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Many electrorheological �uids (ERFs) as �uids with microstructure demonstrate viscoplastic behaviours. Rheometric measure-
ments indicate that some �ows of these �uids may be modelled as the �ows of a Herschel-Bulkley �uid. In this paper, the �ow of a
Herschel-Bulkley ER �uid—with a fractional power-law exponent—in a narrow clearance between two xed surfaces of revolution
with common axis of symmetry is considered.�e �ow is externally pressurized, and it is considered with inertia e�ect. In order to
solve this problem, the boundary layer equations are used. �e in�uence of inertia forces on the pressure distribution is examined
by using the method of averaged inertia terms of the momentum equation. Numerical examples of externally pressurized ERFs
�ows in the clearance between parallel disks and concentric spherical surfaces are presented.

1. Introduction

In recent years, the study of �uids with microstructures has
gained much importance because of its numerous applica-
tions in various engineering disciplines such as chemical
engineering, polymer processing, plastic forming foundry
engineering, and engineering of lubrication [1–14].

In machines and mechanisms systems of many industrial
processes, the phenomena of a �ow of viscoplastic �uids are
used. One of these phenomena is a slide bearing lubrication
[9, 10, 13]. Advances in technology and severe operational
requirements of machines necessitated the development of
improved lubricants to ensure a smooth and safe operation.
Generally, viscosity of lubricants decreases with temperature.
For operations under high speeds and heavy loads, oils
containing highmolecular weight polymers as viscosity index
improvers are used to increase a load carrying capacity of the
modied lubricants [9, 13].

Most substances used in the lubrication technology are
polymer solutions, thus, the characteristics of the bearings
change when such rheological substances, known as non-
Newtonian �uids, are used as lubricants. Several constitutive

relations applied were used to model the non-Newtonian
characteristics exhibited by some lubricants [7, 11, 13, 15, 16].

Another ones of these phenomena are processes of vibra-
tion control and torque transmission. In the last years, the
electrorheological �uids (abbreviated to ERFs) have acquired
a great relevance for supporting vibration control and torque
transmission devices, based on the characteristic dependence
of their viscosity on applied electric eld strength. Since their
initial discovery by Winslow [17], many particle-dispersion
electrorheological �uids, consisting of dielectric particles
dispersed in insulating oil, have been reported. When the
external electric eld is imposed to an ERF, it behaves as
a viscoplastic �uids [9, 18–25], displaying a eld-dependent
yield shear stress which is widely variable. Without the
electric eld, the ERF has a reversible and a constant viscosity
so that it �ows as a Newtonian �uid. Another salient feature
of the ERF is that the time required for the viscosity variation
is very short (<0.001 sec). �ese attractive characteristics of
the ERF provide the possibility of the appearance of new
engineering technology. Recently, the application of the ERF
to rotor-bearing systems has also been initiated by Basavaraja
et al. [2], Jung and Choi [18], Dimarogonas and Kollias [26],
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and Peng and Zhu [27] and vibration control by Lee and
Wereley [23], Choi et al. [24], ElWahed et al. [28], and Lim et
al. [29].

To describe the rheological behaviour of viscoplastic
�uids in complex geometries, the Bingham model is used
[8, 13, 15, 16, 21]. Recently, the nonlinear model of Shulman
et al. [21] has been successfully applied [8, 13, 15, 16, 20]. �e
constitutive equation for this model is given as follows:

� = [�1/�0 + (� ̇�)1/�]�, (1)

where � is the shear stress, �0 is the yield shear stress, � is
the coe�cient of plastic viscosity, ̇� is the shear strain rate,
and m and 
 are the power-law exponents. By reducing the
coe�cients in the Shulman equation one can obtain simpler
models describing the �ow of a viscoplastic �uid.

�e most popular model of the ERF is the Bingham
model for which � = 
 = 1 in (1). Recently, the nonlinear
model of Herschel-Bulkley has been successfully used to
describe the viscoplastic behaviour of nonNewtonian ERFs.
�e constitutive equation for this model is as follows [5, 30,
31]:

� = �0 + (� ̇�)1/�. (2)

�e purpose of this paper is a study of pressure distribu-
tion in a �ow of the Herschel-Bulkley ERF—with a fractional
power-law exponent [8]—in the clearance modelled as a
narrow space between two surfaces of revolution shown in
Figure 1. Using the method of averaged inertia [32] (similar
method is used in [33]), the in�uence of inertia terms of
the equations of motion and viscoplastic behaviour on this
distribution is analysed. To solve the problem we will use
the lubrication approximation theory to the �ow in a narrow
clearance [8, 10, 15, 16, 25].

2. Equations of Motion of the ERF
�e yield shear stress for the ERF varies with respect to the
electric eld. According to the experimental results reported
in Shulman et al. [21], Shulman and Nosov [22], Jordan and
Shaw [34], and Otsubo [35], the relation between the yield
shear stress �0 and the electric eld strength E is given as
follows:

�0 (�) = ( �2ℎ)
�, (3)

where � is the magnitude of the vector E but � and 2ℎ are
the applied voltage and the lm thickness, respectively. Both
parameters  and � are the experimental constants of which
the range of the exponent � is 1 to 2.4 (Jordan and Shaw [34],
Otsubo [35]). Other experimental data (Whittle et al. [36])
suggest that the yield shear stress for some ERFs is as follows:

�0 (�) = 1 ( �2ℎ) + 2( �2ℎ)
2, (4)

where 1 and 2 are constants; for relatively high eld
strengths a simpler formula may be used

�0 (�) = ( �2ℎ)
2, (5)

where  is an experimental constant.

�e three-dimensional constitutive equation for the
Herschel-Bulkley ERF has the form [15, 16, 25]:

T = −�1 +�A1, � = [�0 + (��)1/�]�−1,
� = [12 tr (A21)]1/2,

(6)

where 1 is the unit tensor, p is the pressure, A is second
invariant of the stretching tensorA1 (the rst Rivlin-Ericksen
tensor) dened by

A1 = L + L
�, L = grad k, (7)

and v is velocity vector.
�e general equations of motion of the Herschel-Bulkley

�uid have a form:

(i) equation of continuity:

div k = 0, (8)

(ii) equation of momentum

��k�� = divT, (9)

or

��k�� = −∇� + divΛ, (10)

where

Λ = �A1; (11)

here� is a coe�cient of viscoplasticity.
Let us consider the Herschel-Bulkley ERF in a clearance

between xed surfaces of revolution. �e �ow conguration
is shown in Figure 1. �e surfaces of revolution are dened
by function �(�) which denotes the radius of the median
between the surfaces, plus function ℎ(�) which denotes the
distance to each surfaces from the median, measured along
a normal to the median. An intrinsic curvilinear orthogonal
coordinate system �,  , ! is also depicted in Figure 1.

�e physical parameters of the lubricant �ow are the
velocity components "�, "�, and pressure �. With regard
to the axial symmetry of the �ow these parameters are not
dependent on the angle  .

�e assumption typical for the �ow in a narrow clearance
[2, 8, 15, 16]

ℎ (�) ≪ � (�) , (12)

can be used to make order-of-magnitude arguments for (8) ÷
(11).

A further simplication comes by noting that—in accor-
dance to the lubrication approximation—themost important
changes in an annular channel occur in the normal (to the
channel median) direction. �is leads to the assumption
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Figure 1: �e geometry of a curvilinear clearance between two
surfaces of revolution.

that the �ow is nearly parallel to the surfaces bounding the
clearance, so that

"� ≪ "�, $$� ≪ $$! , (13)

in an intrinsic coordinate system.
If some asymptotic transformations are made, the same

as in (Falicki [8], Walicka [15, 16]), these equations can be
reduced to a simpler form:

1�
$ (�"�)$� + $"�$! = 0, (14)

�("� $"�$� + "� $"�$! ) = −���� + $'��$! , (15)

where

'�� = * [�0 + (� ////////
$"�$!

////////)
1/�] ,

�0 (�) = [ � (�)2ℎ (�)]
�,

(16)

and * = sgn(�"�/�!). �e signum (sgn) function takes on
the value +1 for a positive argument and −1 for a negative
argument.

�e order-of-magnitude arguments show that

� = � (�) , (17)

is a function of � only.
For a majority of greases, molten polymers, mush metals,

and ERFs, the values of a yield shear stress are contained in
the limits: 0(1) ≤ �0 ≤ 0(3), where 0() ∼ 10� and denotes
the order of magnitude, but the exponent � is equal to: � =4/3 or � = 2.5, and it is not an integer number (Falicki [8],
Roussel [12]).

In the �owof a �uidwith the yield shear stress, there exists
a quasi-solid core �ow bounded by surfaces laying at

////!//// = ℎ0 for which the shear stresses are

/////'��///// = �0. (18)

Combining the expressions (16) and (18), one obtains the
boundary conditions on liquid surfaces of the core �ow as

$"�$! = 0 for ! = ±ℎ0. (19)

�e boundary conditions on solid surfaces are stated as
follows:

"� = "� = 0 for ! = ±ℎ. (20)

On the median line there is also

$"�$! = 0 for ! = 0 and hence
/////'��///// = 0 for ! = 0.

(21)

Moreover, in the inlet and the outlet of the clearance condi-
tions for the pressure can be written in the form

� (�	) = �	, � (�
) = �
, (22)

where �	 denotes the inlet coordinate and �
—outlet coordi-
nate.

3. Solution to the Equation of Motion

Taking into account (14), one can rearrange (15) writing it in
the form

�( 1�
$ (�"2�)$� + $$! ("�"�))

= −���� + $$! (* [�0 + (� ////////
$"�$!

////////)
1/�]) .

(23)

�en, averaging the le�-hand side of (23) across the clear-
ance thickness, solving the obtained equation and taking
into account the boundary conditions (20)–(22) we get the
following result for the pressure distribution [8, 15, 16, 37–39]:

� = �
 + [* (�) − *
] + [E (�) − E
] ,
*
 = * [�
] , E
 = E [�
] . (24)

Functions *(�) andE(�) depend upon the solutionF� of the
equation characteristic to the �ow of a Herschel-Bulkley �uid
in the clearance; this equation has a form [8, 16, 37, 39]:

(F − 1)�+1(� + 1) (� + 2) [F (� + 1) + 1] − GF2 = 0, (25)

where

G = �H4I�ℎ2��0 , F = ℎℎ0 , (26)

and H = 2I�∫+ℎ−ℎ "��� is the �ow rate.
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Its analytical solution exists only for largeG (≥5) and for
smallG (≤0.05) (Falicki [8], Walicka [15, 16, 37], andWalicki
and Walicka [39]):

F� = 3�3� − 1 + [(� + 2)G]1/�,
F� = 1 + [(� + 1)G]1/(�+1). (27)

For intermediate values ofG the solutions of (25) may be
found only numerical methods. Figures 2 and 3 illustrate the
progression of solutions F� versus G for two values ofm [8].
Note that for� = 1, the above values are identical with those
obtained by Covey and Stanmore [40].

�e functions *(�) andE(�) are given by expressions

* (�) = −∫ �0F�ℎ ��,
E (�) = −�∫ 1�ℎ $$� (�M) ��, (28)

where

M = �2�0 ℎ3
(� + 1)2�2F2�� (1 − 1F�)

2�+2

× [1 − 3� + 4(� + 2) (2� + 3) (1 − 1F�)] .
(29)

Note that the nal formof *(�) andE(�) depend—for�(�) =�
 = const—on the values of G and�:

(i) for large values of G and exponent � being a natural
number there are

* (�) = − (�
2 )�
× [( 3�3� − 1) N(0; �) (�) + (��)1/�N(1/�;0) (�)] ,(28a)

E (�) = − �2��2P� (
�
2 )2��

× {{{
T�2�∑
	=0
(−1)	( 3�3� − 1)

2�−	V	2�+2

× 2�−	∑
=0

(W�)/�V2�−	X(;�)(�) (�)

+ Y�2�−1∑
	=0

(−1)	( 3�3� − 1)
2�−1−	V	2�+2

×2�−1−	∑
=0

(W�)/�V2�−1−	X(;�)(�) (�)}}}
,

(29a)

where

�� = (� + 2) �H
22−��I����
 , W� = (3� − 13� )���,

T� = 2(� + 1)2,
Y� = 3� + 4, P� = (� + 1)2 (� + 2) (2� + 3) ,

N(�; �) (�) = ∫ (�−�ℎ−(1+2�)−�(1−��)) ��,
V�� = �!

! (� − )! , ! = 1 ⋅ 2 ⋅ 3 ⋅ ⋅ ⋅ ⋅ ⋅ , � > ,
X(; �)(�) (�) = ∫ 1�ℎ(�1−/� ℎ3−2/�−�(2�−))���.

(30)

(ii) for large values ofG and exponent� being a rational
number the formula for *(�) is similar butE(�) takes
the form

E (�) = − �2��2P� (
�
2 )2��

× {T�
�1∑
	=0
(−1)	Γ	2�+2

× �1−	∑
=0

Γ2�−	( 3�3� − 1)
(��)2−(	+)/�N(	+;�)(�) (�)

+ Y�
�2∑
	=0
(−1)	Γ	2�+2

× �2−	∑
=0

Γ2�−1−	( 3�3� − 1)
(��)2−(1+	+)/�

× N(1+	+;�)(�) (�) } ,
(31a)

where

�1 = � (2�) , �2 = � (2� − 1) ,
Γ	� = 1f!∏	�=1 ( + 1 − h) , Γ0� = 1,

N(�; �)(�) (�) = ∫ 1�ℎ(�−1+(�/�)ℎ−1+(2�/�)−��)
���,

 = {f + j,1 + f + j,

(32)

and �() denotes an entire part of  :  − 1 < �() ≤ ;
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(iii) for small values of G there are

* (�) = − (�
2 )�

× [N(0; �) (�) + (V�)1/(�+1)N(1/(�+1);�) (�)] ,
(33a)

E (�) = − 2�2�T��2 (
�
2 )��

× [(V�)2N(0;�)(�+1) (�)
− (2 + ��) (V�)(2�+3)/(�+1)N(1;�)(�+1) (�)
+ 3 (1 + ��) (V�)2(�+2)/(�+1)N(2;�)(�+1) (�)
−6��(V�)(2�+5)/(�+1)N(3;�)(�+1) (�)] ,

(34a)

where

V� = (� + 1) �H
22−��I����
 ,

�� = 3� + 4(� + 2) (2� + 3) ,
N(; �)(�+1) (�)
= ∫ 1�ℎ (�−(�+1+)/(�+1) ℎ−(�+1+2)/(�+1)−2��)���.

(35)

For �0(�) = �0 = const (the coe�cient � = 0 but  = �0) there
are [8]

(iv) for large values of G and exponent � being a natural
number:

* (�) = −�
 [( 3�3� − 1) N(0) (�) + (��)1/�N(1/�) (�)] ,(28b)
E (�) = − ��2�0�2P�

× {{{
T�2�∑
	=0
(−1)	( 3�3� − 1)

2�−	V	2�+2

× 2�−	∑
=0

(W�)/�V2�−	X()(�)

+ Y�2�−1∑
	=0

(−1)	( 3�3� − 1)
2�−1−	V	2�+2

×2�−1−	∑
=0

(W�)/�V2�−1−	X()(�)}}}
,

(29b)

where

�� = (� + 2) �H4I��0 , N(�) (�) = N(�;0) (�) ,
X()(�) (�) = X(; 0)(�) (�) ;

(36)

(v) for large values ofG and exponent� being a rational
number the formula for *(�) is similar andE(�) takes
the form

E (�) = − ��2�0�2P�
× {T�

�1∑
	=0
(−1)	Γ	2�+2

× �1−	∑
=0

Γ2�−	( 3�3� − 1)
(��)2−(	+)/�N(	+)(�)

+ Y�
�2∑
	=0
(−1)	Γ	2�+2

× �2−	∑
=0

Γ2�−1−	( 3�3� − 1)
(��)2−(1+	+)/�

×N(1+	+)(�) } ,
(31b)

where

N(�)(�) (�) = N(�; 0)(�) (�) ; (37)

(vi) for small values of G there are

* (�) = −�0 [N(0) (�) + (V�)1/(�+1)N(1/(�+1)) (�)] , (33b)
E (�) = − 2��2�0T��2

× [(V�)2�(1) (�)
− (2 + ��) (V�)(2�+3)/(�+1)N(1)(�+1) (�)
+ 3 (1 + ��) (V�)(2(�+2))/(�+1)N(2)(�+1) (�)
−6��(V�)(2�+5)/(�+1)N(3)(�+1) (�)] , (34b)
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where

�(1) (�) = �(1; 0) (�) , N(0) (�) = N(0;0) (�) ,
N(1/(�+1)) (�) = N(1/(�+1); 0) (�) ,

N(�)(�) (�) = N(�; 0)(�) (�) , N()(�+1) (�) = N(;0)(�+1) (�) .
(38)

�e prim denotes the di�erentiation with respect to �.
4. Examples of Flow and Graphic Presentation

of Some Results

Taking into account the results obtained in the previous
section we will present the pressure distribution in the
clearance of constant thickness between two parallel disks
as shown in Figure 4; to this aim introduce the following
dimensionless parameters:

�̃ = ��
 , �̃ = ��
 = �̃,

�̃ = � (� − �
) (2ℎ)4/�H2−2/�(2I)2−2/��2/��4−2/�
 �� ,

�� = �H2−1/�
(2I)2−1/��1/��3−1/�
 (2ℎ)1−2/� ,

GSV = 2��−2�Hℎ��−2
I��
���
 ,

(39)

if � = 0, then  = �0 = const and

GSV = �H4I�
ℎ2��0 ; (40)

here �� is the modied Reynolds number, and GSV is the ER
plasticity number (de Saint-Venant number). Note that large
values of the ER plasticity number correspond to the �ow
with small core (small ℎ0/ℎ).

Nondimensional formula for pressure distribution in ER
�ow of the Herschel-Bulkley �uid has the form

�̃ = *̃ (�̃) − *̃
 + Ẽ (�̃) − Ẽ
; (41)

this formula may be used to model the pressure distribution
in a footstep bearing.

Note that for � = 1, all the above formulae represent
the Bingham ERF �ow. �e nondimensional pressure dis-
tributions for the Herschel-Bulkley ERF �ow in a clearance
between two parallel disks are presented in Figures 5, 6, 7, 8,
and 9. �e values of nondimensional parameters such as ��,GSV, andm, are dened on the experimental data taken from
the measurements presented in [8, 12].

Let us consider now the pressure distribution in the
clearance of constant thickness between two concentric

10−2 10−1 100 101 102
100

101

K

Xs
Xs =

3m

3m − 1
[(m + 2)K]1/m

Xs = 1 + [(m + 1)K]1/(m+1)

Figure 2: Curves illustrating the progression ofF� versusG for� =2.5; continuous lines determine the exact solution.
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[(m + 2)K]1/m

Xs = 1 + [(m + 1)K]1/(m+1)

Figure 3: Curves illustrating the progression ofF� versusG for� =4/3; continuous lines determine the exact solution.

spheres surfaces shown in Figure 10. To this aim introduce
the following dimensionless parameters:

�̃ = ��� = o, �̃ = ��� = sino,

�̃ = � (� − �
) (2ℎ)4/�H2−2/�(2I)2−2/��2/��4−2/�� �� ,

�� = �H2−1/�
(2I)2−1/��1/��3−1/�� (2ℎ)1−2/� ,

GSV = 2��−2�Hℎ��−2
I������
 .

(42)
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Note that if � = 0 then  = �0 = const and GSV =�H/4I��ℎ2��0 . �e nondimensional pressure distributions
are also given by formula (41); at present it models the
pressure distribution in a spherical bearing.

�e pressure distributions for the Herschel-Bulkley ERF
�ow in a clearance between concentric spherical surfaces are
presented in Figures 11, 12, 13, and 14.

5. Conclusions

From the general considerations, formulae and graphs pre-
sented here for the Herschel-Bulkley ERF �ows in the narrow
clearance of constant thickness between parallel disks and
concentric spherical surfaces shown in Figures 4 and 10 one
may conclude that the pressure values

(i) decrease with the increase of the modied Reynolds
number ��,

(ii) increase with the decrease of the nonlinearity index�,
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Figure 6: Pressure distributions �̃ in the clearance between parallel
disks for di�erent values of ��, large value ofGSV = 5, and exponent2� (� = 4/3) being a rational number.
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Figure 7: Pressure distributions �̃ in the clearance between parallel
disks for di�erent values of ��, small value of GSV = 0.01, and
exponent 2� (� = 4/3) being a rational number.

(iii) increase with the decrease of the de Saint-Venant ER
number GSV,

(iv) are larger between concentric spherical surfaces than
these ones between parallel disks for 2� being natural
numbers and large values ofGSV,

(v) for� being rational numbers it is inversely.

For small values of the de Saint-Venant ER number G��
the in�uence of the Reynolds number �� on the pressure
values is inconsiderable. �erefore, for these values of G��
the Herschel-Bulkley ERF �ows may be considered without
inertia e�ects. It is seen from the results obtained here, that
the pressure values are larger for the �ows between concentric
spherical surfaces than these values for the �ows between
parallel disks.
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parallel disks for constant value of ��(=1), di�erent values of GSV,
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Generally, it may be concluded that for the Herschel-
Bulkley ERF �ows in the clearance between two surfaces of
revolution the pressure values

(i) are larger for the �ow in the clearances with curvi-
linear generating lines than these ones for the �ow
in clearances with rectilinear generating lines for the
nonlinearity index 2� being natural numbers; for �
being rational numbers this phenomenon progresses
inversely.

Note that the results obtained here for �0 = const and� being natural numbers are similar to those of the work by
Walicki and Walicka [39].

�e formulae for the pressure distribution obtained pre-
viously may be used to model its distribution in slide thrust
bearings—of arbitrary curvilinear shapes—lubricated by ER
lubricants.

R = Rs sin �
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x
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Ri = Rs sin �i
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Ro = Rs sin �o
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−
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Figure 10: Clearance between concentric spherical surfaces.
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Figure 11: Pressure distributions �̃ in the clearance between con-
centric spherical surfaces for di�erent values of ��, large value ofGSV = 5, and exponent 2� (� = 2.5) being a natural number.
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Figure 12: Pressure distributions �̃ in the clearance between
concentric spherical surfaces for di�erent values of ��, large value
of GSV = 5, and exponent 2� (� = 4/3) being a rational number.
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Figure 13: Pressure distributions �̃ in the clearance between
concentric spherical surfaces for di�erent values of ��, small value
ofG�� = 0.01, and exponent 2� (� = 4/3) being a rational number.
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Figure 14: Pressure distributions �̃ in the clearance between
concentric spherical surfaces for di�erent values of ��, small value
ofGSV = 0.05 and exponent 2� (� = 4/3) being a rational number.

Nomenclature

��: Auxiliary function dened by formulae
(30)1 or (36)1W�: Auxiliary function dened by formula
(30)2E(�): Auxiliary function dened by formula
(28)2 or (29a), (29b), (31a), and (31b)
or (34a) and (34b), respectivelyℎ : Half of the �uid lm thicknessX(; �)(�) : Auxiliary function dened by formula

(30)8N(�; �)(�): Auxiliary function dened by formula
(30)6

N(; �)(�) (�): Auxiliary function dened by formula

(35)3G : Plasticity numberGSV: De Saint-Venant plasticity number� : Power-law index� : PressureH : Flow rate�, �(�): Local radius�	: Inlet radius to the bearing clearance�
: Outlet radius from the bearing clearance��: Modied Reynolds number* : Signum function*(�): Auxiliary function dened by formulae
(28)1, (28a), and (28b) or (33a) and (33b),
respectively'��: Component of the shear stress tensor� : Applied voltage"�, "�: Velocity components, � : ER experimental constants� : Fluid density.o : Central angle of spherical surface� : Shear stress�0: Yield shear stress.
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