ Δ(y),
while the maximum absolute difference fulfills 1

m
S(y) ≤ Δ(y). In the case of weighted prob-

lems these bounds take the forms min
i∈Iv

v̄i/(1 − min
i∈Iv

v̄i )R(y) ≤ Δ(y) and min
i∈Iv

v̄iS(y) ≤ Δ(y),

respectively. Similarly, for the standard deviation one gets

1√
m − 1

δ(y) ≤ Δ(y) or

√
mini∈Iv v̄i

1 − mini∈Iv v̄i

δ(y) ≤ Δ(y)

for unweighted or weighted problems, respectively. Actually, ασ(y) is strictly Δ-bounded
for any 0 < α ≤ 1/

√
m − 1 since for any unequal outcome vector at least one outcome must

be below the mean thus leading to strict inequalities in the above bounds. These leads us to
the following corollary.

Corollary 7 The following inequality measures �(y) are equitably α-consistent within the
specified intervals of α:
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1. the mean absolute deviation with 0 < α ≤ 0.5,
2. the maximum absolute deviation with 0 < α ≤ 1

m−1 , or 0 < α ≤ mini∈Iv v̄i

1−mini∈Iv v̄i
in the

weighted case,
3. the maximum absolute difference with 0 < α ≤ 1

m
, or 0 < α ≤ mini∈Iv v̄i in the weighted

case,

4. the standard deviation with 0 < α ≤ 1√
m−1

, or 0 < α ≤
√

mini∈Iv v̄i

1−mini∈Iv v̄i
in the weighted case.

Moreover, the α-consistency of the standard deviation is strong.

The equitable consistency results for basic dispersion type inequality measures consid-
ered in location problems are summarized in Table 1 where α values for unweighted as
well as weighted problems are given and the strong consistency is indicated. One may
easily notice that all the inequality measures with corresponding values of α result in
μ(y′′′) + α�(y′′′) < μ(y′′) + α�(y′′) < μ(y′) + α�(y′) when applied to y′′′ ≺e y′′ ≺e y′ from
Example 2. Table 1 points out how the inequality measures can be used in location models
to guarantee their harmony both with distance minimization (Pareto-efficiency) and with in-
equalities minimization (Pigou–Dalton equity theory). Exactly, for each inequality measure
applied with the corresponding value α from Table 1 (or smaller positive value), every effi-
cient solution of the bicriteria problem (35), i.e. min{(μ(f(x)),μ(f(x))+α�(f(x))) : x ∈ Q},
is an equitably efficient location, except for outcomes with identical values of μ(y) and �(y).
In the case of strong consistency (as for mean absolute difference or standard deviation),
every location x ∈ Q efficient to (35) is, unconditionally, equitably efficient.

To illustrate further the results of Table 1 let us consider Example 1. Recall that the
perfectly equal outcome vector y′′ with all the distances 10 is obviously worse than unequal
vector y′ with one distance smaller than 10. Actually, y′ Pareto dominates y′′ and therefore
it is the only equitably efficient solution to this location problem. While calculating several
inequality measures for those outcome vectors one gets the results presented in Table 2. One
may easily notice that all the inequality measures satisfy corresponding inequalities μ(y′)+
α�(y′) ≤ μ(y′′) + α�(y′′) when using α from Table 1 or smaller, e.g. μ(y′) + 1/3σ(y′) =
9 + 1 ≤ μ(y′′) + 1/3σ(y′′) = 10. Due to those inequalities, location P1 is the only Pareto-
optimal solution of the bicriteria problem min{(μ(f(x)),μ(f(x)) + α�(f(x))) : x ∈ Q}. On
the other hand, μ(y′) + σ(y′) = 9 + 3 > μ(y′′) + σ(y′′) = 10 and location P2 is a Pareto-
optimal solution to the bicriteria problem min{(μ(f(x)),μ(f(x)) + σ(f(x))) : x ∈ Q}, as

Table 1 Equitable consistency results for the basic dispersion type inequality measures

Measure α-consistency

Standard upper semideviation σ̄ (y) (14) 1 1

Standard deviation σ(y) (11) 1√
m−1

√
mini∈Iv v̄i

1−mini∈Iv v̄i
strong

Mean absolute semideviation δ̄(y) (13) 1 1

Mean absolute deviation δ(y) (9) 1
2

1
2

Maximum upper semideviation Δ(y) (12) 1 1

Maximum absolute deviation R(y) (10) 1
m−1

mini∈Iv v̄i
1−mini∈Iv v̄i

Conditional k/m-semideviation Δk/m(y) (32) 1 1

Mean absolute difference D(y) (7) 1 1 strong

Maximum absolute difference S(y) (8) 1
m mini∈Iv v̄i
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Table 2 Values of inequality measures for Example 1

y μ(y) σ̄ (y) σ (y) δ̄(y) δ(y) Δ(y) R(y) Δ3/10(y) D(y) S(y)

y′ 9 0.95 3 0.9 1.8 1 9 1 0.9 10

y′′ 10 0 0 0 0 0 0 0 0 0

well as for the standard mean-equity model min{(μ(f(x)), σ (f(x))) : x ∈ Q}. Similar effects
may be observed for the mean absolute deviation, the maximum absolute deviation or the
maximum absolute difference if not respecting the corresponding bounds α.

The consistency results summarized in Table 1 are sufficient conditions. This means that
whenever the α limit is observed the corresponding consistency relation is valid for any lo-
cation problem. It may happen that for a specific location problem and a specific inequality
measure the equitable consistency is valid for larger values of α. Nevertheless, we have pro-
vided strict bounds in the sense that for a larger value of α there exists a location problem on
which the equitable consistency is not valid, and the bicriteria problem (35) may generate
equitably dominated solution. This can be usually demonstrated with a simple counterex-
ample of a weighted discrete single facility location problems with 2 clients and 2 potential
locations P1 and P2, similar to Example 1. Let us assume that the location P1 generates
distance 1 to both the clients while P2 generates distance 0 to the first client and distance
1 to the second. For any positive client weights v̄1 and v̄2 the second location equitably
dominates the first one (actually, it is obviously better). Nevertheless, while using the mean
absolute semideviation with α = 1 + ε (ε > 0) one get the value of μ(y) + αδ̄(y) smaller
for P1 than that for P2 whenever v̄2 = 1/(1 + ω) with 0 < ω < ε and v̄1 = 1 − v̄2. While
using the standard semideviation the same effect can be demonstrated with v̄2 = 1/(1+ω)2.
Similar counterexamples may easily be built for other measures.

It follows from Table 1 that all basic inequality measures maintain some equitable con-
sistency when appropriately used in location models. It does not mean, however, that any
such measure allows one to model all possible equitable preferences. The bicriteria model
(35) is only a simplified approximation to the multiple criteria model (23) representing the
entire gamut of equitable preferences. Hence, for any inequality measure specific equitable
efficient locations may exist which cannot be identified with the bicriteria problem (35).
Nevertheless, the bicriteria models are just commonly accepted due to their simplicity in
modeling the mean-equity preferences. Our analysis summarized in Table 1 shows how var-
ious inequality measures can be used for this purpose not contradicting the equitable dom-
inance and thereby not leading to solutions obviously inefficient with respect to distances
(outcomes) minimization.

Among numerous measures listed in Table 1 only the mean absolute difference and
the standard deviation fulfill the strong consistency which is crucial to guarantee the eq-
uitable efficiency of any selected solution. The mean absolute difference being mean-
complementary equitably strongly consistent may be used to regularize other consistent
but not strongly consistent inequality measures, Namely, if �(y) is a mean-complementary
equitably consistent inequality measure, then for any 0 < ε < 1 the convex combination
(1 − ε)�(y) + εD(y) satisfies strict forms of both Δ-boundedness and convexity require-
ments and therefore it is mean-complementary equitably strongly consistent. By using ar-
bitrary small positive ε, this approach allows one to build strongly consistent forms (ac-
tually regularizations) of maximum semideviation (1 − ε)Δ(y) + εD(y), of the mean ab-
solute semideviation (1−ε)δ̄(y)+εD(y), or other equitably consistent inequality measures.
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When used with a very small coefficient, the standard deviation also maintains strong mean-
complementary equitable consistency which allows one to consider it as a regularization
term transforming any mean-complementary equitably consistent inequality measure �(y)

into a strongly consistent measure (1 − ε)�(y) + εσ(y). Usage of the mean absolute dif-
ference for this purpose seems to be simpler, though, due to its linear programming com-
putability (Kostreva and Ogryczak 1999a).

5 Concluding remarks

When making location decisions related to public service facilities, such as schools, nurs-
eries, libraries, health-services and other urban public facilities (Abernathy and Hershey
1972; Benito Alonso and Devaux 1981; Coulter 1980; Malczewski 2000; Mandell 1991;
O’Brien 1969; Tsou et al. 2005) the distribution of distances among the service recipients
(clients) and equity or fairness in treatment of the population is an important issue. Problems
of fair location-allocation decisions arise also in technical systems like in telecommunica-
tion networks which must serve various users (Pióro and Medhi 2004). In order to take into
account both the overall efficiency and equity the bicriteria mean-equity approaches are usu-
ally applied, where the mean distance as well as some inequality measure are minimized.
Quantification of the equity in a scalar inequality measure is well appealing to system de-
signers and not complicating too much the decision model still allowing for consideration of
multiple criteria spatial, economic, and others which is a common need while dealing with
public services (Current et al. 1990; Malczewski and Ogryczak 1988, 1990). Unfortunately,
for typical inequality measures, the mean-equity approach may lead to inferior conclusions
with respect to distances minimization. The class of preference models complying with the
minimization of distances as well as with an equal consideration of the clients is mathe-
matically formalized with the concept of equitable dominance. Solution concepts equitably
consistent (consistent with the equitable dominance) do not contradict the minimization of
distances or the inequality minimization. Therefore, the achievement of equitable consis-
tency by the mean-equity models has a paramount importance.

In this paper we have analyzed how scalar inequality measures can be used to guaran-
tee the equitable consistency. It turns out that several inequality measures can be combined
with the mean itself into the optimization criteria generalizing the concept of the worst out-
come and generating equitably consistent underachievement measures. We have introduced
general conditions for inequality measures sufficient to provide the equitable consistency of
the corresponding underachievement measures. We have shown that properties of convexity
and positive homogeneity together with being bounded by the maximum upper semidevia-
tion are sufficient for a typical inequality measure to guarantee the corresponding equitable
consistency. It allows us to identify various inequality measures which can be effectively
used to incorporate equity factors into various location problems while preserving the con-
sistency with outcomes minimization. Among others the standard upper semideviation turns
out to be such a consistent inequality measure while the mean absolute difference is strongly
consistent.

Our analysis is related to the properties of solutions to location models. It has been shown
how inequality measures can be included into the location models avoiding contradiction to
the minimization of distances. We do not analyze algorithmic issues of the models. Gener-
ally, the requirement of convexity necessary for the consistency, guarantees that the corre-
sponding optimization criteria belong to the class of convex optimization, not complicating
the original location model with any additional discrete structure. Many of the inequality
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measures, we analyzed, can be implemented with auxiliary linear programming constraints.
Nevertheless, further research on efficient computational algorithms for solving the corre-
sponding equitable location models (Nickel and Puerto 2005) is necessary.

This paper is focused on location problems. However, the location decisions are analyzed
from the perspective of their effects for individual clients. Therefore, the general concept of
the proposed approaches can be used for optimization of various systems which serve many
users.
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