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INERTIA CONDITIONS FOR THE MINIMIZATION OF QUADRATIC FORMS IN
INDEFINITE METRIC SPACES*

A. H. Savyep, B. HassiBi, AND T. KAILATH

We study the relation between the solutions of two minimization problems with indefinite quadratic forms.
We show that a complete link between both solutions can be established by invoking a fundamental set of
inertia conditions. While these inertia conditions are automatically satisfied in a standard Hilbert space
setting, which is the case of classical least-squares problems in both the deterministic and stochastic frame-
works, they nevertheless turn out to mark the differences between the two optimization problems in indefinite
metric spaces. Applications to H* —filtering, robust adaptive filtering, and approximate total-least-squares
methods are included.

1 INTRODUCTION

Given two invertible Hermitian matrices {II, W}, a column vector y, and an arbitrary matrix A of appropriate
dimensions, we study the relation between the following two minimization problems:

min [z*H_lz—|—(y—Az)*W_1(y—Az)] , (1)

Z

where z is a column vector of unknowns, and
H}(in{H—KAH—HA*K* + K[ATTA" + WK™}, (2)

where K is a matrix. The symbol “#” stands for Hermitian conjugation (complex conjugation for scalars).
If we denote the cost function that appears in (2) by J(K),

J(K) £ 11 — KAIl — HA*K* + K[AILA* + W]K*. (3)

then by the minimization in (2) we mean finding a K° such that for any complex column vector a, and for
all K, we have a*J(K°®)a < a*J(K)a.

An interpretation of both optimization criteria (1) and (2) in terms of estimation problems in indefinite
metric spaces is provided in the next sections. Here we only wish to emphasize that both cost functions
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in (1) and (2) are quadratic in the respective independent variables z and K, and that they can also be
rewritten in the following revealing forms:
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where the central matrices
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are in fact the inverses of each other, as detailed below.

Moreover, and contrary to standard quadratic minimization problems, the weighting matrices {II, W} in
(1) and (2) are allowed to be indefinite (i.e., they are not restricted to being positive-definite). Consequently,
the central matrices in (4) and (5) are generally indefinite. For this reason, solutions to (1) and (2) are
not always guaranteed to exist. However, when they exist, we shall show that the expressions for the
solutions, and the conditions for their existence, are very closely related. This relation will be established
via a fundamental set of inertia conditions. Here, by the inertia of an invertible Hermitian matrix X, we
mean a pair of integers, denoted by 7. (X) and I_(X), where

I (X) 2 humber of strictly positive eigenvalues of X
2 humber of strictly negative eigenvalues of X.
Note also that since X is assumed invertible, it has no zero eigenvalues and, consequently,

I (X) + I_-(X) = number of columns (or rows) of the matrix X.

The significance of the relations to be established between problems (1) and (2) is the following. It often
happens in applications that one is interested in solving quadratic problems of the form (1), with indefinite
weighting matrices. A particular example that has received increasing attention in the last decade is the
class of so-called H*-filtering and control problems, as suggested by several of the references at the end of
this paper — see, e.g., the recent book [GL95] for more details and references on the topic. In this context,
the TI matrix in (1) is further restricted to be positive-definite and the W matrix is indefinite but of the
special form W = diag.{I, —y?I}, for a given positive constant v2. Here we shall treat the general class of
optimization problems suggested by (1) where both {II, W} are allowed to be arbitrary indefinite matrices.
For example, the special case Il = —p?I and W = I turns out to be useful in approximate solutions of the
so-called total least-squares (TLS) or errors-in-variables methods.

On the other hand, problems of the form (2) are characteristic of state-space estimation formulations,
where a so-called Kalman filter procedure is available as an efficient computational scheme for determining
the solution in the presence of state-space structure, as pointed out in [HSK93]. By relating the solutions of
(1) and (2) we shall then be able to apply Kalman-type algorithms to the solution of (1), as well as obtain a
complete set of inertia conditions that will automatically test for the existence of solutions to (1), without
discarding the available information from the solution of (2).

In the sequel, we shall use capital letters to denote matrices (e.g., 4) and small letters to denote vectors.

2 An Inertia Result for Linear Transformations

We first establish a preliminary inertia result that tells us how the inertia of the matrices Il and W is affected
by transformations of the form

(AIA* + W) and (7' 4+ A*W—1A), (7)



for arbitrary matrices A of appropriate dimensions. The reason for choosing these transformations is because
the positivity of the matrices in (7) will be shown later to be equivalent to necessary and sufficient conditions
for the solvability of the problems (1) and (2). Hence, by studying how their inertia depends on {II, W},
we shall be able to conclude how the choice of {II, W} affects the solvability of problems (1) and (2) — see
Theorem 2.1 below. Also, a justification for the name linear transformations that appears in the title of this
section will become clear further ahead, where it will be shown that the matrix A can be interpreted as the
coefficient matrix of a linear model.

We start by noting that the matrices in (6) are indeed the inverses of each other and, consequently, that
their inertia coincide. For this purpose, we form the square Hermitian matrix
A [ I mA* ]

G=1 A1 Amar 4w (8)

and note that the Schur decomposition of G into a (block) lower-diagonal-upper triangular form leads to

I 0 m o I A
G_[A I][O W][O I]' )
This establishes, in view of the assumptions on Il and W, that G is invertible. Its inverse is given by
a1 = I —A" m-t 0 I o] _ [ot+awta e (10)
N 0 I 0o w-! —-A I | -W-lA w-t ’

which thus establishes our earlier claim that the matrices in (6) are the inverses of each other.
Note also that the Schur decompositions in (9) and (10) are in fact congruence relations. This shows, in
view of Sylvester’s law of inertia [Gan59], that G and G~! have the same positive and negative inertia as

the block diagonal matrix (II & W),

LG =L (G H=LMeW), I-(G)=I1_(GHY=I_(TaW).
Here, the notation A & B stands for a block diagonal matrix,
A 0 ]

(Ag B) 2 [ -

We state this preliminary result in the following lemma.

Lemma 2.1 (Inertia of G) Given {II, W} Hermilian and invertible. Then, for any matriz A of appropri-
ate dimenstons, the block matriz
oA [ 11 IA* ]
ATl ATA* + W |7

has the same positive and negative inertia as the block diagonal matriz (I & W),
ILL(Gy=I,MMaW), I_(G)=I_-(TaW). (11)

Proof: The proof is immediate from the congruence relation (9) and from Sylvester’s law of inertia.

A less immediate inertia result follows if we instead perform a (block) upper-diagonal-lower triangular
factorization of G. In this case, we need to further assume that the lower-right corner element of G is also
invertible, viz.,

(ATTA* + W) is invertible. (12)

It then follows that the matrix (II=1 + A* W =1 A) will be invertible, as is immediate from the matrix inversion
formula

(I~ + AW A~ = T - A" (ADLA™ + W)~ LATL (13)

This is in fact a useful preliminary result for our later analysis and a stronger statement is given below.



Lemma 2.2 (Invertibility Conditions) Assume {II, W} are invertible. Then, for any matriz A of ap-
propriate dimensions, (AILA* + W) is invertible if, and only if, (II=1 + A*W 1 A) is invertible.

Proof: The result follows from the matrix inversion formulas
(M AW A) ™! = T — A (ATLA* + W)~ AL,
and
(ATA* + W) L= W - W A 4 A WA AL
|

The right-hand side of (13) is simply the Schur complement of GG with respect to its lower right block
entry. We can therefore write the alternative Schur decomposition

G= (14)

I TA*(ALA* + W)L (=1 4+ A*w—14)-1 0 I 0
0 I 0 AITA* + W (ATA* + W)=tAll T |-
It again follows from Sylvester’s law of inertia, and under the additional assumption (12), that G has the same

inertia as the block diagonal matrix [(II7! + A*W~'A) @ (AILA* + W)] . We establish a stronger statement
in the following theorem.

Theorem 2.1 (Fundamental Inertia Result) Given {II, W} Hermitian and invertible. Then, for any
matriz A of appropriate dimensions, the following inertia equalities hold,

L(MaeW) = I (T + AWt 4) e (ATTA* + W), (15)
I_(MaeWw) = [T '+ AW lA) o (ATTA* + W), (16)

if, and only if, (ATLA* + W) is invertible.

Proof: If (AITA* + W) is invertible then the triangular decomposition (14) is applicable, thus leading to a
congruence relation. This shows that G has the same inertia as

(T~ 4+ AWl A) @ (ATTA™ + W)] .

The inertia equalities of the theorem then follow from (11).

Conversely, assume the inertia conditions (15) and (16) hold. Then the total number of nonzero eigenvalues
of the block diagonal matrix [(H_1 + A*WTA) @ (AITA* + W)] is equal to (n + N), which is also the size
of this block matrix. Here, n is the size of Il and N 1s the size of W. Consequently, none of the eigenvalues
of either (II71 + A*W~1A) or (AIlA* + W) can be zero. This implies that we must necessarily have an
invertible matrix (ATLA* + W).

|

The inertia conditions (15) and (16) will play an important role in our analysis. In simple terms, they show
how the inertia of the matrices {II, W} affects the inertia of the matrices {(AILA* + W), (171 + A*W~1A)},
and vice-versa. In the special case of positive-definite matrices {II, W}, we see that relation (16) becomes
unnecessary and relation (15) is trivialized.

3 The Indefinite-Weighted Least-Squares Problem

We now return to the optimization problems (1) and (2) and proceed to a closer study of both criteria. We
shall also motivate both problems by arguing that they can be related to estimation problems in indefinite
metric spaces. We start with the first problem (1), which we shall refer to, for reasons to be clarified soon,
as the indefinite-weighted least-squares problem (IWLS, for short).



Problem 3.1 (IWLS Problem) Given invertible Hermitian matrices {I1, W}, a column vector y, and «
matriz A of appropriate dimensions, we are interested in determining, if possible, the optimal z that solves
the optimization problem:

min [z*H_lz—l— (y—Az)*W_l(y—Az)] . (17)

Z

3.1 Interpretation as an Estimation Problem with an Indefinite Metric

The problem (17) admits an interpretation in terms of an estimation problem as follows. We may regard z
as a column vector of n unknown parameters that is related to the vector y via a linear relation of the form

y= Az + v, (18)

where v denotes the mismatch between the value of y and the value of Az. In signal processing literature,
the y is called the observation vector, the v is called the noise vector, and the objective is to use the available
data y in order to come up with an estimate for the unknown vector z. The problem is posed as one of
minimizing a quadratic cost function of the same form as in (17) but with positive-definite matrices {II, W}
[Hay91, PRLN92]. Tt is well known in such cases that for any positive-definite matrix ¥, and for any
complex-valued column vectors @ and b in C”, the scalar quantity a*W~'b is a well-defined inner product,
denoted by < b, a >, and, consequently, least-squares solutions can be found by orthogonally projecting onto
appropriate linear subspaces — see, e.g., [SK94] for a recent survey on the topic in the positive-definite case
and along the lines of this paper.

Here, however, we allow for indefinite matrices {II, W}, thus leading to a least-squares problem with
indefinite weighting matrices. Now a bilinear form «*W~1b is not guaranteed to satisfy the positivity
condition a*W~'a > 0 for all nonzero a. We thus say that C”, coupled with a bilinear form a*W~'b with W
indefinite, is an indefinite metric space. More generally, an indefinite metric space {K, < .,. >k} is defined
as a vector space that satisfies two simple requirements (see, e.g., [Bog74, GLR83] for more details):

(i) K is linear over the field of complex numbers C, and

(ii) K possesses a bilinear form, < .,. >, such that for any a,b, ¢ € K, and for any «, 3 € C, we have

< aa+ Bb,c >k a<a,c>x + 5 <b >,
<ba>x = <ab>k.

In particular, the quantity < a,a >x is in general indefinite. This is in contrast to a Hilbert space setting,
{H,< .,. >x}, where for any a € H the quantity < a,a >4 is necessarily nonnegative.

In the formulation (17), each of the terms z*II71z and (y — Az)*W~1(y — Az) may be indefinite. Note
also that we can rewrite the cost function in (17) in the form:

([0 I Tmoo 1T (T I
(5 1=0001) [ w ] (G]-[4])
where the central matrix (I ¢ W)~! is indefinite. This further highlights that the cost function in (17) is
an tndefinite quadratic cost function.
Also, in estimation problems it often happens that the linear model (18) arises as a consequence of repeated
experiments. That is, one collects several observation vectors {y;} that are also linearly related to the same

unknown z, say via
yi = Aiz + v,



where the A; are given matrices of appropriate dimensions, and the v; are the corresponding noise compo-
nents. If we collect several such observations into matrix form and write

Yo Ao Vo
n Aq U1
= . z+ . )
YN An UN
S—_—— S——
Y A v

we again obtain the linear model (18) and we are back to the problem of estimating z from the y by solving

(17).

3.2 Solution of the IWLS Problem

Let J(z) denote the quadratic cost function that appears in (17),

J(2)

FU e 4 (y — A2)* Wiy — Az), (19)
= z*[H_l + A*W_lA]z —y WAz — 2 AWy + Wy,

Every Z at which the gradient of J(z) with respect to z vanishes is called a stationary point of J(z). A
stationary point zZ may or may not be a minimum of J(z) as clarified by the following statement.

Theorem 3.1 (Solution of the IWLS Problem) The stationary points Z of J(z) in (19), if they exist,
are solutions of the linear system of equations

M+ A*W LAz = AWty (20)

There exists a unique stationary point if, and only if, [II=1 + A*W =L A] is invertible. In this case, it is given
by
f= [T ATWTA]T ATy, (21)
and the corresponding value of the cost function is
J(2) = y* [W + ALA* ] 1y, (22)

Moreover, this unique point is a minimun if, and only if, the coefficient matriz is positive-definite,

(MY + A* W1 A4) > 0. (23)

Proof: Tt is straightforward to verify, by differentiation, that the gradient of J(z) with respect to z* is equal
to ([H_1 + AW Az — A*W‘ly). Therefore, the stationary points of J(z), when they exist, must satisfy
the linear system of equations

[+ AW Az = A" WLy

This has a unique solution Zz if, and only if, the coefficient matrix is invertible. Also, the Hessian matrix
is equal to [II71 + A*W~LA], which thus needs to be positive-definite for a unique minimum solution with
respect to z.

Note that in contrast to positive-definite least-squares problems (i.e., when II > 0 and W > 0) where
[M~1 + A*W~1A] is always guaranteed to be positive for any A and, consequently, a unique minimizing
solution of J(z) always exists, the IWLS problem may or may not have a minimum, and actually may not
even have a stationary point if a solution to (20) does not exist.



4 The Equivalent Estimation Problem

We now study the second optimization criterion (2) and also present an interpretation for it in terms of an
estimation problem in an indefinite metric space. We shall refer to this problem as the equivalent estimation
problem (or EE, for short).

Problem 4.1 (The EE Problem) Given invertible Hermitian matrices {II, W}, and a matriz A of appro-
priate dimensions, we are interested in determining, if possible, the optimal K° that solves the optimization
problem (in the sense explained after (3)):

min {Il - KAIL - [LA"K" + K[AILA" + W]K"}. (24)

4.1 Interpretation as an Estimation Problem with an Indefinite Metric

An interpretation for this problem is the following. We consider column vectors {y,v,z} that are linearly
related via the expression

y = Az + v, (25)

and where the individual entries {y;, v;,z;} of the vectors {y,v, z} are all elements of an indefinite metric
space, say K'.

For two vectors {a, b}, with entries {a;, b;} in K/, we write < a,b >y to denote a matrix whose entries
are the individual < a;,b; >x/. In a Hilbert setting, an analogy arises with the space of scalar-valued
zero-mean random variables, say &£: for two column vectors p and q of random variables, the bilinear form
Epq* is a matrix whose individual entries are Ep;q; (see, e.g., [AM79, Kai81]). Note that to distinguish
between the elements in K and K’, we are using boldface letters to denote the variables of the equivalent
problem.

The variables {v,z} can be regarded as having Gramian matrices {W, 1T} and cross Gramian zero, namely

w2 <v,v>gr, Il = < z,%Z >k, <z,v>c=0.
Under these conditions, it follows from the linear model (25) that the Gramian matrix of y is equal to
<y,y >x = AIIA* +W.
Let J(K) denote the quadratic cost function that appears in (24),
J(K) 211 — KAIl — HA*K* + K[AILA* + W]K*. (26)

It is then immediate to see that J(K) can be interpreted as the Gramian matrix of the vector difference
(z — Ky), viz.,

J(K)=<z—Ky,z— Ky >k .
Every K° at which the gradient of a*J(K)a with respect to a* K vanishes for all a is called a stationary
solution of J(K) [Note from (26) that a*J(K)a is a function of ¢*K]. A stationary point K? may or may
not be a minimum as clarified further ahead.

Hence, solving for the stationary solutions K° can also be interpreted as solving the problem of linearly
estimating z from y.

Definition 4.1 (Linear Estimates) A linear estimale of z given 'y is defined by
K, (27)

where K° is a stationary solution of (24). This estimate is uniquely defined if K is unique. It is further
said to be the optimal linear estimate if K° is the unique minimizing solution of (24).



4.2 Solution of the EE Problem

We now state and prove the solution of (24).

Theorem 4.1 (Solution of the EE Problem) The stationary points K° of J(K), if they exist, are so-
lutions of the linear system of equations

[A* = K°[ALLA* + W]. (28)

There exists a unique stationary point K° if, and only if, (AIIA* + W) is invertible. In this case, it is given

by
K= [ 4 A w=ta] A (29)

and the corresponding value of the cost function is
J(K°) = [ 4 A*w=1a] 7" (30)
The unique linear estimate of the corresponding z in (27) is
p= [ 4 AwtA] T ATl (31)

Moreover, this unique point K° is a minimum (and, correspondingly, z is optimal) if, and only if, the
coefficient matrix is positive-definite,

(ATLA* + W) > 0. (32)

Proof: The proof follows the same lines of Theorem 3.1 when applied to the now scalar-valued cost function
a*J(K)a, where a is any column vector (recall the explanation below (3)). In particular, it is immediate to see
that any stationary solution K, if it exists, must satisfy the orthogonality condition < z — K°%y,y >x/= 0,
which leads to the linear system of equations

A" = K°[ATTA™ 4+ W].
A unique stationary point K° then exists as long as [ATLA* + W] is invertible, thus leading to the expression
K° = MA*[ATIA* + W] . (33)
But in view of the matrix inversion formula, and Lemma 2.2,
[ADA* + W)™ = Wl = wla (ot AW ta] T amw

we can also write

Ko = [t 4 A w—ta] ™ At

The necessary and sufficient condition for this solution to correspond to a minimum is (AITA* + W) > 0, as
follows if we evaluate the Hessian matrix of a*J(K)a.

|
The matrices that appear in (33) can be interpreted as follows:
<zy>x = A", <y,y> = AUA" +W.
We therefore conclude that the following equivalent equalities also hold:
K° = <z,y>;</<y,y>,_<,1 , (34)

7z = <z,y>;<f<y,y>,2,1y. (35)



5 Relations between the IWLS and EE Problems

We now compare expressions (31) and (21). We see that if we make the identifications: z — 2z and y — y,
then both expressions coincide. This means that the IWLS problem and the equivalent problem have the
same expressions for the stationary points, Z and z. But while a minimum for the IWLS problem (17) exists
as long as (II71 + A*W~1A) > 0, the equivalent problem (24), on the other hand, has a minimum at K¢ if,
and only if, (W + AILA*) > 0.

This indicates that both problems are not generally guaranteed to have simultaneous minima. In the
special case of positive-definite matrices {IT, W}, both conditions

(I~ 4+ A*W™tA4) >0 and (W + AILA*) > 0,

are simultaneously met. But this situation does not hold for general indefinite matrices Il and W. A question
of interest then 1s the following: given that one problem has a unique stationary solution, say the EE problem
(24), and given that this solution has been computed, is it possible to verify whether the other problem, say
the IWLS problem (17) admits a minimizing solution without explicitly checking for its positivity condition
(= + A*W~1A) > 07

The relevance of this question is that, as we shall see in a later section, when state-space structure is
further imposed on the data, an efficient recursive procedure can be derived for the solution of the equivalent
problem (24). Hence, once a connection is established with the IWLS problem (17), the solution of the latter
should follow immediately.

We shall see that this is indeed possible by invoking the inertia results of Sec. 2. To begin with, the
following result is a consequence of Lemma 2.2.

Lemma 5.1 (Simultaneous Stationary Points) The IWLS problem (17) has a unique stationary point
z if, and only if, the equivalent problem (24) has a unique stationary point K°.

Proof: The IWLS problem (17) has a unique stationary point z iff (II7! + A*W~1A4) is nonsingular.
Likewise, the equivalent problem (24) has a unique stationary point K° iff (W + AILA*) is nonsingular. But,
according to Lemma 2.2, the nonsingularity of one matrix implies the nonsingularity of the other, which thus
establishes the desired result.

This means that both optimization problems are always guaranteed to simultaneously have unique sta-
tionary solutions Z and K°, regardless of the invertible matrices {II, W} and for any A. That is, once we
find a unique stationary solution K° for the equivalent problem (24), we are at least guaranteed a unique
stationary solution z for the IWLS problem. But we are in fact interested in a stronger result. We would
like to verify whether this stationary solution z is a minimum or not. We would also like to be able to settle
this question by exploiting the solution of the equivalent problem (24), and without explicitly checking the
positivity condition that is required on (II71 + A*IW~1A) in the IWLS case (17).

The next statement is one of the main conclusions of this paper since it provides a set of inertia conditions
that allows us to check the solvability of the TWLS problem (17) in terms of the inertia properties of the
Gramian matrix (AITA* + W) associated with the equivalent problem (24).

Theorem 5.1 (Fundamental Inertia Conditions) Given invertible and Hermitian matrices I and W,
and an arbitrary matriz A of appropriate dimensions, the optimization problem (1) (i.e., the IWLS problem
(17)) has a unique minimizing solution z if, and only if,

I_[W+ AIA®] = I[_[I& W],
I [W+ATAY) = I [MeW]-n,

where n X n is the size of 11.



Proof: Assume the IWLS problem has a unique minimizing solution. This means that we necessarily have
(MY + A* W1 A4) > 0.

We then obtain from Lemma 5.1 that (W + AIIA*) is also invertible.
In view of Theorem 2.1 we conclude that we must have

L(MaeW) = I (T + AWt 4) e (ATTA* + W),
(e W) = L[+ A" W™tA) @ (ATLA* + W))].

But [_[(II71 4+ A*W~1A)] = 0 and I.[(II7! + A*W~1A)] = n. Hence,

I_[W+ AIA®] = I[_[I& W],
I, [W+ ATAY) = I [MeW]-n.

Conversely, assume the above inertia relations hold. Tt follows that the number of (strictly positive and
strictly negative) eigenvalues of (W + AILA*) is equal to the size of W. Therefore, (W + AIIA*) has no zero
eigenvalues and is thus invertible. It follows from Lemma 2.2 that (II=! + A*W~1A) is also invertible. We
further invoke Theorem 2.1 to conclude that

(I AWt A = - (ae W) — I_[(W + AILA*)],
which thus establishes that we necessarily have
[+ AWt A)] = 0.

Therefore, (II71 + A*W~1A) > 0 and the IWLS problem (1) has a unique minimum.
[

The importance of the above theorem is that it allows us to check whether a minimizing solution exists
to the IWLS problem (17) by comparing the inertia of the Gramian matrix of the equivalent problem, viz.,
(W + AILA*), with the inertia of (IT@ W). This is relevant because, as we shall see in the next section, when
state-space structure is further imposed, we can derive an efficient procedure that allows us to keep track
of the inertia of (W + AILA*). In particular, the procedure will produce a sequence of matrices {R. ;} such
that

Inertia(W + AIIA™) = Inertia (Reo® Re1 D Rea...).

The theorem then shows that “all” we need to do is compare the inertia of the given matrices I and W with
that of the matrices {R. ;} that are made available via the recursive procedure.

Equally important is that this procedure will further allow us to compute the quantity z in (27). But since
we argued above that z has the same expression as z, the stationary solution of (17), then the procedure
will also provide us with z.

In summary, by establishing an explicit relation between both problems (17) and (24), we shall be capable
of solving either problem via the solution of the other. In the special case of positive-definite quadratic cost
functions, this point of view was fully exploited in [SK94] in order to establish a close link between known
results in Kalman filtering theory and more recent results in adaptive filtering theory. In particular, it was
shown in [SK94] that once such an equivalence relation is established, the varied forms of adaptive filtering
algorithms can be obtained by writing down different variants of the so-called Kalman filter.

The discussion in this paper, while it provides a similar connection for indefinite quadratic cost functions, it
shows that a satisfactory link can be established via an additional set of inertia conditions. These conditions
are necessary because, contrary to the case of positive-definite quadratic cost functions, minimizing solutions
are not always guaranteed to exist in the indefinite case. Note that in the positive case (i.e., Il and W
positive), the inertia conditions of Theorem 5.1 are automatically satisfied.

We may finally remark that the above inertia conditions include, as special cases, the well-known conditions
for the existence of H®-controllers and filters, as will be clarified in later sections.



6 Incorporating State-Space Structure

Now that we have established the exact relationship between the two basic optimization problems (1) and
(2), we shall proceed to study an important special case of the equivalent problem (2).

More specifically, we shall pose an optimization problem that will be of the same form as (2) except that
the associated A matrix will have considerable structure in it. In particular, the A matrix will be block-lower
triangular and its individual entries will be further parameterized in terms of matrices {F;, G;, H;} that arise
from an underlying state-space assumption. This will allow us to derive an efficient computational scheme
for the solution of the corresponding optimization problem (2). The scheme is an extension to the indefinite
case of a well-known Kalman filtering algorithm [HSK93].

6.1 Statement of the State-Space Problem

We consider an indefinite metric space K’ and continue to employ the notation < a, b >y to denote a matrix
with entries < a;, b; >/, where {a;, b;} € K’ are the individual entries of the columns a and b.

We further consider vectors {y;,x;,u;,v;}, all with entries in X', and assume that they are related via
state-space equations of the form

X1 = Fix; + Gy,
Hixi+v;, 1>0, (36)

yi

where Fj, H;, and G; are known n x n, p X n, and n X m matrices, respectively. It is further assumed that
the Gramian matrices of {u;, v;,xp} are known, say

<vi,vi >0 = Ry, <wu,w > = Qi <xo,%0 >0 = lo.
We also assume that the following relations hold for all ¢ # j,
<vy, vy =0, <u,u; > =0, <vi, x> = 0, <u;,xo > = 0,

as well as < v;,u; >x/= 0 for all ¢, j. More compactly, we may write the above requirements in the following

form
u; u]' Qzéz] 0 0
< v | vy > = 0 RZ'(SZ']' 0 , (37)
Xp Xp 0 0 Ho

where 6;; is the Kronecker delta function that is equal to unity when ¢ = j and zero otherwise. The matrices
{Qi, Ri, Ty} are possibly indefinite.

The quantities {u;, v;, xo} are assumed unknown and only the {y;} are known. In other words, we assume
that we have a collection of vectors {y;} that we know arose from a state-space model of the form (36), with
known {F;, G;, H;}, but with no further access to the {u;, v;, xo}, except for the knowledge of their Gramian
matrices as in (37).

The state-space structure (36) leads to a linear relation between the vectors {y;} and the vectors {xo, w;}:\5".
Indeed, if we collect the {y;})¥, and the {v;}}¥, into two column vectors, {y, v}, respectively,

YN VN



and define the column vector,

un-—1

it then follows from the state-space equations that

y=Az+v,
where A is the block-lower triangular matrix
Hy
o0l H1Gy
AL | Hyro Hy PGy . (40)
HyFWN=100 gy pIN=LUGy . HyGyoy

Here, the notation FIJ] ¢ > j stands for
ij] A
FUil 2 pE_ . F;

Moreover, the Gramian matrices of the variables {z,v,y} so defined are easily seen to be, in view of the
assumptions (37),

< Z,Z > = (Ho@Qo...@QN_l), (41)

<V, V > = (Ro@Rl@@RN) (42)
More compactly, we shall write

<zz>o 21, <v,v>e =2 W, (43)

where the {II, W} are block diagonal matrices as defined in (41) and (42). We can now pose the following
problem.

Problem 6.1 (State-Space Estimation Problem) Consider the state-space model (36) and given the
{y, A, TI, W} as above, determine a matriz K, and conditions on {A, I, W}, so as to minimize the Gramian
matriz

H}(in <z—-Ky,z— Ky >¢ . (44)

The optimal solution K°, when it exists, can be used to define K°y as the optimal linear estimate forz. We
denote this by
72 Koy,
In other words, we have posed the problem of linearly estimating z from y so as to minimize the Gramian
matrix of the error signal, z— Ky. This Gramian matrix can be expanded and the problem is easily seen to
be equivalent to

min {Il — KAIl - IA"K* 4 K[AILA" + W]K"},

where we have used (41) and (42).

We thus see that, given a state-space model of the form (36) and (37), the problem of linearly estimating
the variables {xp,up,...,uy_1} from the variables {yo,y1,...,y~} leads to an optimization problem of the
same form as in (2): it requires that we determine a coefficient matrix K that minimizes J(K). The optimal



K? 1s then used to define the optimal linear estimate of the desired variables via z = K°y. In case K is
simply a unique stationary solution of J(K'), but not necessarily the minimum solution, we shall refer to z
as simply the linear estimate of z given y, instead of the optimal linear estimate.

Using the result of Theorem 4.1, a unique linear estimate z exists as long as (AILA* + W) is invertible,
where the matrices {A, I, W} are now as defined above. Moreover, when this happens the estimate z is
given by the expression

Z= [+ Arwta] T Aty (45)
Alternatively, and using (35), we also write for later reference,
72=<2y >0 <Y,y >y (46)

While the expression (45) is analytically satisfactory, it however does not exploit two important facts
that occur under the assumption of the state-space structure, namely that the matrices {II, W} are block
diagonal and, more importantly, that the matrix A is now block-lower triangular. The entries of A are also
completely parameterized by the matrices {F;, G;, H;} that describe the state-space model (36).

We shall see in the sequel that these two facts can be exploited in order to provide an alternative method
for computing the solution z. While (45) provides a global expression for z, we shall argue that it will be
more convenient to introduce a recursive procedure for computing z.

Remark on Notation. We shall from now on write zy instead of z to indicate that it includes xy and the
vectors {u;} up to time N — 1, as defined in (39). That is, the subindex N indicates which vectors {u;}
are included in the definition of z. We shall then write zy|x instead of simply z to indicate that it is the

estimate of zy that is obtained by using the vectors {y;} up to time N. That is, the {yo,¥y1,...,¥yn} are
used in (45),
vy = [T AW A] T AWy, (47)

More generally, the estimate of zx that is based on a different number of vectors {y; }, say up to time &, will
be correspondingly indicated by zy|;. In other words, the first subindex indicates which vectors {u;} are
included in the definition of the variable z and the second subindex indicates which vectors {y;} are used in
the estimation of z.
These notational changes are necessary because we shall find it useful later to also define, for each i, the

vector z;,

Xo

Up

Z; = u; (48)

;-1

which contains x¢ and the vectors {u; } up to time (i — 1). Correspondingly, the estimate of z; that is based
on vectors {y;} up to a time k will be indicated by z;;.

6.2 A Strong Regularity Condition on the Gramian Matrix

Let zy; denote the unique linear estimate of zy that is based on the vectors {yo,y1,...,y:}. That is, only
the output vectors up to time ¢ are used. By definition, this means that we should determine a coefficient
matrix, say K/, such that

Yo

Y1
i = K7 (49)

yi



and K7 is the unique stationary solution of

Yo Yo
Y1 Y
JK) 2<an—K | 7 | an—Ki | 7 | >n . (50)
Yi Yi
If we define
Wi 2 (ReB R &..8R), I 2o Qo ... Q1) (51)
and
Hy
H, F10.0] H, Gy
4,2 | Ho PO gy FG, , (52)
H,FE-L0 gopli=-tiGy o H:Giq

then, as before, the problem (50) has a unique stationary solution K7 if, and only if|

A

Wi+ [ A O]H[ 0

] =W, + A;TI; A] is invertible.
A minimizing solution requires the positivity of this matrix. In any case, due to the block diagonal structure
of {W, 11} and due to the block lower-triangular structure of A, it is immediate to see that (W; + A;11; AY)
is in fact a leading submatrix of (W + AITA™).
To further clarify the implications of this observation, let R, denote the Gramian matrix of the vector y
in (27), i.e.,
R, 2<y,y > = W+ AILA*, (53)

The existence of a unique stationary solution K° to J(K) in (44) then requires the invertibility of R,.
Likewise, the existence of unique stationary solutions K7 in (50), for 0 < i < N, requires the invertibility of
the leading (block) submatrices of R,,. We shall therefore assume here that all the leading (block) submatrices
of R, are invertible in order to guarantee the existence of unique stationary solutions K to the estimation
problems (50) for 0 <7 < N. In this case, we say that Ry is (block) strongly regular.

Under this assumption, we can introduce the unique (block) lower-diagonal-upper triangular factorization

R, 2 LDL", (54)

where L is chosen to have unit diagonal entries and D is a block diagonal matrix whose entries are denoted
by
A
D= {R.o,Rc1,...,Ren}.

The sizes of the blocks R.; are p x p, in accordance with the p x 1 dimension of each y;. Also, the (block)
strong regularity of R, guarantees the invertibility of the {R. ;}.

6.3 Orthogonalization via the Gram-Schmidt Procedure

In this section we shall argue that, under the strong regularity condition on the Gramian matrix Ry, a
recursive procedure that allows us to directly update zy; to Zy|;41 is possible without explicitly computing
K¢, 1. This will be first achieved by “orthogonalizing” the output vectors {y;}, as we now explain.

Introduce the variables {e;} defined by (these variables are often known as the innovation variables in

the signal processing literature)
eéL_ly or Le—vy, (55)



where e denotes the collection of the e;,
€0
€1

(-

eN

It is immediate to conclude that the Gramian matrix of e is block diagonal since
<ee>p=<L 'y L'y >x=L'RyLT*=D=(Reg®Re1D...® Re ).

Note that the vectors e and y are linearly related via an invertible transformation. They, therefore, span
the same linear space. Also, and more importantly, the estimate of a variable z given the y is equal to the
estimate of z given the e. We prove this fact below and then discuss its ramifications.

Lemma 6.1 (Estimation Based on the {e;}) Let z denote the unique linear estimale of z given'y. That
15, z = K°y, where K° is the unique stationary solution of < z — Ky,z — Ky >x:. Let also z, denote the
untque linear estimate of z given e. That is, z. = K%%e, where K¢ is the unique stationary solution of
<z—Kfe,z — K >xi. Then 2 =%, and K° = K®¢L~1.

Proof: We know from (35) that estimating a variable z from y amounts to

- -1
z = <Zay>K’<yay>K/ Yy,
<z lLe>x < Le, Le >,E,1 Le,
= <ze>p <ee>q e,

= Z..

The result also clearly holds for estimating z from a subcollection {yq,...,y;}. In other words, we can
work with the {e;} instead of the {y;}. This corresponds to a change of basis and its main advantage is that
the {e;} are orthogonal in K, i.e.,

< e,e >i= Reyiélj.
Lemma 6.2 (Recursive Computation) Let zy|n denote the unique linear estimate of zy that is based
on the vectors {y;} up to time N. Then it can be recursively updated as follows:
Zn|N = Zn|N-1 + <zZN,en >k R yew. (56)
Proof: It follows from Lemma 6.1 that
z=aynN = <zy,e>p <ee>pl e,

N
-1
= E <zZn,€; > < €5,€5 > €5,

o

[N

Z

-1 -1
= <ZN,€; >k < €5,€j > € + <zZn,eny >k < eN,eN >y i en,
0

[
N>

-1
NiN-1 + <zZn,en >k R, yen.

For this recursive scheme to be complete, we still need to show the following. Given the state-space model

(36),
(i) How to compute the {e;}?
(ii) How to compute the {R.;}?

(iii) How to compute the {< zy,e; >x/}7



6.4 Computation of the {e;} via a Kalman-Type Procedure
The computation of the variables {e;} can be achieved via a standard Gram-Schmidt procedure:
o Let eg = yq.

e Then form e; by subtracting from y; its linear estimate that is based on yq, written as yyo,
eI =y —Yio=Y1 — <¥1,¥0 >x'< ¥0,¥o0 > Yo =¥1 — < ¥1,€0 >x/< g, €9 >xi €g.
e Then form ey by subtracting from y its linear estimate that is based on {yo,y1}, written as yo)q,
e =Yy2 —ya1 =¥2 — <Y¥2,€ >x< €g, € >;E:1 ep — <Yyz,e >x<ee >;E:1 er.

More generally, we have

€ =Y~ Yili-1, (57)
where y;);_1 denotes the linear estimate of y; that is based on {yo,y1,...,yi—1}. It is immediate to conclude
from the second line of the state-equations (36), by linearity and by the fact that < v;,y; >x/=0 for j < 4,
that

Yiji—1 = Hixgpi-1,

where x;);_1 now denotes the linear estimate of x; that is based on {yo,y1,...,¥i—1}. We thus see that
e =y — Hix;_1, (58)
and the computation of e; is reduced to that of x;;_;.

Theorem 6.1 (Recursive Kalman Algorithm) Consider the state-space model (36) and assume the
Gramian matriz, Ry = W+ AILA* | of the vectory, defined in (38), is (block) strongly reqular. The variables
{ei} defined via (55) or (57) can be recursively computed as follows. Start with xo—1 = 0, Py = Iy, and
repeat for i > 0:

e = yi— Hx-1, (59)
Xip1i = Fixjio1 + Kp e, (60)
K,i = FPHR];, (61)
R.; = Ri+H;PH], (62)
Pi+1 = FZPZFZ* + GZQZG: — A/rpyiReyi[(;’i. (63)
Proof: In view of the recursive formula (56) (taking x;41 as the variable z) we have
Xiglli = Xig1)io1+ < Xiy1,€ >k RIje; = xipqjio1 + Kp e, (64)

where we have defined K, ; é< Xit1,€ >r< €, € >,E,1 . Tt also follows from the first line of (36), and from
the fact that < wu;,y; >x/= 0 for j < ¢, that

Xigili—1 = FiXgio1 + Gitgimq = Xy + 0= Fixgpio.

Substituting into (64) we obtain (60). To complete the argument we still need to show how to compute
the K ;. Define the error quantity x;j;— 2 x - Xjji—1, and let P; denote its Gramian matrix, P; 2<
Xili—1,Xii—1 >k’ - Then

e =Yy — Hz'fcﬂi—l = H;x; — Hiﬁfi|i_1 +vi= Hiiﬂi—l + vi. (65)



But it is immediate to note that < v;,X;);_1 >x= 0 and, hence, (62) follows. Moreover,
< Xj41,€; >ri= Iy < x5,e; >0 +G; < g, e >k (66)

Now
<X, e >r=< X4, X|j—1 >k Hi+ < x4, v; >pr= P H] 40,

while
> *
<y, e =<0y, Xgi-1 >k Hi+ <uy, v >x0=0,

so that we can write
A _ _
Kpi S<xiy1,€; > R7} = F;PHI R} (67)

€

Therefore {K,;, R.;} can be determined once we have the Gramian matrices {F;}.
The most direct method for computing the {F;} is to seek a recursion for x;;}; and then form P;4;. In
fact, from the model equations (36) and the estimator equation (60) we obtain

Xip1p = FpiXgici+ | G —Kp, | [ Ui ] ;

Vi

where we have defined F, ; = F; — K, ; H;. Now it follows that P; obeys the recursion (63).
[ |

We should remark here that the above recursive formulas extend the so-called Kalman filter to an indefinite
metric space [HSK93]. The recursions have exactly the same form as those of the Kalman filter, except for
the fact that the Gramian matrices {Ilg, R;, ;} are allowed to be indefinite. Also, the recursion (63) for P;
(with (61) and (62) inserted in (63)) is known as the Riccati difference equation.

An important fall out of the above algorithm is that the inertia of the Gramian matrix < y,y >x 1is
completely determined by the inertia of the {R. ;}.

Corollary 6.1 (Inertia of the Gramian Matrix) Consider the state-space model (36) and let R, denote
the Gramian matriz of the vector'y defined in (38), viz.,

R, = W + AllA*,

where {W I, A} are as defined in (40), (41), and (42). The Ry is further assumed (block) strongly regular.
Then
Inertia of (W + AILA*) = Inertia of (Re0® Re1® ...® Ren). (68)

)

Proof: This follows from the congruence relation R, = LDL", where D = (Re,o CR1D... D Re,N) .
|

6.5 Recursive Estimation of {xg,ug,...,uy_1}

We already know how to recursively evaluate the {e;} and the corresponding Gramian matrices {R. ;}. We
now return to (56), viz.,
ZN|N = ZN|N-1 + <zn,en >k R jew, (69)

and show how to evaluate the terms {< zx,e; >x/}. Once this is done, we shall have an algorithm for the
recursive update of the estimates {zy|;}. Recall that zx|; was defined as the unique linear estimate of zy
based on the {yo,y1,...,¥:}-



Theorem 6.2 (Recursive Smoothing Solution) Assume Ry is (block) strongly reqular. Then the sta-
tionary solution z is equal to Zy| N, where Zy|n can be recursively computed as follows: start with zyj—1 =0
and repeat fort=10,1,... N:

ZNJi = ZN|ji—1 + Kz,iH;R;Zlei,

where
0 Il
Koip1=K,; [Fi— K, H]" + | I |QGr, K,o= [ 00 ] .
0

The tdentity matriz in the recursion for K, ;41 occurs at the position that corresponds to the entry u;.
Proof: Recall that e; = H;X;;_1 + v;. Therefore,

. . ~1
ZN)i = ZN|i-1t+ < zZn,e >k R e,

~ =~ * p—1
ZNji-1t+ < ZN,X4|i—1 >k Hi R e

We now define K, ; é< ZN,Xj|i—1 >x’, and note that

[(Z,i-l-l =< ZN,)NCZ'+1|Z' >t = < Zn, [inzh—l - [(p,iei + quz] >K
0
= [(z,i [Fz — A/rpyiHZ']* + I QZ(;:<
0
[
A remark is due here. Recall that we have defined zy); in (50) as the unique linear estimator of zy
that is based on the vectors {yo,y1,...,y:}. Now zy is a vector containing the {x¢,up,uy,...,uy_1}. By

linearity, it follows that the entries of zy; can be interpreted as the linear estimates of the corresponding

entries of zx given the {yo,¥y1,...,y:}. That is, we have

Xo[s
ug)|;
iNlZ = s ,
uy_1);
where the notation xg|; denotes the linear estimate of xo¢ that is based on {yo,...,y;}. Likewise, u;;
denotes the linear estimate of u; that is based on the same vectors {yo,...,y:}. But it follows from (37)
that < wu;,y, >x:= 0 for all j > k. This implies that
Wy = Wgqqs = ... =uy_y; = 0.
Consequently, the last entries of zy); are in fact zero,
C ko ]
ug)|;
ZNE = | Wioqpp | - (70)
0
L 0 -




If we introduce the definition of z; as in (48), i.e., a vector composed of xy and the {u;} up to time (7 — 1),
then we can rewrite (70) more compactly as follows:

Inj = [ ZO' ] . (71)

That is, the leading nonzero entries of the successive zy|; are precisely the entries of zy;.

7 A Recursive IWLS Problem in the Presence of State-Space
Structure

In order to further appreciate the results of the earlier sections, let us first summarize what has been
concluded in the state-space context.

Starting with a state-space model (36), with entries in an indefinite metric space K’ we defined two vectors
z and y as in (38) and (39). The vector y contained the output vectors {y;} and the vector z contained the
vectors {Xg,ug,...,un—1}. We then used z and y as a motivation to introduce a quadratic minimization
problem. This was achieved by defining the linear estimate of z given y as the vector z obtained viaz = K°y,
where K° was defined as the unique stationary solution of the cost function

J(KY=<2z—-Ky,z— Ky >o=1 - KAIl - IIA*K* + K[AILA* + W]K*. (72)

We then observed that J(K) is a special case of the optimization problem (2) introduced earlier in the paper,
and hence the solution z, also denoted by zx|x, could be obtained via the global expression (45),

p= [ 4 AwtA] T ATl

But we further showed that in this case, and due to the state-space assumptions (36) and (37), the matrices
{II, W, A} have extra structure in them. In particular, the {II, W} were shown to be diagonal matrices in (41)
and (42), and the A matrix was shown to be block lower triangular in (40). As a result, we then argued that
this structure can in fact be exploited in order to derive a recursive scheme that would allow us to directly
update the estimate Zx|; to Zy|;41, starting with zx_; = 0 and ending with the desired solution zx|x. This
was achieved by the recursions of Theorem 6.2, which in turn rely on the recursions of Theorem 6.1. These
recursions assume that the Gramian matrix R, is (block) strongly regular so that the stationary solutions
K¢ that correspond to each estimate zy|; are uniquely defined.

Now, in view of the discussion at the beginning of Sec. 5, the above solution z |y has the same expression
as the solution Z of a related minimization problem of the form (1). Indeed, it is rather immediate to write
down the IWLS problem whose stationary point matches the above z (or zyjy). We simply use (72) to
conclude that the related problem of the form (1) is the following:

8 e e F R Gl R G ) ) S

Equivalently, using (42), (41), and (40), this can also be written as

min Iy xo—i—z — Hjz;)* i (y]' — Hjx;)+ Zu;Qy_luJ , (74)

{zo,ug,...,un—1}

subject to
zjt1 = Fjej + Gyuy. (75)



Likewise, the IWLS problem whose stationary solution z; matches the z;; is

i i—1
o) wo My o + Y (ys — Hyw) By (yy — Hyeg) + D w5 Q5 g | (76)
0,0, Ui =0 j=0

subject to 241 = Fjz; + Gju;. That is, only vectors {y; } up to time ¢ are included. The stationary solution
Z;); exists and is unique if, and only if, using (51) and (52),

;7" + A;W A, is invertible.

This implies, in view of Lemma 2.2, that (W; + A;ITAY) is also invertible. We thus have the following
preliminary conclusion, which shows that the strong regularity assumption that we imposed earlier on the
Gramian matrix 2, is not a restriction. It is in fact necessary if we are interested in all the stationary
solutions {Z;;}.

Lemma 7.1 (Strong Regularity) The stationary solutions Z;; are uniquely defined for all 0 <i < N f,
and only if, the matriz (W + AILA*) is (block) strongly regular.

Proof: Since {W, 11} are block diagonal and A is block lower triangular, the (block) leading submatrices of
(W4 AILA*) are of the form (W; +A;I1AY). But we argued above that Z;); is uniquely defined iff (W; +A4;11AY)
is invertible. Since this holds for all 0 < ¢ < N, we conclude that (W + AILA*) is necessarily (block) strongly
regular.

In other words, recall that we have established earlier in Lemma 5.1 that the standard optimization
problems (1) and (2) are always guaranteed to simultaneously have unique stationary solutions z and K°
(and also z). The above result then extends this conclusion to the successive solutions {Z;;,2;;} of (50)
and (76). That is, when state-space structure is incorporated into both optimization criteria, and recursive
stationarization is employed, it also holds that the criteria have simultaneous stationary points.

Problem 7.1 (The IWLS State-Space Problem) For each i, define the quadralic cost function

g i—1
A _ _ _
Ji(wo, w0, - wisa) 2 gy wo + ) (y; — Hywj) Ry (yy — Hyeg) + > wiQ5 uy | - (77)
j=0 j=0
We are interested in minimizing, when possible, the J; over (xo,ug, ..., ui—1), for all0 < i < N, and subject

to the state-space constraint i1 = Fix; + Giu,.

Before stating the conditions that would allow us to check whether the existence of minima for all J; exist,
we shall first consider the following:

(i) We shall show how to recursively compute the unique stationary points {Z;;} when they exist.
(ii) We shall then derive conditions for these points to be minima.

In order to highlight the possibilities that may occur in the indefinite case, let us assume for now that the
{Ji} have unique stationary points {Z;; }, so that (W + AIlA*) is guaranteed to be (block) strongly regular,
as proven in Lemma 7.1.

Now, each one of the stationary points 2;; may or may not be a minimum in its own right, and this is
independent of whether among the earlier solutions {Z;|;};<; we have minima or not. This is in contrast to
the recursive minimization of quadratic cost functions with positive-definite weighting matrices, where all the
solutions z;|; are guaranteed to be minima. In the indefinite case however, it may happen that at a particular
time instant, say the i** instant, the Z;)¢ is a minimum of J;, while in the next time instant, the 2; 41541 is



not a minimum of .J;;1. This is because, the minimality of one requires the positivity of (HZ»_1 + A; I/Vi_lAi),
while the minimality of the other requires the positivity of (Hi_-|—11 + A?+1VVZ':_11A2'+1), and the positivity of
these two matrices do not imply each other. In particular, the second matrix contains new entries, such as
Qi, Ri41, and an extra row in A; 1. These entries can destroy the positivity of (Hi__l_l1 —|—A2‘+1 I/qu_llAiH). This

situation does not occur with positive-definite quadratic forms because, in this case, the weighting matrices
{II, W} are positive-definite and hence, (II;* + AW, 4;) is positive-definite for all i.

7.1 TFundamental Inertia Conditions

The following result, for example, establishes under what condition Jy has a minimum at Zy|x.

Lemma 7.2 (Minimization of Jy) Consider a quadratic cost function as in (77) and subject to x;41 =
Fiz; + Giu;. The quantities {xo,uo,...,un—_1} are the unknowns. Lel m x m denole the size of each Q;.
Likewise, let n x n denote the size of Ilg. Define

M2 (Me&Qo...8Qn_1), W2 (Ro® Ri&...% Ry).

Assume (W + ATLA*) is (block) strongly regular (i.e., the J; are guaranteed to have unique stationary points
Ziji for all0 <4 < N ). Then Jy has a minimum with respect to these unknowns (i.e., the last stationary
point Zy|n is a minimum) if, and only if,

I IeW] = I_-{R.o®...®R.n},

I, [T W] IL{R.0® ... ® R. n}+n+ mN,

where the matrices {R. ;} are recursively computed as follows:
R.;=H;PHS + R;,

Py = BPF] + GiQiGy — Kp i Re ;K Po =g,

Kp; = F;PHIR;;.

Proof: Note here that the size of Il is (n4+mN) x (n+mN). It then follows from Theorem 5.1 that problem
(74) (or, equivalently, (73)) has a minimum if, and only if,

I_[W+ AlIA™] = [_[Ig W],

I, [W+ AlIA*] = IL[I@eW]—n—mN,.
The result of the lemma now follows by invoking Corollary 6.1, which states that the matrix (W + ATLA*)
has the same inertia as {R. 0@ ...® R. y}. This last statement holds as a result of the strong regularity of

(W + AILA®).
[

An immediate conclusion is the following special case where the II matrix is itself positive-definite and,
hence, its negative inertia is zero while its positive-inertia is equal to the number of its columns (or rows),
n+ mN.

Corollary 7.1 (A Special Case) Consider the same selling of Lemma 7.2. Assume further that Iy > 0
and the {Qz}f\;gl are posttive-definite. Then Jy has a minimum with respect to zy of, and only if,

I {Ry® .. ® Ry} = I {R.0®...®&R.n},

IL{Ry® .. ® Ry} = ILi{R.0P... & R.n}.



The above results were concerned with the existence of a minimum for the last cost function Jy. More
generally, we are interested in checking whether each z;; is a minimum of the corresponding J;. This is
addressed in the following statement.

Theorem 7.1 (Recursive Minimization of {J;}) Consider a quadratic cost function as in (77) and sub-
ject to wiy1 = Fia; + Giu;. The quantities {xg, ug, ..., un—1} are the unknowns. Lel m x m denote the size
of each Q;. Likewise, let n x n denote the size of Ilg. Define

M2 (Me&Qo...8Qn_1), W2 (Ro® Ri&...% Ry).

Then each J; has a minimum with respect to {xo, up, ..., u;—1} if, and only if,
I_ My Ry] = I-{R.o}, (78)
Ity & Ro) = I4{Reo} + n, (79)

and, fori=1,2,..., N,

I_{Qi_1 & R;}
IL{Qi-1 & R;}

Moreover, when the stationary solutions (or minima) of the J; are uniquely defined, the value of each J; at

I_{R.}, (30)
Io{Rei} + m. (81)

its unique stationary solution (or mintmum) z;; is given by

)

Ji(Z0) = Ze;R;Zlei, (82)

j=0
where e; = (y; — HiZyji-1).

Proof: The proof is by induction. Minimizing Jo over g requires the inertia conditions (78) and (79), as is
obvious for example from Lemma 7.2 specialized to N = 0. Likewise, the minimization of J; requires

I My®Qu®Ro®d R = I-{R.o® Rc1},

ILMy®Qu®Ro® R = It{Rco® Re1} + n+m,
which by virtue of (78) and (79) yield (80) and (81) for ¢ = 1. Continuing in this fashion we establish the
result for ¢ > 1.

To establish (82) we recall that the value of a quadratic cost function of the form (1) at its stationary
solution is given by (22), which in the present context translates to

Yo

P * * * x1—1 Yi
Ji(2i|i) = [ Yo Y1 - Y ][W+AiHiAi] .
Yi

But we know from the discussion in the earlier section (viz., (53) and (55)) that if we introduce the triangular
factorization of the matrix (W; + A;I1; AF), say

(Wi + AT AY) = LDy LY

then
€o Yo
€1 Y

€; Yi



and D; = (R.0® ... % R.;). Consequently,
€o
€1
JZ('%ZIZ) = [ € €] e ]Di_l
ei

g
_ * p—1
—E e R e
j=0

It is also clear from the discussions in Sec. 5 that the recursions of Theorem 6.2, with the proper identi-

fications Zx|; < Znjs, ¥i < ¥i, Xiji—1 + Tii—1, W < Uy, can be used to compute the stationary solutions
Z;j; of (77). In particular, and according to the discussions that led to (70), we also have that the stationary

solutions z;); are related to the zyy;, given below in the statement of the theorem, as follows:

Lo|d
Up|4

N _ | Fii
Ui—1]3 = 0

0

IN|i =

0

That is, the leading entries of Zy;|; denote the stationary solution of J; with respect to {xo, uo, ...

aui—1}~

Theorem 7.2 (Recursive Solution of (77)) Consider a quadratic cost function as in (77) and subject to

ziy1 = Fiw; + Giu;. The quantities {xo, uo, . . .,

un—1} are the unknowns. Assume (W + AILA*) is (block)

strongly regular with {W, A1} defined as in (40), (41), and ({2). Let

Lo
A Uo
IN =
UN—-1
The stationary solution, Zy;, of
i—1
min |z5Ily xo—i—z — Hjz;) R» Yy; — Hjzj) —|—ZUQ , (84)
can be recursively computed as follows: start with zyj_1 = 0 and repeat for i =0,1,... N
IN|i = ZNji-1 T Kz,iH;R;Zl (yi — HiZj)i-1),
where
0
- - - =1 * * - HO
Koig1 = K.; [F;— I\iReyiHi] + | 1| QG K.o= 0 |
0
and
xz+1|z = sz|z 1+ Ky, z( yi — Hix Li|s— 1) £0|—1 =0.



Remark. Tt may happen that the last term in the definition of the quadratic cost function J; in (77) also
includes the extra tem uZ‘Q;luZ, say

A * T — * — d * y—
Jilwo,uo, o wima) = @iy oo+ (y; — Hywg) Ry Hys — Hjzg) + ) wiQi g | - (85)

j=0 j=0

In this case, the unknown variable u; only appears in the quadratic term ] Q;lui, and it thus follows that
minimization with respect to the u; requires the positivity of ;. Hence, successive minimization of the J;
would additionally require that the {Q;} be positive-definite, which is a special case that often arises in the
context of H-problems, with the additional constraint Iy > 0. It is thus rather immediate to handle this
case. All we need to do is to simply impose a positivity condition on the {@;}. This motivates us to consider
the following two corollaries.

Corollary 7.2 (Some Positive Weighting Matrices) Consider the same setting as in Theorem 7.1 and
further assume that the {Qz}f\;gl are positive-definite. Assume also that Iy > 0. Then each J; has a
minimum with respect to {xo, uo, ..., ui—1} if, and only if, for all i,

Inertia{R;} = Inertia{R. ;}. (86)

In this case, it follows that
P,>0 for 0<i<N. (87)

[In fact, Py is strictly positive since it is equal {o Tg].

Proof: The inertia conditions (86) follow immediately as a special case of Theorem 7.1. We now establish the
nonnegativity of the Riccati variables { P;}. This is achieved by induction. Assume the result is valid up to
time j, i.e., {Py, P1,..., P;} are nonnegative-definite and let us prove that P;4 is also nonnegative-definite.

It follows from (86) that R.; = (R; + H;P;H}) and R; must have the same inertia and, consequently,
that (R; + H;PjHY) is invertible.

Since P; is nonnegative-definite, we can factor it into P; = M; M, where the number of columns of M;
is equal to the rank of Pj. Defining H; 2 HjM;j we can write (R; + H; PjHY) = (R + FI]FI;‘)

The invertibility of (R; + HjH]’»") now implies, by virtue of Lemma 2.2, that (I + H;‘R]»_lHj) is also
invertible. Using the result of Theorem 2.1 we have that

L(T®Ry) = LI+ H;R; ;)
I_(I& Ry) I_[(I+ H}Ry ' Hj)

(
(

* Sex

Rj + H; H;)l,
R]'+H]'7 .

&
® )]

[

But since
Inertia{ R; + H; FI]*} = Inertia{R; },

we conclude that T and (7 + H;‘R]»_lffj) must have the same inertia and, hence, (I + H;‘R]»_lHj) > 0. Now
the Riccati recursion (63) implies that

Piy1 = Fj [Py — PjH;(R; + H; P H;)™"H; ;] Fj + G;Q;G5,
= FjM; [I-Hj(R; + H;H;)" H;] M; Fj + G;Q;G5,

rrx p—1 17 -1 * 1k *

= FjM; [I+HjR;'Hy] M;F; +G;Q;G5.

But since (I + H;‘R]»_llffj) >0 and G;Q;G; > 0, we conclude that Pj11 > 0.

The next statement further assumes that the {F;} are invertible.



Corollary 7.3 (Positive Weights and Invertible {F;}) Consider the same setting as in Theorem 7.1
and further assume that the {Q;}3' are positive-definite. Assume also that Ty > 0 and that the {F;} are
wmvertible. Then the following two statements provide equivalent necessary and sufficient conditions for each
Ji 1o have a minimum with respect to {xo,up, ..., ui—1}.

(i) AlL{J;} have minima iff, for 0 <i < N,
P+ HXR7'H; > 0. (88)
(ii) AUl {J;} have minima iff, for 0 <i < N,
P —GiQ:GF > 0. (89)
It further follows in the minimum case that, for all i,

Pi+1 > 0. (90)

Proof: A simple inductive argument establishes the result. It follows from Corollary 7.2 that R, =
(Ro + HollgHY) and Ry must have the same inertia and, consequently, that (Ry + HollgH{) is invertible.
Lemma 2.2 then implies that (II5! + H Ry ' Hp) is also invertible. Using the result of Theorem 2.1 we have
that

L(Mo® Ro) = Ii[(Wg" + Hg Ry Ho) & (Hollo Hy + Ro)],
I_(To & Ro) I_[(Tyt + HE Ry Ho) @ (Hollg Hy 4 Ro)].

But since
Inertia{ Ro + Hollp Hy } = Inertia{ Ro},

we conclude that IIy and (Ha1 + H(’)"RalHo) must have the same inertia and, hence, (Ha1 + H(’)"RalHo) >0
since Iy > 0. Now the Riccati recursion (63) implies that

P = Fy[llg—ToHy(Ro+ HollgHE) ™t Hollg] Fy + GoQoGY,
- * o— =1 s *
= Fy[Uy'+ HERy'Ho] ™ F§ + GoQoGy.

The invertibility of Fjy guarantees the positive-definiteness of Fj [Hal + H; RalHo] ! F. But since Qg > 0
we also have that GoQoGY > 0. Consequently, P; > 0. We can now repeat the argument to conclude that
the conditions (88) hold for all :.

The equivalence of conditions (88) and (89) follow from the fact that for all ¢ we have

L

K3

P — GiQ:G; = F[PT'+ HIR;'H]

Conditions of the form (88) are the ones most cited in H —applications (e.g., [YS91]). Here we see that
they are related to the inertia conditions (86). These inertia conditions also arise in the H*—context (see,
e.g., [GL95][p. 495] and Lemma 8.1 further ahead), where R; has the additional structure R; = (—v2I & I).
Here, we have derived these conditions as special cases of the general statement of Theorem 7.1, which holds
for arbitrary indefinite matrices {1y, Q;, R;}, while the H® —results hold only for positive-definite matrices
{Ily, @;} and for matrices R; of the above form. Note also that testing for (88) not only requires that we
compute the P; (via a Riccati recursion (63)), but also that we invert P; and R; at each step and then
check for the positivity of PZ»_1 + H; R;lHi. The inertia tests given by (86), on the other hand, employ the
quantities R.; and R;, which are p x p matrices (as opposed to P; which is n x n). These tests can be used as
the basis for alternative computational variants that are based on square-root ideas, as pursued in [HSK94].



8 An Application to H*-Filtering

We now illustrate the applicability of the earlier results to a problem in H®-filtering. For this purpose, we
consider a state-space model of the form

Tipr = Fixg + Goug , g = Hizg 4 v5 (91)

where {zo,u;,v;} are unknown deterministic signals and {y;}}¥, are known (or measured) signals. Let
s; = Ljxz; be a linear transformation of the state-vector z;, where L; is a known matrix.

Let 5;); denote a function of the {y;} up to and including time j. For every time instant ¢ we define the
quadratic cost function

A wyr— . * y— d * - d A * (A
Ji(xo, uo, .. ug) = xpTs g + Zu]»Qj 1uj + Zvjvj — 772 Z(sjU — Ljx;)*(85); — Ljz;), (92)
i =0 j=0 =0

where {Ily, Q;} are given positive-definite matrices, and = is a given positive real number.
Problem 8.1 (An H* —Filtering Problem) Determine, if possible, functions
{50005 81[1, - > SN|N

wm order to guarantee that

Ji>0 for i=0,1,...,N. (93)

The positivity requirement (93) can be interpreted as imposing an upper bound on the following ratios
(for nonzero denominators)

Y=ot — Liwi)" (8515 — Liwj)
wylly l’0+z] =0 ] UJ"‘Z] =0 ]

< ~% for 0<i<N.

Using v; = y; — H;x;, we can rewrite the expression for J; in the equivalent form

v a5 (2L 0 (][ )) B

which is a quadratic cost function in the unknowns {zq, uo, ..., u;} since the {y;, 5]|]} _o can be expressed
in terms of {xo, uo, ..., u;}. Therefore, each J; will be positive 1f, and only if, it has a minimum with respect
to {0, ug, ..., u; } and, moreover, the value of J; at its minimum is positive.

8.1 Solvability Conditions

We thus see that we are faced with the problem of minimizing a quadratic cost function of the same general
form as in (85), and also (84), where the column vector

[ 5515 ]
Yj

and the block matrices



now play the roles of {y;, R;, H;} in (85). That is, the auxiliary state-space model that we may invoke here,
with variables in an indefinite space K/, takes the form

X411 = x4+ G,
31 T
Yi Hj
with
u; u]' Qzéz] 0 0
< v; N7 S = 0 (—721@ I)(SZ']' 0
X0 X0 0 0 Ho

We then conclude from Corollary 7.2, and according to the remark after Theorem 7.2, that each J; will admit
a minimizing solution if, and only if, the corresponding R.; and R; have the same inertia. In the present
context, we have

2 2 *
A - I 0 A - I 0 Li ] Li
i = [ 0 I ] and Rei = [ o 1) m ]

where P; satisfies the Riccati difference equation

* * -1
B L; L; L; —*I 0 L; . «
P = PZ_PZ[Hi] {[Hi]PZ[Hi] +[ 0 I]} [Hi]PZ Fr GG,
2 ool 1]
= F P! * * B ’ F iQ;GY
SRR | IS I B | R ereres

= F [P+ HiH -y LI L7 Fr + GiQiGr.

Lemma 8.1 (Inertia Conditions) The J; in (92) admit unique minima with respect to {xg, o, ..., u; } if,
and only if, the matrices

[ —2I 0 ] J [ —v3 I+ L; P L} L;PH!

4

have the same inertia for all i. In this case, it also follows that all the leading submatrices of the above two
matrices have the same inertia, i.c.,

I—l—HZPZHZ* > 0,
(—y*1 + L;P,L}) — L; P;H; (I + H; P,H)"'H;P,L} < 0.

Proof: The first part of the Lemma follows from Corollary 7.2. But recall also from the statement of the
Corollary that the resulting P; are further guaranteed to be nonnegative-definite, i.e.;, P; > 0. It thus follows
that (I + H;P;H}) > 0. That is, the lower-right corner elements of both matrices in (94) have the same
positive inertia. Consequently, it also holds that all the leading submatrices of the two matrices in (94) have
the same inertia.

If the F; are further assumed invertible, then we also conclude from Corollary 7.3 that the following
alternative conditions can be used to guarantee the existence of minima for the J; in (92),

Prly HYH; —y L1 L >0, for 0<i<N. (95)



8.2 Construction of a Solution

To end our discussion, we still need to show how to determine the estimates s;; once the existence of
minima for the J; are guaranteed. These estimates have to be chosen so as to guarantee that the values of
the successive J; at their minima are positive.

We shall illustrate the construction by induction. Assume that the {5ojo,...,5;_1;—1} have already been
chosen and that the values of the {Jy, J1,..., J;_1} are positive at their respective minima (recall expression

(82)). In particular,

i—1

(&
0

* o—1
jRe,jej > 0.

J
In order to guarantee J; > 0 we need to choose 5;; so as to result in

i—1
* p—1 * p—1
6iRe,z’ez+ E e]»Rw»e] > 0.

j=0

This can be achieved in many ways and the choice is nonunique. One possibility is to choose 8;; so as to
meet the condition

G?R;gei > 0, (96)

or, equivalently,
2 * * -1
-y I+ L, B L L;PH; € s
¥ ¥ ! ! ' 0 97
Lefe iy ] [ H;PL; I+ HPH; -0 ®7)

€iy

where we have partitioned the e; accordingly, viz.,

g A S| | L |, A €is
Tl ow ;| T eiy |

Here ;;_; is constructed recursively as indicated in Theorem 7.2,

~ . . §ZZ L; R .
Tip1)i = Fidgio1 + Ky ([ yi ] - [ H, ] l‘z’|i—1) , @oj—1 =10, (98)
with

—2I 0

0 I]Jr[Li]Pz’[Li] . Kpi=FP [ L} H | R

Re,i = |: Hz Hz

We may now introduce the lower-diagonal-upper factorization of the central matrix in (97), viz.,

1

-+ L Ly LiPHP ] (99)
I 0] At 0 I 0]
—(I—I—1':]ZP21"‘IZ*)_1[‘IZPZL:< I 0 (I—l—HZPZH:)_l —(I—I—1':]ZP21"‘1TZ*)_1[‘IZPZL:< I ’
where we have defined, for compactness of notation,
AZ (=4I 4 L;PL})— L;P,H (I + H;P;H) " H; PL,

which we know, from Lemma 8.1, to be a negative definite matrix.

We can then rewrite (97) in the form

A1 0 eis — L H(I+ H;PH! ) te;

* ok DNl . pr*x o 2,8 ) ) 2,y

[ ei,s ez,y(I+HZPZHz) HZPZLZ ez,y ] 0 (I_i_HZPZH;k)—l :| |: ei,y



This is a quadratic expression in the variable e; ; = 8;;; — L;#;;—1, and since A < 0 and ( + H;P;H}) > 0,
the positivity condition (96) can be met by setting

eis — Li PPH (I + HiPiH ) e;yy = 0,

or, equivalently,
Siji — Lizgioy = Li P HF (I + Hi P HP) " Ny — Hidiioa).

Therefore, a possible choice for s; is the following
Siji = Ly [2qi—1 + BH (I + H; P HF) ™ Wy — Hidgion)) -
This choice simplifies (98) to the following (using the factorization (99) for R;} in the expression for K, ;)
Zipii = Fi (im0 + BHF (L + Hi P H?) ™ (g — Hizgio)] -
We summarize the results in the following statement.

Lemma 8.2 (A Solution of the H* —Problem) Problem 8.1 has a solution if, and only if, for all 0 <
t < N, the matrices

—2I I+ L; B L} L;,P;H?
v 0 d v+ ; i , (100)
have the same inertia. In this case, one possible construction for the estimates {5;;} is the following:
Sili = Li [#iji—1 + PH (I + HiPiH?) ™ (g — Higji-1)) (101)
where the #;;_1 15 constructed recursively via
Zip1i = Fi [@ijor + P HI (L + HiPHP) Yy — Hizgpio1)], 2oj—1 = 0, (102)
and
L1 T L Li 1" 2 01\ [ L
Pz’ IFZ' Pi_Pz' Pz’ Pz’ F; A AN 1
i [H]{[H] [Hi]—i_[ 0 I]} [H] GG (103)

with the initial condition Py = 1l;.

9 An Application to Robust Adaptive Filters

We now consider another example that can, in effect, be regarded as a special case of the H® —problem
studied in Sec. 8. Here, however, some simplifications occur that are worth considering separately.
We therefore assume that we have the following special state-space model

Tiy1r =2, ¥y = iz + v, (104)

where {z,v;} are unknown deterministic signals and {y;}}*, are known (or measured) signals. Compared
with the model (91) we see that we are now assuming u; = 0 and F; = I. In fact, the arguments that follow
can also be applied to any invertible matrix F; (especially the arguments after Lemma 9.1).

The equations (104) show that the vector x; does not change with time and is therefore equal to the
initial unknown vector xg. That is, we can as well regard the equations (104) as representing a collection of
measured vectors {y;} that are linearly related to an unknown vector o,

¥ = Hixo + v;,



and the objective is to estimate the x in a certain sense. A classical criterion is to solve a positive-definite
least-squares problem of the form (see, e.g., [SK94])

N
min eplly teg + Z(yz — Hiwo) Wy — Hizo) | (105)

i=0

where {IIy, W;} are given positive-definite weighting matrices. In this case, a minimizing solution is always
guaranteed to exist and, under some extra conditions on the matrices {Ilo, H;}, a recursive scheme is in fact
possible, thus leading to the famed Recursive-Least-Squares (RLS) algorithm.

Here, however, we allow for indefinite weighting matrices {Ily, W;}, along the same lines studied in Sec. 8.
More specifically, we let Z;|; denote a function of the {y} up to and including time j. Since x; = xg, we
shall also write &); instead of Z;);.

For every time instant ¢ we also define the quadratic cost function

i i
A - _ . .
Ji(xo) =yl ey + Z viv; — 2 Z(l‘oU — x0)" (Zg); — o), (106)
j=0 j=0
where {IIy} is a given positive-definite matrix, and 5 is a given positive number.

Problem 9.1 (A Robust Adaptive Filter) Determine, if possible, functions

{£0|0a i;Olla sy i;Olj\f}a

wm order to guarantee that

Ji>0 for i=0,1,...,N. (107)

The positivity requirement (107) can be interpreted as imposing an upper bound on the following ratios
(for nonzero denominators)

S _olioyy — x0)* (o) — o)

77— 1 12 %,
willy “wo + 3250 U5 v

< ~% for 0<i<N.

Using v; = y; — H;xo, we can also write the above ratios in the form

Z;:oHi’OIj — xo|? 2

— - %, for 0 <i<N. (108)
willy “wo + 35— [ly5 — Hjwol?

Comparing with (105), we see that the cost function of (105) now appears in the denominator of (108) (with
W; = I). Hence, instead of minimizing (105) over xg, we are now interested in determining estimates for
in order to guarantee that the energy in the error due to estimating x is upper-bounded by 42 times the
energy of the uncertainties, viz., the denominator in (108).

We can again rewrite the expression for J; in the equivalent form

o= S0 ][ 1) [0 T ][ ]

j=0

which is a quadratic cost function in the unknown {z¢}. We can now use Lemma 8.2 to conclude the following
(by setting L; = I, F; = 1,G; = 0,Q; = 0, 2; = x0).



Lemma 9.1 (Solution of the Adaptive Problem) Problem 9.1 has a solution if, and only if, for all
0 <t <N, the matrices

_~2 2 ) IT*
[ ~=T 0] and [ v+ B P H; ]’ (109)

0 I H; P; I'+ HPH]
have the same inertia. In this case, one possible construction for the estimates {Zo|;} is the following:

Zoi = &opi—1+ P HI(I+ H P HS) Yy — Hikgji—1), #oj-1 =0, (110)

N R I A s N P L

with the initial condition Py = 1l;.

where

We now argue that the solvability condition can in fact be simplified in the adaptive case. For this purpose,
we shall invoke the conclusions of Corollary 7.3. Indeed, it follows from the statement of the corollary that
Problem 9.1 has a solution if, and only if, for all 0 < < N,

2
-1 N —~=I 0 I
Pi+[IHi][ 0 IHHi]>O’

or, equivalently,
Pl HIH — 4T >0. (112)
A simpler statement is the following.

Lemma 9.2 (A Solvability Condition for the Adaptive Problem) Problem 9.1 has a solution if, and

only if,
Piy1>0 for 0<ie<N. (113)

Proof: This follows from second condition of Corollary 7.3, using G; = 0.

The condition (113) is indeed natural in the adaptive context. To clarify this, we note that it follows from
the Riccati recursion (111) that

—*I 0 I
qu—llzpi_l—i—[j Hz*][ P(y) I][Hi]’ (114)

with initial condition PO_1 = Hal. This implies, by recurrence, that

i 2

- - . -1 0 I

Pi=1t + Y [T Hi][ 0 I][Hj]’ (115)
j=0

which, in view of expression (20) in Theorem 3.1, is precisely the coefficient matrix of the linear system of
equations that provides us with 2o;. The conclusion (113) is then immediate once we also recall from the
statement of Theorem 3.1 that a minimum is guaranteed as long as the coefficient matrix is positive-definite.

10 An Application to Total Least-Squares Methods

We now consider a third application that deals with the so-called total-least-squares (or errors-in-variables)
method for the solution of linear systems of equations, Az & b (e.g., [L.S83, HV91]). The notation Az ~ b
means that due to possible errors (measurement errors, modelling errors, etc) the vector b does not necessarily



lie in the range space of the matrix A, denoted by R(A4). If indeed we had b € R(A), then a solution x
would exist to the equations Az = b. In general, however, one has to settle for an approximate solution z.
In least-squares methods, it is often assumed that the vector b is possibly erroneous, while the matrix A is
known and one proceeds to solve for the vector # that minimizes the Euclidean distance between Az and b,
say

min ||Ax—b||2. (116)

This is clearly a special case of the quadratic cost function (1) with I — ool, W = I, and the notational
changes y < b, z — x. All solutions z are well-known to satisfy the so-called normal system of equations

(A*A)i = A", (117)

Total least-squares (TLS, for short) methods, on the other hand, allow us to also handle possible errors
in the matrix A itself. For this reason, they have been receiving increasing attention, especially in the signal
processing community. The TLS problem seeks a matrix M and a vector # that minimize the following
Frobenius norm:

win| [ &1 — 4 Ma—b || (118)

Here, M is regarded as an approximation for A, which in its turn is used to determine an z that guarantees
beR(M).

The solution of the above TLS problem is well-known and is given by the following construction [HV91][p.
36]. Assume A is (N + 1) x n with N > n, as is often the case. Let {o1,...,0,} denote the singular values
of A, with 0y > 03 > ... > 0, > 0. Let also {71,...,0,,0,41} denote the singular values of the extended
matrix [ A b ], with ; > 0. If 6,41 < oy, then the unique solution & of (118) is given by

&= (A"A—ol )7 A%, (119)

Moreover, the matrix M is constructed from the SVD of [ A b ] . In fact, a similar construction for z also
exists in terms of the data available from the SVD. But here we shall instead focus on the representation (119)

of the solution Z. Note also that the condition ¢,41 < ¢, assures that (A*A — &Z_HI) is a positive-definite

2

- 18 the smallest eigenvalue of A*A.

matrix, since o
Comparing (119) with the solution of the indefinite quadratic problem (1), as given in Theorem 3.1,

expression (20), we see that we can make the identifications
I ——0,7,] and W —1,
along with y < b and z — . That is, we can regard (119) as the solution of the following indefinite problem

mxin [—o2 2%+ (b— Az)* (b — Ax)] , (120)
which is clearly a special case of (1) in two respects: the IT matrix is negative-definite and a multiple of
the identity, and the W matrix is simply the identity. Indeed, the minimum of (120) exists as long as
(—&Z_HI + A* A) is positive-definite, which is guaranteed by the assumption &p 41 < .

Note though that the solution # of the TLS problem (119) requires a singular value decomposition (SVD),
which may be computationally expensive. But more important perhaps, is that this hinders the possibility
of recursive updates of the solution &. More specifically, if an extra row is added to the matrix A and,
correspondingly, if an extra entry i1s added to the vector &, then the SVD of the new extended matrix
[ A b ] will need to be computed again in order to evaluate the new solution .

An examination of expression (119), however, shows that the SVD step only affects the choice of the II
matrix. This suggests that a recursive scheme should be possible if one relaxes the criterion (118) and allows
for other choices of the II matrix in (120), say

n-t!=—p’1

bl



for a nonnegative real number p? that is chosen by the user. In particular, any choice that satisfies p? < o,
will still result in a positive-definite matrix [—p?I + A* A]. We may also employ a diagonal matrix of the
form

H_l = —diagonal {pgap%a o 'aprzl—l}’

with several nonnegative entries {p?}. This would allow us to give different weights to the different entries
of z and will also give us more freedom in controlling the existence of solutions to the recursive procedure
described below.

We may also remark that the idea of replacing an optimal problem by a suboptimal one is frequent in
many areas, including for example H® —problems, and this is often due to the computational burden that
may be required by an optimal formulation.

Problem 10.1 (Approximate TLS Problem) Consider a matriz A, with rows {a;}I_,, a vector b with
entries {b(i)},, and a diagonal matriz I=! = —diag{p?}. Define, for each i, the quadratic cost function

Ji 2 |zl 4 Z b(j) — ajz|?
j=0

Let &; denote a stationary solution of J;. We are interested in the following:

1) A recursive update that relates &; to x;y41. For this purpose, we shall assume that (recall Lemma 7.2
+
[I + ATLA*] is strongly regular. This suggests a criterion for choosing the Il matriz.

(ii) A condition that guarantees that the last estimate Zn is indeed a minimum of Jn.

The answers to the above questions are rather immediate if we invoke the results of Sec. 7 and, in
particular, Lemma 7.2 and its corollary, and Theorems 7.1 and 7.2.

Lemma 10.1 (Solution of the Approximate TLS Problem) A recursive construction of the solution
can be oblained as follows, assuming [I + AILA*] is strongly reqular:

(i) The successive stationary solutions are related via

*
PZ'ClZ»

i‘i = i‘i_1+ m[[)(l)—ali‘l_l], i‘_l IO, (121)
Piata; P;

Piy1 = P——1 " Py=11=—diag{p?}. 122

+1 1+ a;Pa; 0 iag{p; } (122)

(1) Jn has a minimum at n if, and only if, the matriz [II=1 + A* A] is positive-definite. Under the
assumplion of strong regularity of [I + ATLA*], this positivily condition is also equivalent to Pyyi > 0
since, as argued after the proof of Lemma 9.1, we can also verify here thal Pny1 is the inverse of

(=1 + A*A]. Indeed, from (122) we obtain
Pl =P +aja;, Po=171 (123)

We emphasize, however, that the above is only a special case of the quadratic forms studied in this paper.
For example, one may choose other forms for the diagonal matrices Il and W, such as allowing for positive
entries in II and for negative entries in W, or other convenient combinations.



11 Concluding Remarks

We have posed two minimization problems in indefinite metric spaces and established a link between their
solutions via a fundamental set of inertia conditions. These conditions were derived under very general
assumptions and later specialized to important special cases that arise in H® —filtering, robust adaptive
filtering, and approximate TLS methods. In the H® —context, for instance, the inertia results of Corollary 7.2
can be used as the basis for alternative computational variants that are based on square-root ideas. This
point of view is detailed in [HSK94]. More generally, the inertia conditions of Theorem 7.1 can also form
the basis for general square-root algorithms and this will be discussed elsewhere.

Further connections with system theory and recent applications to problems in linear and nonlinear

adaptive filtering can be found in [SR95a, SR95b, SR95¢, RS95].

References

[AM79] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Prentice-Hall Inc., NJ, 1979.
[Bog74] J. Bognar. Indefinite Inner Product Spaces. Springer-Verlag, New York, 1974.

[DGKF89] J. C. Doyle, K. Glover, P. Khargonekar, and B. Francis. State-space solutions to standard Ho
and He, control problems. IEEE Transactions on Automatic Control, 34(8):831-847, August
1989.

[Ganb9]  F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, NY, 1959.
[GL95] M. Green and D. J. N. Limebeer. Linear Robust Control. Prentice Hall, NJ, 1995.

[GLR83] 1. Gohberg, P. Lancaster, and L. Rodman. Matrices and Indefinite Scalar Products. Birkhiuser
Verlag, Basel, 1983.

[Gri93] M. J. Grimble. Polynomial matrix solution of the H filtering problem and the relationship to
Riccati equation state-space results. IEEE Trans. on Signal Processing, 41(1):67-81, January
1993.

[Hay91] S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ, second edition, 1991.

[HSK93] B. Hassibi, A. H. Sayed, and T. Kailath. Recursive linear estimation in Krein spaces - Part I:
Theory. In Proc. Conference on Decision and Control vol. 4, pages 3489-3494, San Antonio,
Texas, December 1993. To appear also in IEEFE Transactions on Automatic Control.

[HSK94] B. Hassibi, A. H. Sayed, and T. Kailath. Square-root arrays and Chandrasekhar recursions for
H® problems. In Proc. Conference on Decision and Control, Orlando, FL, December 1994.

[HVI1] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: Computational Aspects and
Analysis. STAM, Philadelphia, 1991.

[Kai81] T. Kailath. Lectures on Wiener and Kalman Filtering. Springer-Verlag, NY, second edition,
1981.

[KN91] P.P. Khargonekar and K. M. Nagpal. Filtering and smoothing in an H® — setting. TEEE Trans.
on Automatic Control, AC-36:151-166, 1991.

[LS83] L. Ljung and T. Soderstrom. Theory and Practice of Recursive Identification. MIT Press,
Cambridge, MA, 1983.



[LS91]

[PRLN92]

[SK94]

[YS91]

[SR95a]

[SR95b)

[SR95¢]

[RS95]

D. J. Limebeer and U. Shaked. New results in H®-filtering. In Proc. Int. Symp. on MTNS,
pages 317-322, June 1991.

J. G. Proakis, C. M. Rader, F. Ling, and C. L. Nikias. Advanced Digital Signal Processing.
Macmillan Publishing Co.;, New York, NY, 1992.

A. H. Sayed and T. Kailath. A state-space approach to adaptive RLS filtering. [EEFE Signal
Processing Magazine, 11(3):18-60, July 1994.

I. Yaesh and U. Shaked. H* —optimal estimation: The discrete time case. In Proc. Inter. Symp.
on MTNS, pages 261-267, Kobe, Japan, June 1991.

A. H. Sayed and M. Rupp. A time-domain feedback analysis of adaptive gradient algorithms via
the Small Gain Theorem. Proc. SPIE Conference on Advanced Signal Processing: Algorithms,
Architectures, and Implementations , F.'T. Luk, ed., vol. 2563, pp. 458-469, San Diego, CA, July
1995.

A. H. Sayed and M. Rupp. A class of adaptive nonlinear H*-filters with guaranteed l5-stability.
Proc. IFAC Symposium on Nonlinear Control System Design, vol. 1, pp. 455-460, Tahoe City,
CA, June 1995.

A. H. Sayed and M. Rupp. A feedback analysis of Perceptron learning for neural networks. To
appear in Proc. 29th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove,

CA, Oct. 1995.

M. Rupp and A. H. Sayed. A robustness analysis of Gauss-Newton recursive methods. To appear
in Proc. Conference on Decision and Control, New Orleans, LA, Dec. 1995.

Ali H. Sayed Thomas Kailath

Dept. of Electrical and Computer Engineering Information Systems Laboratory
University of California Stanford University

Santa Barbara, CA 93106 Stanford, CA 94305

USA USA

Babak Hassibi

Information Systems Laboratory
Stanford University

Stanford, CA 94305

USA

AMS Classification. 93E24, 93E11, 93E10, 93B36, 93B40, 60G35.



