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INERTIA AND RANK CHARACTERIZATIONS OF SOME MATRIX
EXPRESSIONS*

DELIN CHUT, Y. S. HUNG!, AND HUGO J. WOERDEMAN?

Abstract. In this paper we consider the admissible inertias and ranks of the expressions A —
BXB* —CYC* and A — BXC* + CX*B* with unknowns X and Y in the four cases when these
expressions are: (i) complex self-adjoint, (ii) complex skew-adjoint, (iii) real symmetric, (iv) real skew
symmetric. We also provide a construction for X and Y to achieve the desired inertia/rank that

uses only unitary/orthogonal transformation, thus leading to a numerically reliable construction. In
A B C
addition, we look at related block matrix completion problems |::i:B: X 5} with either two
N B Py +C +& y
+B* D ¢ | with an unknown off-diagonal block. Finally, we
+x* +C* &
also provide all admissible ranks in the case when we drop any adjointness/symmetry constraint.

diagonal unknown blocks and
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1. Introduction. Throughout this paper the following notation will be used:
e = C (complex number field) or F = R (real number field);
e For a self-adjoint/symmetric matrix A = A* € F*"*"_ its inertia

In(4) = (T4 (A), T_(4), n—T.(4) —I_4))

is the triple consisting of the number of positive, negative, and zero eigenval-
ues of A, counting multiplicity;
e For a skew-adjoint/skew-symmetric matrix A = —A* € F**"_ its inertia

In(4) = (T4 (A), T_(4), n— T, (4) - I_(4))

is the triple consisting of the number of eigenvalues with positive, negative,
and zero imaginary part, again counting multiplicity. As A = —A* implies
that —iA is Hermitian, we have that the eigenvalues of A are purely imaginary,
and In(A) = In(—iA), where the latter refers to the inertia of a Hermitian
matrix.

In matrix theory and applications, many problems are closely related to the ranks
and inertias of some matrix expressions with variable entries, and so it is necessary
to explicitly characterize the possible ranks and inertias of the matrix expressions
concerned. The study on the possible ranks and inertias of matrix expressions can
be traced back to the late 1980s [1, 11, 13]. Recently, the extremal ranks of some
matrix expressions have found many applications in control theory [4, 5], statistics,
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1188 DELIN CHU, Y. S. HUNG, AND HUGO J. WOERDEMAN

and economics [14, 15, 20, 22], and hence this topic has been revisited in [2, 6, 7, 8,
10, 12, 16, 17, 19, 21, 23, 24, 25, 26].

In this paper we will study the admissible ranks and inertias of matrix expressions
of the forms

A B ¢
(1) M:=|xB x €|,
£C* kEF Y
or
(2) M = A— BXB* - CYC*,
or
(3) M= A— BXC* + CX*B*,
or
A B X
(4) M=|+B D ¢ |,
LX* 40 €

where the matrices have elements in the field F and where X,Y, X, are the un-
knowns. Whenever we write £ in a statement, we are really making two statements:
one in which one should take all + to be 4, and one in which one should take all
+ to be —. We consider both the case of complex matrices and real matrices, and
the completion will be required to have the same structure as the given data. The
possible structures for M we consider are
(i) self-adjoint: F = C and M = M*,

(ii) skew-adjoint: F = C and M = —M*,

(iii) symmetric: F =R and M = M* = M7,

(iv) skew-symmetric: F =R and M = —M* = —MT.
In cases (i) and (iii) we are interested in the rank and numbers of positive and neg-
ative eigenvalues (Z4(M)) of a completion of M, while in cases (ii) and (iv) we are
interested in the rank and numbers of eigenvalues with positive and negative imagi-
nary part (also denoted by Z1(M)). Note that when M = —M7T € R¥*N | we have
that Z, (M) = Z_(M) as the eigenvalues of a real matrix appear in conjugate pairs.
As a consequence, we have that the rank of a real skew-symmetric matrix is always
even. We will see that the skew-symmetric case distinguishes itself from the other
cases because of these observations.

Our first result concerns the expression A — BXB* — CYC*.

THEOREM 1. Let A =+A* e F*"*" B € F"*™ and C € F"*P. Denote

kmin:*Zrank[ 4B O]

A B
A B C]—I—rank[c* 0]—rank[3* 0 0
ek A B C
rank | o 0 o |
(a) If F =C, then

{rank(A — BXB* — CYC*) | X = £X* € F™ ™ Y = 4£Y* € FP*P}
(5) = {s | s is integer, kmin <s<rank[ A B C |},
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INERTTA AND RANK CHARACTERIZATIONS 1189

and for any given integers T, and Z_, there exist matrices X = +X* € F™*™ and
Y = £Y* € FP*P such that

In(A— BXB*—~CYC*) = (Ty, T_, n— T, —TI_)

if and only if

A B C A B C
rank[ A B C |+, B* 0 0 —rank | B* 0 0 | <Z,,
| C* 0 0 | | C* 0 0 |
(6) [ A B C] [ A B C]
rank[ A B C +7_ B 0 0 —rank | B* 0 0 | <Z_,
| C* 0 0 | | C* 0 0 |
kmin <Zp 4+7Z_ < rank A B C } .

(b)
o If F=R and A= AT, then

{rank (A— BXBT —CYC") | X = XT e R™™, Y =YT € RP*?}
(7) = {s | s is integer, kmin < s < rank[ A B C ]},

and for any given integers T, and I_, there exist matrices X = X1 € Rmxm
andY =YT € RPXP such that

n(A-BXB" —CcYC") = (T4, I_, n—I, -T_)

if and only if (6) holds.
o fF =R and A= —AT,

(i) when
rank[;;p ﬁ g}—krank[éip ﬁ g}:rank[/l B C |
A B C
+rank | BT 0 0 |,
cT 0 0
rank[A B C]:rank 4
BT
and
K A B C| K A C
rank | ppo o rank | pr oo |y
K A B C| K A C
ran CT 0 O ran BT O

are both odd, then

{rank (A— BXB" —CYC") | X = —-XT e R™*™ Y = YT e RP*?}
(8) = {s| s is even integer, kmin < s <tank[ A B C | -2},
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and for any given integers I, and I_, there exist matrices X = —XT €
R™ ™ and Y = YT € RPXP such that

In(A—BXBT —CYC") = (T, I, n—T; - 1)
if and only if
(9) I, =1, kmin < 2T, <tank[ A B C | -2;
(ii) otherwise,
{rank (A— BXB" —CYC") | X = —-XT e R™"™ Y = -YT € RP*?}
(10) = {s | s is even integer, kmin < s < rank[ A B C ]},

and for any given integers I, and I_, there exist matrices X = —XT €
R™*™ and Y = YT € RPXP such that

In(A-BXBT —CYC") = (T}, I, n—T,—-1_)
if and only if
(11) 7, =1, kmin < 27, < rank[ A B C } .

The above theorem settles a conjecture proposed in [21, Conjecture 2.7] regarding
the maximal and minimal ranks of A — BXB* — CYC* in the case of F = C. The
authors correctly identified the minimal and maximal admissible ranks for the self-
adjoint /skew-adjoint cases. It must be highlighted, however, that the ranges of the
admissible ranks of the expression A — BXBT — CYCT are substantially different
in the real skew-symmetric case. Of course, as we observed before, the rank is only
allowed to be even. But that is not the full story, as the following example shows.

Ezample 1. Let

SR CR R P

Then, letting X = —XT,Y = —Y7T € R?*2, we get that A — BXBT — CXCT must
equal 0, and thus the maximal rank of this expression is rank [ A B C } —2. If we
consider the complex analogue, we can indeed achieve rank [ A B C } by choosing,
for instance, X =Y =il,.

The next corollary is a direct application of Theorem 1.

COROLLARY 2. Let A = +A* € F**" B € F"*™ and C € F"*P. Then the
matrix equation

A—-BXB*-CYC*=0

is solvable, with X = £X* e F™*™ and Y = £Y™* € FP*P if and only if

A B A B C A B C
2rank [ A B C}—!—rank[C* 0}:rank{3* 0 0]—|—rank[c* 0 O]

Next we address the expression A — BXC* +£ CX*B*.
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THEOREM 3. Let A =+A* e F*"*" B € F"*™ and C € F*"*P. Denote

kmin:max{Lr({ :I:%* ﬁ])—i—rank[ A B C ] —rank[ A*
A C
Lr([ Lot o })—i—rank[ A B C’}—rank[ o
A B
—l—max{I <[ B 0 ])—i—rank[ A B C } —rank{

A C A B C
I‘<[:I:C* 0})+rank[A B C]—rank[C* 0 0]

D

and

. A B A C
kmax:mln{rank[B* 0], rank[c* O]’ rank[A B C}}
(a) If F = C, then

{rank(A — BXC*+ CX*B*) | X =F"*?}
(12) = {s | s is integer and kmin < $ < kmax},

and for any two integers I, and I_, there exists an X € F™*P such that
In(A— BXC*+CX*B*)=(Zy, I, n—I, —T_)

if and only if

(13)
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I+2max{1+<[ :I:%* g})—l—rank[ A B C]—rank[ gl* g g],
A C A B C
I+<[ e 0})—|—rank[A B C]—rank{c* 0 0]},
I>max{I<[ :I:%* ?})—l—rank[A B C’]—rank[g* g g],
A C A B C
I_({ 1ot 0 ])—l—rank[ A B C]—rank[ ct 0 0 }},
. A B A C
resmelr (|5 0]) (e G}
csmfe ([ 2] 5))
I+—I_2—I_<[ :I:%* ?})—I_({ :I:Ié* g})—krank[fl B C},
I,—l—Lrgrank[A B C};
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b) If F =R and A = AT, then
(b)
{rank (A - BXCT - CXTBT) | X = R’”XP}

(14) .
= {s | s is integer and kmin < $ < kmax},
and for any two integers T, and I_, there exists an X € R™*P such that
In(A-—BXCT —CX"B")=(Z;, I, n—T, - 1)

if and only (13) holds;
(c) IfF =R and A = —AT, then ki, is reduced to

A B A B C
kminzmax{rank[BT 0 ]+2<rank[A B C]—rank[BT 0 0 }),
A C A B C
rank[CT 0}—}—2(1‘&111{[14 B C}—rank[CT 0 O])}’
and
(15) {rank (A — BXC" + CXTBT) | X e R™*?}

= {s | s is even integer and kmin < 8 < kmax };

furthermore, for any two integers T, and I_, there exists an X € F™*P such that
In(A—BXCT+CX"B") = (Z;, I, n—T, —I_)

if and only

7, =71, kmin < 274 < kmax-

The above theorem settles another conjecture proposed in [21] regarding the max-
imal and minimal ranks of A — BXC* + CX*B* in the case of F = C. The authors
correctly identified the maximal possible rank but incorrectly identified the minimal
possible rank. Indeed, they suggested the following quantity for the minimal rank:

A B A B C

kzmax{rank[ LB 0 }+2rank[ A B C]—2rank{ B 0 0 },
A C A B C

rank[ 1ot 0 ]—l—?rank[ A B C } —2rank[ 00 }}

The following example shows the difference between this guess and ki, from Theo-
rem 3.
Ezxample 2. Let

) e o]

Then, letting X € C, we get that A~ BXC* ~CX*B* = | _\. Y | has minimal

rank 2 (as the determinant is —1 — |X|?> # 0 for all X € C). Indeed, in this case
we find that ki, in Theorem 3 equals 2. However, the quantity k above equals 1.
For an example in the skew-adjoint case, one can consider iA — BXC* + CX*B* =

[ Xi* __)i( ] which also has minimal rank 2.
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INERTTA AND RANK CHARACTERIZATIONS 1193

The possible ranks in Theorem 3 for the case when C' = I appeared recently in
[12]. The next corollary is a trivial consequence of Theorem 3.

COROLLARY 4. Let A = £A* € F»*"™, B € F"*™ and C € F"*P. Let kpin be
defined in Theorem 3. Then there exists an X € F"*P such that

A—BXC*+CX*B*=0
if and only if
kmin =0.

The paper is organized as follows. In section 2 we present our result regarding
the admissible ranks and inertias of the matrix M of the form (1). Subsequently, we
will prove Theorem 1 as a corollary. In section 3, we will provide an alternative proof
of Theorem 1 that uses only unitary/orthogonal transformations. The importance
of this alternative proof is threefold: (i) it provides a numerically reliable way to
construct parameter matrices X and Y yielding the desired rank (or inertia) of A —
BXB* — CYC* for all cases with F = C or F = R and A = £A*; (ii) such a proof
can also be applied to the completions of the partial matrix M of the form (1), since

A B C A B ¢C 0 01" 0 01"
+B* X &l =|xB* 0 E|l-|T|0)| 1| -|o|(=»]|oO
+C* ££* Y +C* +££* 0 0 0 I I

:=A—-BXB*-CYC%;

(iii) its main building components will be used in the proof of Theorem 3. Conse-
quently, a numerically reliable method for constructing the parameter matrix X to
achieve any desired rank is embedded in the proof of Theorem 3. While it is essential
theoretically to determine the range of achievable ranks and inertia, the numerically
reliable computation is equally important in applications. In section 4 we prove The-

orem 3. Finally, in section 5 we remove the (skew) adjoint/symmetry conditions to
A B ¢

D ? £ | and the expression
F G 7

characterize all admissible rank of the partial matrix

A—-BXC—-DYE.

2. Ranks and inertias of partial matrices with two unknown block di-
agonal entries. We study the rank and inertia of the partial matrix M of the form
(1) in this section. Our main result is the following.

THEOREM 5. Let A = £ A* € F»*" B ¢ F»*™ (C € F"*P, gnd £ € F™>P,
Denote

ICmin:2rank[A B C}—!—rank[ —rank[A B]—rank[A C].

A C
B £

(a) If F =C, then

A B ¢
rank | £B* X £ | | X =X* €, Y = Y* € FPXP
0 +EF Y

= {s | s is integer, Kmin < s <rank[ A B C | +m+p},
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and for any given integers Ty and T_, there exist matrices X = £X* € F™*™ and
Y = +Y* € FPXP such that

A B C
In B X £ =T+, I, n+m+p-Ty-1_)
£ &Y

if and only if

Zi(A)+rank[ A B C | —rank(A) < Ty,
(16) Z_(A)+rank[ A B C | —rank(A4) <Z_,
Kpin <Z,+7_ §rank[ A B C ] +m+p

(b)
o IfF =R and A= A", then

A B ¢C
rank | BT & &£ | |x=XT cR™™ y=YT cRP*P
cr Ty

= {s | s is integer, Kmingsgrank[ A B C}+m—|—p},

and for any given integers I, and I_, there exist matrices X = XT € Rmxm
and Y = YT € RPXP such that

A B ¢C
In BT x ¢ =24, I, n+m+p-—-TITy—-1_)
cr gy

if and only if (16) holds;
o IfF=R and A= —AT,
(i) when
rank[ A B |+rank[ A C | =rank(A)+rank[ A B C ],
rank[A B C}zrank[ A C},

-BT €&
(17)
and
A C
both m +rank [ A C | —rank{ _BT £ ]
18 and p+rank | A B | —rank AT ¢ are odd,
-B* £
then

{rank

= {s| s is even integer, Kmin < s <rank[ A B C |+m+p—2},

A B C
-BT x & | |Xx=-ATeR™"™ Y=Y cRP?
-cr =&ty
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and for any given integers T, and I_, there exist matrices X = —X7T €
R™*™ gnd Y = —YT € RPXP sych that
A B C
In -BT x € =T, I ,n+m+p—-TI,-T)
-ct -&r Yy
if and only if
Iy =1_, lCmmSQLrgrank[A B C]+m+p—2;
otherwise,
A B C
rank | —BT X &£ | |x=-XT cR™™ Y=Yl cRP*?
-ct -&r Yy

= {s | s is even integer, Kmin < s < rank[ A B C } +m+p},

and for any given integers T, and T_, there exist matrices X = —X7T €
R™*™ gnd Y = —YT € RPXP such that
A B C
In -BT  x £ =T, IT_,n+m+p—-TIT,-T)
-cr -&r Yy
if and only if
I, =7, Kwnn<2Il<rank[ A B C]+m+p.

We will need some auxiliary results for the proof of Theorem 5.

LEMMA 6. Let A = —AT € R™™". Then Z,(A) = Z_(A), and rank(A) =
27, (A) and thus is an even integer.

Proof. As the characteristic polynomial of A has real coefficients, its zeroes appear
in conjugate pairs. This yields that Z, (A) = Z_(A), and rank(A) = 27, (A). 0

LEMMA 7. Let

k1
Z11
+2Z5
Z = 0
0
+Z3
Then,
(i)

ko k3 ke ks
Z12 0 0 Zi5|}tk
Zy 2oz 2oy Zos | bk . s
+Z3,  Zsz Zsy 0 | ks =£Z* e FrimkixXXimak gy — kg
+Z5, +Zy Zu 1 |k
+Z5 0 £l Zss | ks

5
{rank(Z) | Z2=4+2"¢ CZf:lkiXZf:lki} = {s | s is integer and ks < s < Zkl} ,
i=1

and

5
{Hn(Z) | Z=+2"¢ CZ?zlkiXZ?zl'ﬁ} = {(L, I, k-1, —I> | T,

=1

5
and Z_ are nonnegative integers and ks < 7T, +7Z_ < Z kz} .
i=1
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5
{rank(Z) | 2= 2T e REim kix2lie ’“} = {s | s is integer and ks < s < Zkl} ,
i=1
and

5
{]In(Z) | z2=2"¢ RZf:lkiXZ?:lki} = {<I+7 i, Zk’ -7y —I> | I+

i=1
5
and Z_ are nonnegative integers and ks < T, +7T_ < Z kl} .
i=1

(iii) when ke =0, ks =0, k1 and ks are odd, then
[rnk(2) | 2 = —27 € R Rk

5
= {s | s is even integer and ks < s < Zki —2},

i=1

and
{In(2) | 2 = —27 e RER ki b}
5 5
= {(I-i-a 1y, Zkz —2I+> | ks <27, < Zki —2},
i=1 i=1
otherwise,
{rank(Z) |Z2=-2T¢ Rzizlkixzleki}
5
= {s | s is even integer and ks < s < Zkl} ,
i=1
and

{In(2) | 2= 27 c RE ki)

5 5
= {(L, Ty, Zki—2I+> | ks < 2T, <Zkz}.

=1 =1

Proof. Note that

5
{s | s is integer and k5 < s < Zkz}
i=1

Z;, 0 0 0 0
0 Z» 0 0 0

clrank| 0 0 Z3 0 0 | Zy =425 eCrixki =15
0 0 0 Zu I
0 0 0 I Zs5

5
c {rank(Z) | Z=+2"¢ CZio1 kix 3, k} C {s | s is integer and k5 < s < Zkz} ,
i=1
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INERTTA AND RANK CHARACTERIZATIONS 1197

5
{<I+7 I—v Zkl_z-‘r_z—) |I+
i=1

5
and Z_are nonnegative integers and ks <7, +7Z_ < Z kl}
i=1

zn 0O 0 0 0
Zy» 0 0 0
0 Z3 0 0 | Ziyy=+25eChixki j=1,....5
0 0 Zyu I
0 0 I Zs5

c {(2)| 2 =+2* € CT hixEi ks }

{in
c {(L, 7, Zk — T, — _> | 7.

i=1

5
and Z_ are nonnegative integers and ks <7, +7_ < Z kl} ,

and the above are also true for the symmetric case; thus, parts (i) and (ii) follow.
In the following we prove part (iii).
It is easy to see by taking Lemma 6 into account that
e when at least two of k1, ko, and k3 are even, then

{s | s is even integer and k5 < s < Z kz}

=1

Zy 0 0 0 0
0 Z» 0 0 0

={rank | 0 0 Z33 0 0| |Zy=-ZLeRF j=1...5
0 0 0 Zu I
0 0 0 I Zs5

C {rank(Z) | 2 = _ZT c R "WXZ?:UW}

5
C {s | s is even integer and k5 < s < Zkl} ,
i=1

and
5 5
{ <z+, Ty, Y ki— 2z+> | T, is integer and ks < 27, < Zki}
=1 =1
Zi1 0 0 0 0
0 Z» 0 0 0
=In 0 0 Z3 0 0 | Zu=—2F e RF>ki j=1....5
0 0 0 Zu I
0 0 0 I Zss

c {In(2) | 2 = —27 e R FoTak]
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5 5
C { <I+, 7., Zki — 2I+> | Z,. is integer and ks < 27, < Zk} ,
=1

=1

i.e., part (iii) holds;
e when kq, ko, and k3 are all odd, or k; is even and k9 and k3 are odd, then
ko + k3 is even,

0 —2% Zy 0
0 0 0 Zy I

Zn1 0 0O 0 O

0 Zog Zo3 0 0

rank 0
0 0 0 I Zs5
rank(2) | 2 =~ 27 ¢ RETa bl k)

5
- {s | sis even integer and k5 < s < Zkl} ,
i=1

5 5
<z+, Ty, Y ki 2z+> | Z; is integer and ks < 27, <) k}

=1

| Ziw=—2F eRFXFi 1 =1,....5

c {1n(2) | 2= -27 e REL kxEL ki

5 5
c {(L, Ty, Y ki 2I+> | Z, is integer and ks < 27, < Zk}

i=1 i=1

i.e., part (iii) holds;
e when k3 is even and k; and ko are odd, then ki + ks is even,

s | s is even integer and ks < s

IN
I\l

ko
—_——

le 212 0 0 0
—212 Zy 0 0 0
rank 0 Z33 0 O
0 0 Zy4 I
0 0 I Zs5

Cqrank(2) | 2=-2T ¢ RE i1 kix 3y ’%}

5
C {s | s is even integer and k5 < s < Z }
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5
{ Iy, I+, k — ZLL) | Z, is integer and ks < 27, < Z kz}
i=1
2711 212 0 0
0 Z33 0 0

0 0 Zu I
0 0 I Zs

c {m(2) | 2 = —27 e REL kxEiai k]

| Ziy=—2F eRF>Fi i=1,...,5

5
{ <I+, I+, k. — 2I+> | Z, is integer and ks < 27, < Zk} ,
1=1 =1

i.e., part (iii) holds;

e when ks is even, ki and k3 are odd,
— if ko > 0, then

5
{s | s is even integer and k5 < s < Z kz}
i=1

Zn AR 0 0 0
(31( ’) 0 0 0 0 0 0
0 o 2z 0 0 0 0
=  rank 0 0 0 0 zZH 0 o
T
0 o 0 - (221;) Zyy 00
0 0 0 0 0 Zu I
Lo 0 0 0 0 I Zs |

1252 = — (28T e RI2-Dx (=2 7, - _zT e RF*k 1 =13, 4,5

C {rank(Z) | 2 = _ZT c RE = kX kl}
5

- {s | s is even integer and k5 < s < Zkz} ,
i=1

and

5 5
{ <z+, Ty, Y ki— 2z+> | T, is integer and ks < 27, < Zki}

i=1 i=1
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Zn AT 0 0 0
- (zg’)T 0 0 0 0 0 0
0 0o 2P 0 0 0 0
—{In 0 0 0 0 z 0 o
0 0 0 —(23) Zs 0 0
0 0 0 0 0 Zu I
L0 0 0 0 0 I Zs

125 = —(25))Te RU=-Dx(=2-D) g, — 2T e Rh=M j=1,3,4,5

c {m(2) | 2 = ~27 e RELkoEhak)

5 5
C {<I+, Ty, Y ki— 2z+> | T, is integer and ks < 27, < Zki} :

i=1 =1

i.e., part (iil) holds;
— if ky =0,
* when ks = 0, then Z is reduced to the following form:

2 [ Z11 0 ]’ 2= —2L e RMM ) 2 — 2T c Rk,

S0
5
{s | s is even integer and ks < s < Zkz — 2}
i=1
= {s | s is even integer and 0 < s < ky + k3 — 2}
= {rank(ZH) + I‘ank(Zgg) | le = —ZlTl S Rlekl,
Zyy =25 € Rk3Xk3}
= {rank(2) | 2 = —27 e Rr+R) (bt
and

5
{ <I+, 7, Zm—m)

i=1
5
| Z, is integer and ks < 27, < Z k; — 2}

i=1
= { (I+, I+, kl + k3 - 2I+)
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| T is integer and 0 < 274 < ky + ks — 2}
= {Hn(Z) |z2=-2T¢ R(k1+k3)><(k1+k3)}’

i.e., part (iii) holds;
* when k5 > 0, then Z is reduced to

Z11 0 0 Zi5
0 Z33 Z34 O
0 —25 Zy I |
2L 0 I Zs

Z= Zy = —2F e RF*F i =1,3,4,5.

Thus,

5
{s | s is even integer and k5 < s < Z ki}
i=1

= {s | s is even integer and k5 < s < ky + ks + kg + k5}

zD 0 0 o0 0 0 0 0
0 0 0 0 0 0 0 z®
o o 2% o 0 0 0 0
0 0 0 0 0 ZW 0 0
=qrank | 0 0 0 0 zo  zE I 0
o 0 0 —z¥ (Zﬁ’”) 0 0 1
0 0 0 0 —I 0 AR At
0o —z® o o 0 -1 (zé;*z)) 0

T
|Z£§),Z(4) €R, Zz'(il) __ (ZEZ”) € Rbi—Dx(ki=1) 1 345

c {rank(Z) |z=-2T ¢ R(k1+k3+k4+k5)><(k1+k3+k4+k5)}

C {s | s is even integer and k5 < s < ki + ks + ks + ks },

and

5
{(L, I+, k- —2I+> | ks < 27, < Zk}
=1 3

{ (T4, Iy, ki+ks+ka+ks —274) | ks <274 < k1+k3+/€4+k5}
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zZD 0 0 o0 0 0 0 0

0 0 0 0 0 0 0 AR

o o 2% o 0 0 0 0
_ 0 0 0 0 0 ZW 0 0
=\ (1) (1,2)

0 0 0 0 z0 24 I 0

0 0o o0 -z -ELiT o 0 1

0 0 0 0 —I 0 AR

Lo -2 0 o0 0 -1 =z 0 |

T
213, 280 e ®, 200 = - (2)) e RMTIED, 13,45

C

5 5
C {(L, T, Zki—21+> | ks < 2T, ng}
=1

i=1

n(Z) | Z2=-2T¢ R<k1+k3+k4+k5>x(k1+k3+k4+k5)}

i.e., part (iii) follows.
Hence, part (iii) is proved. O

Here it should be pointed out that a simple construction method, which takes the
entries of Z to be either 1 or 0 such that Z achieves any given admissible rank or
inertia, is embedded in the proof of Lemma 7.

We are now ready to prove Theorem 5.

Proof of Theorem 5. First, we can find nonsingular matrices £, € F(vtm+p)x(ntm+p)
Lo € F™*™ and L3 € FP*P, and two constant matrices Xy € F™*™ and ), € FP*P
by using the technique in [7] such that

A B C
L4880 x &L
+C* £ET Y
[ 0 0 0 0| O 0 0 0 0 0 0 0 7
0 0 0 0 0] In, 0 0 0 0 I, 0 0
0 0 0 0 0| O I, 0 0 0 0 0 0
0 0 0 0 0] O 0 0 0 I, 0 0 0
0 0 0 0 0] O 0 0 0 0 0 0 0
0 I, 0 0 0] Xu Aw X Au] 00 0 0
10 0 +I, 0 0|xx5 X A Al O 0 0 0 |,
0 0 0 0 O|£Xf £X5 Xy Asg| 0 0 Lo 0
0 0 0 0 O|+Xf X £X, Xu| 0 0 0 0
0 0 0 +I,, 0 O 0 0 0| Y1 iz Yz Yus
0 £I,, O 0 0] O 0 0 0 |V Yoz Doz Vau
0 0 0 0 0] O 0 +£I,, 0 |2V £Vi3 Vi3 Vau
| 0 0 0 0 0] O 0 0 0 | £YVfy £V34 £V34 Vs |
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INERTTA AND RANK CHARACTERIZATIONS 1203

where

Y e R™™M 0 rank(3q) =nq, In(A) =In(E1) + (0, 0, n —nq),

niy =rank(A), ny+nz+ng=rank[ A B], nit+ny+ng=rank| A C ],

n1+ng2+ns+ng :rank[ A B C }, n1+2ns+ng+ng+ns zrank{ :I;é* g ] ,

and

X X Az A Yii Ve Vs Vs

A, Ay Aoz Xy » | EVy Va2 Yoz Vo
= Lo(X+X , " "

LXf £AL KXy Ay | LATRIL e ye Vg Yy

iXﬁ iX2*4 iX?,*z; Xya iyﬂ :I:y§4 :I:y?f4 Va4

= L3(V+0)L5.

Clearly, it holds that

Azz  Azy  E(=Xiz)* I, 0

A B C X3 X E(—X)* 0 0
rank | £B* X & | =rank | —Xi3 —Xig Voo + X1 Yoz Yo
+C* +&* Y +1,, 0 +Y5, V33 Vs
0 0 +YV3, Y5 Vaa

+ ny + 2(TL2 + n3 + Tl4)

Xy (X 00 AL
—X1g4 Yoo+ 11 Vou ez —Ai3
= rank 0 iy2*4 y44 :ty§4 0

0 +Y5, Vs Va3 £y,
Azg  E(=Xi3)* 0 L,  Ass

+ n1 + 2(ng + ng + n4),

and

Xzz  Nga  E(=Xiz)* I, 0

A B ¢ A3 X (=) 0 0
In +B* X £ =1In —X13 Xy Yoo+ A1 Doz Y
+C* & Y +1,, 0 V5, Vaz Vs
0 0 +V5 V3 Vs

+ Hn(zl) + (TlQ + n3 4+ ng, no + n3 + ny,
n—mniy —MNg— N3 —"nNg)

Xy (=X 0 0 £X
—X14 Yoo+ X111 You Vo3 —Ai3
—In 0 £V, Y £VL 0

0 +Y3 Vsa Vsz  Eln,
X34 :E(—Xlg,)* 0 In5 X33 ]
+]ITL(A) + (TLQ +n3 +nqg, N2 +n3z+ng, —Mo2—n3 — TL4).

Next, note that Yoo € F2%72 ), e F—(netnatns))x(p—(n2tnatns)) and Xy, €
[F(m—(natnstns))x(m—(n2tns+ns)). therefore, we have using Lemmas and 6 and 7 that
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o if F = C, then

A B C
rank | £B* X £ | | X=X e ™™ Y =4V e PP
£ £EF Y

= {s | s is integer,n1 +2(n2 +n3+n4) +n5 < s < ny+ng+ng+ng+m+p},

and, for any given integers 7, and Z_, there exist matrices X = £X™* € Fm*™
and )Y = £Y* € FP*P such that

A B C
In +tB8* X £ =Ty, I, n+m+p-IT, —T_)
+C* £EF Y

if and only if

Zi(A)+no+ng+ng <7y,
Z (A)4+ne+ng+ng <7Z_,
ni+2(ne +ng+na) +ns <y +7Z_ <m+p+ng +ng +ng + na;

(19)
o if F =R and A = AT, then
A B ¢
rank | BT & &£ | |Xx=aT cR™™, y=)YT cRP*P
cr gty

= {s | s is integer,n1 +2(n2 +n3+n4) +n5 < s < ny+ng+ng+nqg+m+p},

and, for any given integers 7, and Z_, there exist matrices X = X7 € R™*™
and Y = YT € RP*P guch that

A B ¢C
In BT x ¢ =Ty, I, n+m+p—1Iy-7_)
cr gy

if and only if (19) holds;

o if F=Rand A=—AT,

— when ny = 0, ns = 0, both m — (ng + ns) and p — (ng + ns) are odd,

then
A B ¢
rank | —BT X &£ | |XA=-axTcrR™™m y=_YT cRP*P
—CT _gT y

= {s | s is even integer,
ny+2(ne+n3+n4) +ns <s<ng+ng+ng+ng+m+p-—2},

and, for any given integers Z, and Z_, there exist matrices X = —X7T €
R™*™ and Y = —YT € RP*P guch that
A B C
In -BT  x € =Ty, I, n+m+p—T,—T_)
-ct -&r Yy
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if and only if

I—‘r:I—a
n1 4+ 2(ne +ns +n4) +ns <22y <m+p+ny+ng +ng + ng — 2;

— otherwise,
A B ¢
rank | —BT X & | |XA=-axTcrR™™m y=_YT cRP*P
—cT &ty

= {s| s is even integer, n1+2(no+nsz+ng)+ns < s < ni+nstng+ns+m-+p},

and, for any given integers Z, and Z_, there exist matrices X = —X7T ¢
R™*™ and Y = —Y7T € RP*P such that

A B C
In -BT x ¢ =Z+, I, n+m+p—-I,—-1_)
-cr -&r Yy

if and only if

I_;,_:I_,
ni +2(ng +n3 +ng) +ns <27y <m+p+ng +ng + n3 + na.

Finally, since

[ A B]+rank[ A C | —rank(A) —rank[ A B C |,
ngzrank[A B C}—rank[A C],
(A B

n4 = rank C}—rank[A B},
n5=rank(A)+rank{_gT g]—rank[/l B |—rank[ A C ],

n1+n2+n3+n4+m+p:rank[A B C]—i—m—i—p,
n1 + 2(n2 +n3 +n4) + 15 = Kin,
Zi(A)+Z_(A) =rank(A) = ny,

Theorem 5 follows. a

As an application of Theorem 5, we now prove Theorem 1.

Proof of Theorem 1. It is easy to see that for any X = £X* € F™*™ and
Y = 4+Y* € FP*P,

A B C 0 0
+B* 0 0 1 0
rank(A— BXB* - CYC*)=rank | £C* 0 0 0 I —2(m + p)
0 £ 0 -X 0
0 0 £I 0 -Y

(20)
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and
A B C 0 0
+B* 0 0 I 0
In(A—BXB*—CYC*)=In| £C* 0 0 0 I —(m+p, m+p, 0).
0 +£I 0 -X 0
0 0 I 0 -Y
(21)
Hence, Theorem 1 follows trivially from Theorem 5 with
A B C 0 0
A=| B 0 0 |,B=|1|,C=|01|,&=0,X=-X,Y=-). a0
£=C* 0 0 0 1

(22)

3. Alternative proof of Theorem 1. The proof of Theorem 1 given in sec-
tion 2 is simple, but it is based on nonsingular transformations, not unitary /orthogonal
transformations. Hence, this proof cannot be used for the purpose of numerical com-
puting [9].

In this section, we will provide an alternative proof for Theorem 1. This al-
ternative proof is constructive so that the method of construction in the proof can
be directly translated into a procedure for computing X and Y that enable the
ranks or inertias of the matrix expression concerned to attain any integer s or triplet
(Zy, Z_, n—7Z4 — Z_) within the admissible ranges. Furthermore, we have taken
care to employ only unitary/orthogonal transformations in our proof. This accounts
for the algebraic complexity of the alternative proof, but the corresponding procedure
for computing X and Y is numerically reliable.

The following lemmas play an important role for the development in this section.

LEMMA 8 (see [3]). Given Ay € F"**¥2 and Ay € F¥2*"2 with As nonsingular.

v v2

Let unitary matriz W € F@tv2)xitva) “opith partitioning W = [W“ le] b

Wa1  Waa }1/2
be such that
A1 0 }1/1
W - .
{ A ] [ A } tv

Then both Wh1 and Wsa are nonsingular.
LEMMA 9. Let A =+A* e F"*" B € F*"*™ and C € F"*P. There exist unitary
matrices U € F**", Wg € F™*™  and W € FP*P such that

K1 M2 H3 Ha Hs
A A Az A A | ot
+AY, Az Ay A 0 | }pe
UAU* = :tA’f:; :|:A§3 A33 A34 0 }/L3 s
+AY, 45, +A5 A O Fa
- +4% 0 0 0 0| Yus
m—p2 M2 pP—Hu3 [H3
B11 B | Cnn  Ci2|
0 Boy | }ue Cor Ca | }pe
UBWE = 0 0 }/1*3 s UCW& = 0 C32 }/L3 s
0 0 }M4 0 0 }M4
0 0 }M5 0 0 }M5
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where

rank(A;5) = p1, rank(As) = pua,

Bii Bz Cnn Ci2
rank(Baz) = p2, rank(Cse) =p3, rank | 0 By Co Cox | = p1+ o+ s,
0 0 0 Cs39
A = 1A%, A ==1A%,, As3 =LA, Awu =1A%,,

and moreover,

A B C
m:rank[B C}—i—rank[A B C}—rank B 0 0 |,
c* 0 0
o = rank él* g g]—rank[A B C],
(24) A B C A B C
pus=rank | B* 0 O —rank[B* 0 0}
| C* 0 0 |
[ A B C]
pug=rank [ B* 0 0 —2rank[B C},
| C* 0 0 |
and
[ A B C]
+(Ag) = ( B* 0 0 )—(H1+#2+#3),
c* 0 0 |
(25) A B C]
_(Ay) = B 0 0 — (p1 + p2 + p3),
C* 0 0 |
(Ag) + T (An) =

Proof. We construct the form (23) by the following steps:
Step 1: Compute unitary matrix U € F™"*" such that

m p
oip o= [B Al B0 o ]-n
where
r:rank[ B C ]
Denote
r n—r
e | A AR
) NN BV
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Step 2: Compute unitary matrix U; € F"=7)%(n=7) guych that

Ha M5
A(Q) A(Q)
i (B Bl )

Note that A = +A*, so we have AS} = :l:(Aglg))* as a result, we obtain

M4 H5
N A 0
UlAglg)Ul = [ 84 0 ] {Z: , rank(Aygy) = pa.

Let

vy e

By taking the fact A = £ A* into account, we have
1 1

A A

1 1

L (A A

o]

i
UAU*_[ U1:|

r Ha s

2 2 2

N
j:(A14)* A 0|1
+(a) 0 0 |lm

and
I B oM
Ul B C |= 1 1
[ ] U1 0 0
352) c®
_ 0 0 7 352) _ B%l), c® C’fl)
0 0
Step 3: Compute unitary matrix U, € F"*" such that
@ _ | A5 | Im _
U Ay = [ 0 } Ve rank(Ajs) = p1.
Define
_ | U2
v ]
Again, since A = +A* and rank [ Biz) C’f) } = rank [ Bil) Cfl) } =7,
we have

2 2 2
AD A AP *
UAU* = [ Uz I } + (Aﬁ)) Ay 0 [ Uz I }
+(a) 0 0
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m r—p 4 s
An A@ A A

I B
Ay +(a) A o |
LAY, 0 0 0

1
(2) (2) (3) (3) _
Ul B C}:[UZI}[BE) C(l) }: By ¢ | yr—m

and
B® o®

1 1

( { = rank (Uz [ BEQ) 01(2) D = rank[ Bgl) C£1) =r.

Step 4: Since rank [ Bég) Cé?’) } = r— 1, we can compute unitary matrices
Uy € Fr—r)x(r=m) Wp e F*™ and W € FPXP such that

m—p2  f2 p— K3 M3

@ o ] Wb Y[ 0 Bn O Cnl
vi| B Cf H Wc] [ X o o Cm) e

and

rank(Baa) = p2, rank(Css) = p3, p2+pg =1 — uy.
Denote

Il"l
U := Uy U.
I

We have by using the property A = +A” that

f O B SRl R
M1 3 3 3 M1
UAU* = ve | [FAR)T A Al O Us
I +Aj, +(A3)" Au 0 I
LA 0 0 0

M1 H2 H3 Ha us
A A Az A Ais |
+A7, A Ass Axy 0O o

= |£A}; +A3; Az An 0 | }jus
+AY, +A3 £4A3 Au O }a
AL 0 0 0 0| lus
m— 2 2
B® By Bia|
I, 3%3) 0 Bag | }pe
UBW} = U, > | Wy = 0 0 | Yy,
I 0 0 0| b
0 0 0| Ius
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p—H3 K3
053) Cn Ci2| tm
. I, 0(3) . Ca1 Caa }N2
UCWC = Uy 2 WC = 0 Cs39 },u3 .
I 8 0 0| hm
0 0 }N5
A simple calculation yields that
(3)
rank 0 322 021 022 Bl ¢

Bi1 Bz Cii Cig (3)
= rank =71 = u1+ p2 + p2.

1
B£3) 053)

0 0 0 Cs

Furthermore, the form (23) also implies that

rank:B C’]:r:ul—i—ug-i-m,

rank [ A B C | =2p1 + po + pis + 4,

rank j;* ]g €}=2M1+2M2+M3+M4,
A B C

rank | B* 0 0 | =2u1 4+ 2u2 + 23 + pa,
L cr 0 0

i.e., (24) holds. In addition, we also have (25). O

LEMMA 10. Let A = £A* € F»*" B € F"*™ and C € F"*P, and let the form
(23) have been determined. Let unitary matrices V,V € Flhatustua)x(uatustia) qth,
partitioning

M2 p3 4 K2 B3 M4
Voo 0 Vaa| }pe I 0 0] }ue
V= 0 I 0 }/L3 y V= 0 V33 V34 }/L3
Vi 0 Vaa| }ia 0 Viz Vaa| }pa
be such that
[V33 V34][A34]_[0}}M3 {‘/22 ‘/24}[1424]_[9]}#2
Viz  Vaa Ay | |2 tpa’ Vi Vi E | 2] b
Denote
H2 Ha o Ha
[ Asy Ass Ay Agp Aoz Aos| tpe
(VV) | £A455  Azz Azy | (VV)" = | £A5;  Azz Asza| Jus
L :|:A§4 :|:A§4~ A44 :|:A§4 :|:A§4 A44 }/J,4
[ Bao Bay | }ue
vVv)y| o = 0 Yus
L O Bys Yata
P—ps M3
[ Co1 O Car Coz| }pe
(VV) 0 C32 = ~O Q32 }/1,3 .
| 0 0 Cu Cao| }jpa
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Furthermore, let unitary matriz U € F2trs)x(w2t4s) pe sych that

dlel-la]he

Set
~ ~ ~ H2 H3
Z/{{ Ass } _ [ Az } Fz Z/{{ Ay Az ]U* _ [ Asz 423} }hao
Ass Ass | tus’ +A5;  Ass T A5 Ass| tps
U[Bm]:{@zz]}uz u{ém}:[qzl]}uz
0 Bsy | tps’ 0 Ca1 | Jus’
and define
] A Ass 10 Ba | Ca O
6'_[iv4§3 ABB}’ CI)'_[O 0}’ \IJ_{O 032]
Then Bao is nonsingular, © = +0*,
A B C
rank(®) = rank [ B* 0 0 } —rank[ A B C ],
A B C
rank(¥) = rank { 00 ] —rank[ A B C ],
A B C
rank @* ® = rank A* ¢ +rank | B* 0 0 | —2rank [A B C} ,
o0 B* 0 o0 o

(26)
and for any X = £X* € F™*™ and Y = £Y* € FP*P,

rank(A— BX B* —CY C*) = 21 + 14 +rank (0 — ®(Wp X W5)®* — U(We Y WE)U*)

(27)
and
Z.(A—-BXB*-CYC™)
o5) = i+ T (Aus) + Ty (O — B(WpXWH)D — W(WeY W) T),

I_(A— BXB*—CYC*)
=+ T (Aa) + I (0 — D(WpXWE)B* — U(WeYWE)TH).

Proof. First, since A4y is nonsingular, so it follows directly from Lemma 8 that
Va2 and Vi3 are nonsingular. Note that BQQ = Vo9 Bao, 032 = V33C32, and By and
C32 are nonsingular; thus, ng and 6'32 are also nonsingular.

Next, partition U into

M2 3
Y — [Um U23} o
Uy Usz | tps

We get by using Lemma 8 that Use and Uss are nonsingular because 6'32 is nonsingular.
Moreover, we also have

Bz = Uns B, B B .

o— Uz Uoas App Az Uz Uz
0 I || +Ay Am || O T |-

o — Uzo  Uaz 0 B U= Uz Uz Co1 Ca
o I ||lo o | 0 I 0 Cu |
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Hence, Bss is nonsingular since Usz and Bso are nonsingular. Moreover, let’s rename

1

Uz Uas

U .= I

IH4

I

5

1,

1258

Vaz

Va4 Va3
V33

V24 Vs
V34
I

1

Then U is nonsingular, and a simple calculation using (23) gives that (UAU*, UBWJ,
UCW) is of the following form:

UBWY, =

All

UAU* =
+A7,

A7

*

*

P
0 )
0

* A Ags
(S 0 0
0 Ay 0 ’
0 0 0
*
vewg = |
0

which together with properties that U and A4y are nonsingular and Ajs is of full row
rank leads to (27) and (28) directly. In addition, A = £A* gives © = £0*, and (26)
follows from (24) and the following equalities

rank(®) = rank(Baz) = o,
rank(¥) = rank(¥*) = rank [

rank[ o C(I))}:rank{

\Ij*

LEMMA 11. Let A = +A* € F™" B ¢ Frxm,

B*

C
0

}—2u1—u2—u3—u4,

:|—2,u1—,u4. O

and C € F"*P,

and let

O,P, and ¥ in Lemma 10 have been determined. There exist unitary matrices P €
Fh2tus)x(p2tu3) gnd Q € FP*P such that

T1
O
+or,
POP* = | +6Or,
0
+3*

m — U2

PO =

OO O OO

(29)

where O, ; = :I:@;:i (i=1,...

T2 T3 T4 71
@12 @13 0 by }7'1
@22 @23 0 0 }7‘2
105, ©O33 O3 O35 }713,
0 +03, Oy Oy | I
0 i®§5 i@ZS 655 }7'1
H2 p—T73—pH3 T3
(1)12 }7’1 0 0
(1)22 }7’2 0 0
(1)32 }7’3 5 P\I/Q* = 0 \1132
0 Je 0 0
0| In 0 0
D19
,5), (1322 s \1132, l: 43 :|, and ¥ =
. Uss3

O
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are nonsingular, and

A B C
71 = rank [ é* g } +rank | B* 0 0
c* 0 0
A B C A B C
—rank[B* 0 0}—rank[0* 0 0],
mp =2rank[ A B C | +rank gl* g g]—rank él* g ,
(30) -
Tg—rank[ 4B C}—l—rank 4B C}
B* 0 0 c* 0 0
[ A B C
—rank[ A B C ] —rank | B 0 0 |,
| ¢ 0 0
T—rank[A B C}—rank A C]
! c* 0 0 B* 0 |-
Moreover,
o ifF=C, then

{rank(© — ®(WpXW3)®* — U(WeYWE)W*)| X = £X* € C™>,
Y = +Y* € CPxp}
(31) = {s | s is integer, 11 < s <21 + 7o + 73 + Ta},

and for any given integers iy and i_, there exist matrices X = +X* € C™m*™
and Y = £Y* € CP*P such that

(32) iy =Iny (0 — (W XWEH)D* — U(WeYWE)T),
i =In_(0 — d(WpXWE)®* — (WY WE)T),

if and only if
(33) 0<iy, 0<i, Mm<iy+i- <2+ T+ T13+74.
e ifF =R and © = OT, then
rank (© — @ (W XW5) @7 — & (WeYWE) v7) | X
=XTerR™ ™ v =YT c RP*P
(34) ={s | s is integer, 11 < s <21 + 7o + 73 + 71},

and for any given integers iy andi_, there exist matrices X = X1 € Rmxm
and Y = YT € RPXP such that

(35) iy =Ing (0 -0 (WpXW}) T — W (WeYWZ) wT),
i =In_(0-®(WpXW}) T — ¥ (WeYWZ) wT)

if and only if (33) holds.
e ifF=R and © = —O7,
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(i) when 71 =0, 73 =0, both 7o and 74 are all odd, then
{rank (©—@ (WpXWL) e — 0 (WeYWH) ¥T) | X

=-—XTermxm vy =_yT cRpx»p
(36) ={s| s is even integer, 1 < s <27 + 7o + 73 + T4 — 2},

and for any given integers iy and i_, there exist matrices X = — X7 €
R™™ and Y = —YT € RP*P satisfying (35) if and only if

(37) i =i_, T1<ip+i- <2+ T+ T3+ 74— 2;

(ii) otherwise,
{rank (©—@ (WpXWE) " — ¥ (WeYWEH) UT) | X

=—-XTermm v=-YT¢ RW’}
(38) = {s | s is even integer, 1 < s <21 + T2 + T3 + T4},

and for any given integers iy and i_, there exist matrices X = — X1 €
R™™ and Y = —YT € RP*P satisfying (35) if and only if

(39) iy =1_, T <ip+i- <211+ 1o+ T3+ T4

Proof. Note that © = +0*,

] A A | 0 B [ Ca O
@_{1@3 Agg}’ Q_{o o " YTl o énl

and Byy € FH2Xh2 and Csy € FHaXHs are nonsingular, so we can construct the form
(29) by the following steps:
Step 1: Compute unitary matrices P; € F#2*H2 and @ € FP*P such that

pP—H3 —T3 T3

N 0 0 —
P11 Q" = [ 0 \1,32] {ﬁ; i , rank(¥sg) = 73.
Denote
M2 — T3 T3 H3
1 1 1
oy ofy  of

P P, * m\* (1) W | tr2—Ts
[ ! I]@{ ! I} = i(@12> O O3 b7

S(ol) + (o) e | s

Step 2: Compute the SVD of @g? to get unitary matrices Py € F(#2—73)x (12=72)
and P3 € F#3%#3 guch that

T4 T
Wpe |0 2] 1
P2@13P3_ |:0 0:| }Tg’
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o1
where ¥ = is nonsingular. Define
on
Py
P = I [ A / } :
P

Then (POP*, PO, PUQ*) is of the form (29) with

D12 P
rank | ®95 | =rank ({ 2 I ] Plng) =rank(Ba2) = pi2 = 71 + T2 + T3,

D30

rank { £43 } = rank(P3Csy) = rank(Csz) = p3 = 74 + 71,
53

and

©;;, =107, i=1,...,5 (since © = £0%).

Clearly, we have
T+ T+ 73 = rankq)),
T+ T3+ 74 = rank(\Il),
o ¢
3T1—|—7’2+27’3+7’4—I‘&Hk|: o0 ] ,
21 + o+ 13+ T4 = po + us,
®
which together with (24) and (26) give (30). Furthermore, W5, We, [gii] , and

32

v 0
[ 0 \I/43] are all nonsingular, for any X = +X* € F"™*™ and Y = +Y™* € FP*P, we
0 Wss

can let
0 @ 0 ®15]" ©11  O12 O3 Zu  Zi»  Zis
0 Bop| WpXWE |0 ®on| = |£O0%, Oo Ou| — | 228y  Zos o
0 &35 0 '1)32_ +07; +0O3; Os3 +7Z3y 73, Zss
and
0 Ugp 0 ] 0 Ugp 0 17
0 0 Wy3 QWCYWéQ* 0 0 Wy3
0 0 \1153 0 0 \1153
0 O34 Oss 233 Zza Zss
=| £03 Ou Os | — | £Z5 Zua Zss |,
+03%; +0O}; Oss +7Z3 Zis Zss

where Z;; = :|:ZZ(Z € Frixmi (Z =1,... ,4), Z33 = :|:Z§(3 S FT3XT3, and Zs5 = ﬂ:Zg5 S
FT1X71: consequently,
Z1 22 Z13 0 X
173 Zao Za3 0 O
PO —-0d(WpXWE)O* — V(W YWE)UY) P* = | 273 £7235 Zss + Z33 Zsa Zss
0 0 +73,  Zaa Zss
+¥* 0 +73, Z%s Zss

Hence, by Lemmas 6 and 7, (31)—(39) follows. O
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We are now ready to provide the alternative proof of Theorem 1.
Proof of Theorem 1. Theorem 1 and the desired matrices X and Y involved follow
directly from Lemmas 9-11 and their proofs. O

4. Proof of Theorem 3. We prove Theorem 3 in this section. It is obvious
that for any X € F"*P

A B C 0 0
+B* 0 0 I, 0
In|| +c* o 0 0 I, ||=In(A—BXC*+CX*B*)+(m+p, m+p, 0);

0 +L, 0 0 X
0 0 +I, +X* 0

thus, the inertia characterization (13) in Theorem 3 follow directly from [7, Theorem
1.1]. Although [7, Theorem 1.1] concerns the complex self-adjoint case, it is easy to
check that their results are also valid in the real symmetric case and the complex
skew-adjoint case. It remains to show the results on all admissible ranks and the real
skew-symmetric case. Since Lemma 6 holds, here we need only to prove (12), (14),
and (15). For this purpose, we need some supporting results as follows.

LEMMA 12. Given ¥ = £37 € FV>*"1 | ¥ = £35 € F*?*¥2 | and £1 and Xy are
nonsingular.

e fF=C, orF=R and &; = %I (i = 1,2), then

E XV
{rank[ :l:J;* 23)2] | Yy e T }

= {s is integer and max{Z; (1), T4+ (32)}
+ max{Z_(31), Z_(Z2)} < s <v1 + 1a};

o IfF=R, Y, =-%T (i=1,2), then

El y V1 XV
{rank[_yT 22]|y€R }

= {s is even integer and max{vi, o} < s <1y + 1}

Proof. The proof of Lemma 12 and the construction of the desired matrix ) are
straightforward and thus are omitted here. d
LEMMA 13. Given F = £F* € F*>M gnd G = £G* € Fr2*k2. Let

. F o Zy | .
"N A

Denote

Kmin = max{Z;(F), Z4+(9)} + max{Z_(F), I_(G)},
Kmax = min{2k; + rank(G), 2ks + rank(F), ki + ka}.

e fF=C, orF=R, F=FT, and G = GT, then
{rank(Z)} = {s is integer and Kmin < 8 < Kmax};
o fF=R, F=—-F", and G = —G7, then

{rank(Z)} = {s is even integer and max{rank(F), rank(G)} < s < Kpax}-
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Proof. We can assume by computing the real Schur forms of F and G that

vy V2 V3 V4
(X 0] %2 0] }is
(40) 7= |: 0 0:| }1/2 ’ G = |: 0 0:| }1/4 ’

vy =rank(F), wvs=rank(G), w1 +wve=ky, vs+vy=ko,

¥1 and X, are nonsingular, and
e ¥ = 4%} and ¥y = £X% are diagonal if F = C, or F = R, F = FT, and
G=g";
e ¥ = —XT and ¥y = —X7 are all block diagonal with all diagonal blocks
2x2ifF=R, F=—FT, and G = —G7.

Denote
vs Iy
Z Z v
@ == 2 2]
Then Z is of the form
1% vy vs 1y
D 0 Zi3 Zu| tn
z_ 0 0 Zy3 Zoa | fro _ L Z*F c Flim VX i Vi

+Z +Z35 S, 0 | Jus
+Z5, +£Z5 0 0 | }w

Obviously, for any Z we have by using Lemma 12 that

Y1 Zi3
rank(Z) > rank { Lz N }
max{Z, (%), Ty (%)} + max{T_ (%)), T_(52)}
:ICmin7 ifFZC,OrF:R,F:fT,g:gT,

(42) z max{vi, v3} = max{rank(F), rank(G)},

ifF=R, F=—-FT, g=-g7T.

On the other hand, we can assume without loss of generality that

Yy vs—y a B vmy—a—p
0 0 0 I 0 18
2 = 0 222 o o 0 b — B
(43) [ 213 Z” ] =10 0 I 0 0 to
e I 0 0 0 0 My
0 0 0 0 0 o —a—v
and
B v —f Y vs =y
1,1 1,2 1,1 1,2
. Eg)*zg) 13 , E()*Eg) 1y
1= L (251,2)) 25272) Y - 2 + (25172)) E§2’2) Yug —
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where

a <min{vs, vy}, B <min{vy, vy —a}, v <min{ry —a,vs}.
Consequently, we obtain

2,2 2,2
A
+(2G7) =8
<20+ B+ —-B)+ (s —N]=r+vs+2a+8+y
(44) < Knax-

rank(Z) = 2(a + B + 7) + rank

In addition,
e when F=C,or F=R, F=FT, G =G7, a simple calculation with Lemma

12 yields that
{rank(Z) | [ ;;z ;;i } is of the form (43)}
= {s| sisinteger and Kpin < s <1y +v3}
U +vs+2a+8+7 | o <min{vs, vs},
ﬁ S min{yla vy — Oé}, v S min{”? -, V3}}

(45) = {s | s is integer and Kpin < 8 < Kmax};

e similarly, when F = R, 3; = —%7 (i = 1,2), a simple calculation with
Lemma 12 again gives that

{rank(Z) | [ ;;z ;;i } is of the form (43), S and ~y are even}

= {s| sis even integer and max{vy, v3} <s <y +v3}
W +rvs+2a+ 8+ a<min{vs, vs}, 8 <min{ry, vy — a},
v < min{ves — o, v3}, 5 and v are even}
= {s | s is even integer and max{v1, v3} < s < Kpax}-
(46)

Hence, Lemma 13 follows from (42) and (44)—(46). O
LEMMA 14. Given F = £F* € FF*k1 gnd G = £G* € Fk2xk2 | Lot

ki ko ks
F 2 2| Ma
Z= |£25 G  Zi| Yk =+£2* ¢ Fhrthatha)xhithaths)

+ZF +ZF Z5| ks
Denote

IACmin = max{Z(F), Z+(G)} + max{Z_(F), Z_(G)},

Kmax = min{2k; + 2ks + rank(G), 2ko + 2ks + rank(F), ki + ko + k3 }.
o IfF=C, orF=R, F=FT, and G = G7, then

{rank(2)} = {s is integer and Ky < s < l@max} ;
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o fF =R, F=—-FT and G = —G7, then
{rank(2)} = {s is even integer and max{rank(F), rank(G)} < s < l@max} .

Proof. Obviously, we have by using Lemma 13 that

F 2

(47) rank(Z) > rank { +zr ¢

] > Kmin for all Z.
Furthermore, for a Z, let unitary matrices I € Fkitk2)x(kit+ka) and W e Fhsxks pe
such that

B kitka—p v kz—v
2] [u A 0 20 20 718
wl =

u* -F ZQ
Z4 0 0 f 0 kit ko =87

12 G

where

rank(A) = rank [ :I:Z’; ‘22 } =B, rank (24) =1.
By Lemma 13, we know
B < min{2k; + rank(G), 2ks + rank(F), ki + k2}.
We also have
v < min{ks, k1 + k2 — B}.
Thus, we get
rank(Z2) <2y + f+ (ks —v) = B+ + ks <min{ks + 5, k1 +ka} + k3

< min{ks + min{2k; + rank(G), 2ke + rank(F), ki + ka}, k1 + ka} + k3

< min{2k; + k3 + rank(G), 2ks + k3 + rank(F), k1 + ka} + k3
(48) = Kunax.

Furthermore, we can assume by computing the real Schur forms of 7 and G that F
and G are of the forms in (40). Take

5 I, O

Z5 - |: 0 0 :| )

A 0 O }1/1 R 0 O }VB

Z3 = Iﬁ 0 }ﬁ 5 Z4 = I’Y 0 }’Y 9
0 0 }1/2 — 6 0 0 }V4 -

ifF=C, o F=R, F=FT, G=g7,

and
e TR I I e
R 0 0 }Vl R 0 0 }1/3
Z3=1|1Ig 0 18 ., Za=|1, 0 ty ,
0 O e — 0 0 vy —
« is even,

ifF=R, F=-FT, G=-g".
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Then we have using Lemma 13 that

F 2 Z
rank :l:Z; Q Z4 |22€Fk1><k27 a§k37 6§V27 7§V47 min{ﬁa ’}/}SOC
+Z3 £ZF Zs
{s | sis integer and Ky < s < I@max} ifF=C, o F=R, F=FT, G=¢7,

{s | s is even integer and max {rank(F), rank(G)} <s < I@max}
ifF=R, F=-FI g=-gT.

As a result, we obtain

{s ] s is integer and Kpin < s < Kpax} C {rank(2)},
ifF=C, o F=R, F=FT, G=gT;
{s | s is even integer and max {rank(F), rank(G)} < s < Kmax} C {rank(2)},
if F=R, F=-FF, g=-¢gT.
(49)
Therefore, Lemma 14 follows directly from (47)—(49). O
Again it should be pointed out that a simple construction method such that Z
achieves any given admissible rank is embedded in the proofs of Lemmas 12-14.
We are now ready to characterize all admissible ranks of A— BXC* + CX*B* in
Theorem 3.
Proof of rank characterizations in Theorem 3. Let the factorizations in Lemmas 9-
11 have been determined. Then we have

rank(A — BXC* £ CX*B™)

=21 + pg +rank(© — (W XWE)T* + U (W XWE)* DY)
= 2411 + 14 + rank[P(© — B(WXWEQH))QU* + VQ* (W XWEQ*)**| P*

F Zy Z3
=2u1 + pa +rank | £25 25 24 |,
+23 £2Z7 G

where

]__:{ O11 @12]’ g:{ Ouq @45]’

+0%, O +0%; Oss
0 W3 O
[ 22 23] = Ow 0 X1 10 P (WeXWeQ™) | 0 0 Wy |,
O3 0 0 0 @y 0 0 o
53
NI
Zy=[0O3 O3 |—[0 (I)32}(WBXWC*'Q)[O 0 ‘I’gz]

and

Z5 = O3 — [0 B3] (W XWEQ*) [0 Wiy 0]+ [0 Wy 0] (W XWEQH)* [0 @32]"
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Thus, we obtain by using Lemma 14 that
o if F=C,or F=R and A = AT, then

{rank(A — BXC* £ CX*B*) | X € F™*P}
= {8 | sis integer and 21 + pg + Kin < 8 < 201 + pg + I@max} ;
o if F=R and A = —AT, then

{rank (A — BXC" + CX"B") | X e R™*"}
= {s | s is even integer and 21 + p4 + max{rank(F), rank(G)}
<5< 201+ pa + Komax -

Now a simple calculation using Lemmas 9-11 gives that
2,“1 + M4 + Kmin - kmina 2,“4 + Ha + Iemax - kmaxa
and

21 + p4 + max{rank(F), rank(G)}

A B A B C
:max{rank{BT 0])+2(rank[A B C}—rank[ T g 0}),

B
A C A B C
rank[CT 0})+2<rank[z4 B C’]—rank[c* 0 0})}

Hence, all rank characterizations in Theorem 3 are proved. o
[7, Theorem 1.1] characterizes all admissible inertias and the minimal completion
rank of the partial matrix of the form

A B 7
B D C
?Ccr £

The following result is a complement to [7, Theorem 1.1], which gives all admissible
ranks of the partial matrices.
THEOREM 15. Given

A=4A" e F* D=4D* e FF*P £ =4E* e XY, Be F**B ¢ e FF*7,

Denote
Kmin = maX{Lr([ :I:Yz’* g])—i—rank B* D C ] —rank[ D C ],
[ A B ] B* .
I+(_Zl:B* D_)—i—rank D C}—rank[B D}}
+max{I_([ j;zé* g] +rank[ B* D C|—rank[ D C |,
I_<_ié* g >—|—rank B* D C |—rank|[ B* D]},
and

. D C A B .
kmaxzm1n{2a+rank{i6* g},Z'y—Frank{iB* D],a+7+rank[8 D C]}
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e fF=C, orF=R, A=A", D=DT, and £ = &7, then

A B X
rank | £B* D C| | X €eF**7 ) = {s|s is integer and kmin < 8 < kmax }-
+X* £C* &

o fF=R, A=—-AT, D= -DT, and £ = —ET, then kuyin is reduced to

Emin = max{rank{_?T g}—l—rank[BT D C|—rank[ D C ],

A B N
rank[_BT D]—i—rank[BT D C}—rank[B D}},
and
A B X
rank | —BT D C | | X € F**7
-xT ¢t ¢

= {s | s is even integer and kmin < 8 < kmax}-

Proof. Theorem 15 is a simple consequence of Theorem 3 with

A B 0 I, 0
A=|+B~ D Cc|, B=|o0o |, c=|0]|. @O
0 +C* & 0 I,

Let us finish this section with an example illustrating that none of the inequalities
in Theorem 3 are redundant. The example is inspired by a similar example from [7].
Ezample 3. Let

A:dlag{la17_17_17050715_170505070}; B:|:106:|, C:|: 0 :|

Then the inequalities in (13) correspond to
2<7T, <7, 2<T_<7, -3<I,-T <3, TI,+7 <I12.

5. The nonadjoint/nonsymmetric case. In this section we give the nonad-
joint/nonsymmetric version of Theorems 5, 1, and 15 in this section. The following
is the nonadjoint/nonsymmetric version of both Theorems 5 and 15.

THEOREM 16. Let A € F*"*", B € F"*X™ (C ¢ F"*P, D ¢ Fmxn, £ ¢ F™xp,
F € FPX" and G € FP*™. Denote

A B
15

Kmax = min fn—l—f)—krank[/\ B C],Th+p+rank

[ —]

A
m + p + rank A C , m+p+rank | D
D £
f
and
A AcC
Kmin = rank [A B C] +rank |D| + max< rank
P D E

—rank [A C] — rank [g] ,rank {f_ g} — rank [A B} — rank {j__l} }
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Then
ABC ) ]
rank |D X E| |X e F™*™, Y e FP*P 5 = {s| s is integer, Kmin < 8 < Kmax}-
F Gy

The proof of Theorem 16 is a direct corollary of results in [8, Theorem 2.2, Lemma
5.3 (see also (5) on page 180) and the observation in the second paragraph of page
166]. Here we include an alternative proof for it to make the paper self-contained.

Proof of Theorem 16. Similar to the proof of Theorem 5, we can find nonsingular
matrices L1, £~1, Lo, Eg, L3, L3 and two constant matrices Xy and )y in F by using
the technique in [7] such that

A B C].
L1 D X & | L
F G Yy
L, 0 0 0 0/l0 0 0 0|0 0 0 07
0 0 0 0 0] I, 0 0 0 0 I, 0 0
0 0 0 0 0] O I, 0 0 0 0 0 0
0 0 0 0 0] O 0 0 0 I, 0 0 0
0 0 0 0O 0] O 0 0 0 0 0 0 0
0 I, 0 0 0| X X Xiz X 0 0 0 0
= 0 0 In, 0 0] Xy Ao Aoy Aoy 0 0 0 0 ,
0 0 0 0 0] A3 A3y Azz Ay 0 0 Iy, 0
0 0 0 0 0| Xy Xy Xyg Xy 0 0 0 0
0 0 0 Iy, 0] O 0 0 0 (Vi1 iz Y1z Vi
0 I, 0 0 0 0 0 0 0 [Yoa Vo2 Yoz Jou
0o 0 0 o0 0] O 0 I, 0 |V31 V2 Vaz Vs
. 0 0 0 0 0] O 0 0 0 |V Vio Vaz Vaa |
where
ny = rank(A),
nl—i—ng—i—ng:rank[/l B], n1+n2+n4:rank[A C],
A A
n1+n5+n6:rank[D}, n1+n5+n8:rank[]_.],
A
n1+n2+n3+n4:rank[A B C], ny+ns+ng+ng=rank | D |,
f
n1+n2+n4+n5+n6+n7:rank{g g:|,
n1+n2+n3+n5+n8+n9:rank[“]4i_ g],
(50)
and
X X Xz A i Vi iz Vs
Aoy Aoy Aoz Aoy ~ Vo1 Yoz Yoz Vo 5
= Lo(X + Xo) Lo, — Ls(V+ Vo) Los.
A3 Az Asz Ay 2( 0)£2 Va1 V32 Viz Vs 3(V+0)Ls
Xy KXo Ayz Ay Var Va2 Vaz Y
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It is easy to see that

A B C
rank | D X €&
F G Yy
Xaa —-Xn 0 0 A3
—X14 Voo + X1 Vog Doz — A3
=n1 + no + ng +ng + ns + ng + ng + rank 0 Vio Via Vi3 0
0 V3o Vs Va3 Iy,
Va4 —X31 0 I, &s3
(51)
Note that

X44 c R(ﬁl—n5—n6—n7)><(m—n2—n3—ng)7 y22 c Rnsan, y44 c R(;ﬁ—n5—ng—ng)><(p—n2—n4—n7),
and a tedious calculation gives that

max{nz, ng}

X44 —X41 0 0 X43
Xy Voo + X1y Yoy Yoz —Ai3
< rank 0 Va2 Vias Va3 0
0 V3o Vaa V33 Iy,
Va4 — X3 0 I, As3
<min{m+p—ns —ng —ng, m—+p+ng —ng —ng, M
(52) +]5+n7—n3—ng,m+p—n2—n3—n4}.
We have that
A B C i i
s=rank | D X & for some X € R™*™ and ) € RP*?
F G Yy

if and only if s is an integer satisfying
max{nrz, ng}
< s—(n1+na+ng +na +ns + ne + ng)
<min{m+p—ns —ng —ns, m+p—+ng —ng — ng,
m+p+ny —n3—ng, m+p—ns—ng—ng}.
Thus, Theorem 16 follows directly from (50) and (51). O
The following result is the nonadjoint version of Theorem 1.

THEOREM 17. Let A € F**" B ¢ F**™m (C ¢ F*™*P, D € F"*" F ¢ FpPXn,
Denote

A
kmin =rank[ A B C | +rank | D
F

A C A B C
+ max rank{D 0}—rank[D 0 0]—rank

Hoe WO
o oW o o Q

A B A B C
rank[F O]—rank{F 0 0}—rank
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and
A C
D 0

RS

kmax = min { rank [A B C], rank[ ? g ] , rank[ ] , rank

Then,

{rank(A — BXD — CYF)| X e ™™ Y € FP*P}
= {s | s is integer, kmin < 5 < kmax}-

Proof. Theorem 17 follows directly from Theorem 16 and the following equality
A B C 0 0

D 0 0 Iyp O
rank(A— BXD —-CYF)=rank | FF 0 0 O Iy | —(m+m+p+0p),
0 I, 0 =X 0

0o 0 I, 0 -Y

with any A € F?Xn B ¢ FAxm O ¢ FAixp D ¢ Fxn F ¢ FPXn X ¢ F™%7 and
Y € Frxp, O

The particular cases C =0, F =0 and D = I, C = I were treated earlier in [19]
and [18], respectively.
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