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Domain wall motion in antiferromagnets triggered by thermally induced magnonic spin currents is
studied theoretically. It is shown by numerical calculations based on a classical spin model that the wall
moves towards the hotter regions, as in ferromagnets. However, for larger driving forces the so called
Walker breakdown which usually speeds down the wall is missing. This is due to the fact that the wall
is not tilted during its motion. For the same reason antiferromagnetic walls have no inertia and, hence,
no acceleration phase leading to higher effective mobility.

The interest in antiferromagnetic and ferrimagnetic
materials has increased recently for several reasons. One
is the more complex spin structures which lead to addi-
tional spin wave modes with higher frequencies and,
consequently, faster spin dynamics than in ferromagnets
(FMs). Possible applications are in the field of ultrafast spin
dynamics [1,2]. Also, ferrimagnets and antiferromagnets
(AFMs) have attracted a lot of attention as low-damping,
insulating magnets in the emerging field of spincalori-
tronics [3–5] which is on the combined transport of spin
and heat. Finally, antiferromagnets are also discussed as
future material for antiferromagnetic spintronics, since it
has been shown that despite their lack of a macroscopic
magnetization their magnetic state can be controlled via
spin torque switching and can be read out via their
magnetoresistive properties [6]. Spintronic phenomena call
for exploitation in devices with magnetic storage function-
alities, where a magnetic nanostructure has to be controlled
efficiently and fast. The information can be stored in
magnetic domains, in isolated magnetic nanoparticles, or
even in domain walls (DWs) [7]. For the latter case
synthetic AFMs have been shown to pave a new road
towards higher DW mobility [8].
For a ferromagnetic system, in Ref. [9] the existence of

thermally driven domain-wall motion in temperature gra-
dients was demonstrated by computer simulations based on
different approaches, an atomistic spin model as well as a
micromagnetic model based on the Landau-Lifshitz-Bloch
(LLB) equation of motion. A thermodynamic explanation
for this kind of DWmotion rests on the minimization of the
free energy of the DW (or the maximization of entropy).
For a DW at finite temperature, the free energy is
ΔFðTÞ ¼ ΔU − TΔS, where ΔU is the internal energy
and ΔS the entropy of the DW. It is a monotonically
decreasing function of temperature [9–11]. This rather
general argument explains a DW motion towards the hotter
parts of the sample where the free energy is lower [11–13]
and it can be expected to hold for other magnetic textures as
well. Furthermore, it has been shown by Schlickeiser et al.

that the DW motion is caused by a so-called entropic
torque. The exchange stiffness is weaker for higher temper-
ature and therefore, an effective torque on the DW is created
driving it towards the hotter region [11].
A more microscopic explanation for DW motion in

temperature gradients rests on the continuous stream of
thermally excited magnons from the hotter towards the
colder region with a transfer of angular momentum pushing
the wall in the direction opposite to the magnonic spin
current [14]. Theoretical investigations based on these
arguments show that the magnonic torque should be
analogous to the macroscopic entropy torque [15].
Like ferromagnets, antiferromagnets are materials with

magnetic long-range order, but while neighboring atomic
magnetic moments are aligned parallel in a FM, in an AFM
they are antiparallel and compensate each other. Thus,
there is no net magnetization. The antiferromagnetic order
parameter, which is referred to as staggered magnetization,
is hence defined as 2n ¼ m1 −m2, where m1;2 are the
magnetizations of the sublattices.
Although an AFM differs from a FM on a microscopic

level, their thermodynamic equilibrium properties, as, e.g.,
the free energy, are the same. This is due to the fact that
these properties result solely from the Hamiltonian of the
system. For the simple case of a two-sublattice AFM with
only nearest-neighbor interaction the identical transforma-
tion to a model with reversed sign of the exchange constant
J and of all spins in one sublattice leads directly to a
ferromagnetic model. Accordingly, the temperature
dependence of the exchange stiffness should be identical,
which suggests that antiferromagnetic DWs might behave
as ferromagnetic ones. Note, however, that the argument
above is solely classical and quantum mechanical correc-
tions may lead to additional effects where equilibrium
properties of FMs and AFMs deviate.
On the other hand, the dispersion relations of the spin

waves in FM and AFM are clearly different. In particular, in
an AFM there exist circularly and linearly polarized spin
waves [16,17]. Based on a microscopic spin wave model, it
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was argued recently that the interaction of spin waves with
DWs in AFMs—and consequently their dynamics—should
be distinct from the DW dynamics in FMs. The mechanism
of DW motion driven by antiferromagnetic spin waves
should at the microscopic level vary with the excited spin
wave mode: while circularly polarized spin waves carrying
angular momentum cause the DW to precess and get
reflected pushing the DW away from the source, linearly
polarized spin waves pass through the wall without
reflection dragging the DW towards the source [17,18].
Following these arguments a rather complex behavior of
AFM DWs could be expected.
In this Letter, we study the thermally driven DW motion

in AFMs using an atomistic approach by solving the
stochastic Landau-Lifshitz-Gilbert equation of motion for
an atomistic spin model. Comparing our results with
the DW dynamics in FMs we find similarities as well as
clear differences. For small temperature gradients the wall
velocity in AFMs is identical to the one in FMs while for
larger driving forces the so-called Walker breakdown—
which usually speeds down the DW—is missing.
Furthermore, the DW is not tilted during its motion so
that it has no inertia and, hence, no acceleration phase
leading to higher effective mobility.
For our study we first simulate the dynamics of a DW in

a thermal gradient based on a model of classical spins in
the form of normalized magnetic moments Si ¼ μi=μs on a
simple cubic lattice. We consider isotropic Heisenberg
exchange interactions for nearest neighbors and a biaxial
anisotropy. The Hamiltonian reads

H ¼ −J
X
hi;ji

SiSj − dx
X
i

ðSxi Þ2 − dz
X
i

ðSzi Þ2; ð1Þ

with J < 0 for antiferromagnetic order. Here dz > dx > 0
are anisotropy constants defining an easy axis in the
z direction and an intermediate axis in the x direction.
The dynamics of the normalized magnetic moments

at finite temperature are given by the stochastic Landau-
Lifshitz-Gilbert equation,

∂Si

∂t ¼ −
γ

μsð1þ α2ÞSi × ½Hi þ αðSi ×HiÞ�; ð2Þ

where γ is the gyromagnetic ratio and Hi ¼ −∂H=
∂Si þ ζiðtÞ. The first term represents a precession of the
magnetic moments around an effective field Hi, while the
second includes phenomenological relaxation with damp-
ing constant α [19,20]. The temperature in this model is
included within the framework of Langevin dynamics
by an additional white noise term ζiðtÞ in the effective
field [21,22].
The simulations are based on the numerical integration of

the stochastic Landau-Lifshitz-Gilbert equation using Heun’s
method [22] with time step Δt ¼ 1.76 × 10 4 μs=ðγJÞ.
We simulate an elongated three-dimensional model with

16 × 16 × 256 spins featuring open boundary conditions and
an easy axis with dz ¼ 0.1 J while dx is varied. After
initialization and relaxation of the DW, a linear thermal
gradient is applied to the system, where the temperature
increases along the z direction from T ¼ 0 to
T ¼ 0.57 Tc=a, where Tc is the critical temperature and
a the lattice parameter. The damping constant is set to
α ¼ 0.01 and absorbing boundary conditions are introduced
at the cold end to avoid spin wave reflection.
We start with a comparison of thermally driven DW

motion in ferromagnetic and antiferromagnetic systems
(Fig. 1). The first result we obtain is that in both systems the
DW moves towards the hotter region, as expected from the
thermodynamic considerations. But there is a significant
difference in the behavior of the DW during its motion.
The dynamics of the ferromagnetic DW profile reveals an
acceleration phase during which the DW is forced out of
its easy x-z plane. This tilting depends strongly on the
anisotropy dx, the damping parameter α, and the strength of
the thermal gradient. After that acceleration the DW moves
with constant velocity and constant tilting angle. For larger
gradients eventually the wall starts to rotate while it is
moving and the velocity decreases (see Fig. 4). This is the
so-called Walker breakdown, which was observed for
field-, current- and also thermally driven DW motion in
FMs [9,23–25].
In case of the AFM there is no acceleration phase

and no tilting of the plane containing the DW. Instead,
the wall remains in its initial plane and moves with

(a)

(b)

(c)

FIG. 1. Motion of the DW in a thermal gradient. Linear
temperature gradient ΔT=Δz ¼ 0.56 × 10−3 Tc=a (a), and pro
file of the DW at different times in a ferromagnetic (b), and
antiferromagnetic (c) system with dx ¼ 0.02 J.
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FIG. 2. Displacement of the DW versus time. Comparison 
between ferromagnetic (solid) and antiferromagnetic (dashed) 
systems with different intermediate anisotropies dx in a thermal 
gradient of b..T I b,_z = 1.67 X w-3 Tel a. 

constant velocity. Note that the movement of the DW in 
Fig . 1 shows slight deviations from a pure ballistic motion 
with constant velocity due to an additional diffusive 
component. 

The tilting (or the lack of it) is crucial for the dynamics of 
the DW as can be seen in Fig. 2 . For the ferromagnetic 
system three cases can be distinguished. In the case of high 
anisotropy dx = 0.04 J, the motion of the DW after the 
acceleration phase is linear and the velocity is maximal. In 
the case of a smaller anisotropy of dx = 0.01 J, the DW 
motion is accompanied by oscillations that are typical for 
the Walker breakdown, where the DW starts to precess and 
the mean velocity decreases. For dx = 0 there is no favored 
orientation of the wall and the DW rotates continuously and 
moves constantly with reduced velocity. The DW motion in 
the AFM, however, is independent of the anisotropy. There 
is no tilting of the DW and therefore no precession of the 
DW and no Walker breakdown. The DW mobility is much 
higher in AFMs for large driving forces above the Walker 
breakdown. 

The absence of a Walker breakdown results from the 
symmetry of the torques acting on the DW. In a temperatme 
grad ient the exchange stiffness (the thermodynamic aver
age of the microscopic exchange interaction) is space 
dependent and decreases with increasing temperamre, 
vanishing at the Curie point. Considering the central plane 
of the DW the space dependent exchange field results 
in two torques foUowing from the equation of motion 
rEq. (2) l , one contribution (the double cross product) which 
drives the wall and one contribution (the cross product) 
which-in a FM-would tilt the walJ (see Fig . 3). In an 
AFM the first term is antisymmetric, pointing in an 
opposite direction on the two different sublattices, as it 
is necessary to drive the DW. The second torque, however, 
is symmetric pointing into the same direction on the two 
sublanices. In a FM it would tilt the wall but in an AFM 
these two contributions cancel, which explains the fact that 

FIG. 3. Sketch of the torques acting on the central plane of a 
DW in a thermal gradient The two sublattices of the AFM are 
occupied with blue and yellow spins, respectively. 

the DW slides easily without leaving the easy plane. The 
DW in an AFM is displaced but not tilted in a temperature 
gradient. Consequently, it has no inertia and no Walker 
breakdown occurs. 

As Fig. 4 shows, the DW motion in an AFM is not 
affected by an intermediate anisotropy dx, since the wall 
always stays in .its easy plane. The velocity of the wall is 
then always proportional to the temperature gradient These 
findings are in clear contrast to the movement of the DW in 
the FM, where the velocity collapses at a certain point, the 
Walker breakdown. The position of the breakdown could 
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FIG. 4. DW velocity as a function of temperature gradient in an 
antiferromagnetic (red) and a ferromagnetic (blue) system with 
(a) dx = 0.02 J and (b) dx = O.Ql J. Comparison between 
numerical results (points) and analytical estimates Oines). 

107201 -3 



not be determined exactly, since close to the breakdown the
precession of the DW is very slow and the wall can reach
the end of the system before rotating once. Hence, the
velocity seems to level off before collapsing, which is a
numerical effect.
Since below the Walker threshold the wall velocities in

FMs and AFMs agree a comparison with earlier results for
DW motion in FMs appears useful. Schlickeiser et al. [11]
derived an analytical estimation of the DW velocity and
Walker threshold for DW motion in a temperature gradient
within the framework of the micromagnetic Landau-
Lifshitz-Bloch (LLB) equation in the one-dimensional
limit. For the magnitude of the DW velocity they obtained

vDW ¼ 2γ

Ms

1

α⊥

���� ∂A∂z
����
�
1þ α2⊥

m2
e

�

−
γδwmeð1 − kÞ

2~χ⊥

�∂A=∂z
~Aw

�
2

− 1

s
: ð3Þ

Here, the first line describes the linear increase of vDW
while the second line, related to a rotation of the wall,
contributes only above the Walker threshold ~Aw, which is
given by

~Aw ¼ meMsα⊥δwð1 − kÞ
4~χ⊥

: ð4Þ

Ms is the saturation magnetization (at zero temperature),
while the micromagnetic exchange stiffness AðTÞ, the
transverse susceptibility ~χ⊥ðTÞ, the transverse damping
parameter α⊥ðTÞ, and the reduced equilibrium magnetiza-
tion meðTÞ are temperature dependent, thermodynamic
equilibrium quantities. The factor k ¼ 1 − dx=dz breaks
the symmetry in the x-y plane.
Regarding an AFM we can neglect the second term;

hence, we obtain

vLLBDW ¼ 2γa3

μsα

∂T
∂z

∂A
∂T ; ð5Þ

with α⊥ ¼ α, Ms ¼ μs=a3, and atomic distance a. The
temperature dependence of the transverse damping
constant within the LLB approach is weak and neglected
here as well as the term quadratic in α⊥. To include the
temperature dependence of the micromagnetic exchange
stiffness a simple, linear estimate is AðTÞ ¼ Að0Þ=Tc,
where it is Að0Þ ¼ J=2a in our spin model. This approxi-
mation was used in [11]. In the following, we use a better
low temperature approximation which was calculated with
the classical spectral density method [26,27].

There, it was found that the micromagnetic exchange
AðTÞ scales with the equilibrium magnetization meðTÞ,
AðmeÞ ¼ Að0Þm2

eDðmeÞ, where m2
e dependence comes out

from the free magnon gas approximation (equivalent to the

mean field approximation), and DðmeÞ stands for a small
correction coming from the magnon-magnon interactions.
At low to intermediate temperatures, one can use the well-
known low temperature relation for the equilibrium temper-
ature, me ¼ 1 −Ω, where Ω ¼ WkBT=J0 is the thermally
averaged spin wave occupation defined by the Watson
geometric sum, NW ¼ P

k1=ð1 − γkÞ, and the exchange
interaction, J0 ¼ zJ, z being the number of nearest neigh-
bors and N the number of spins in the lattice, whereas, the
structure factor reads zγk ¼ P

rije
ikrij , where rij is the

connecting to the nearest neighbor vector. As for the small
correction, DðmeÞ ¼ 1 − GkBT=J0, where G is the geomet-
rical sum, NG ¼ P

kγk=ð1 − γkÞ. Hence, the explicit
temperature dependence of me and DðmeÞ can directly
be used to calculate ∂A=∂T, which ultimately determines
the DW velocity [Eq. (5)]. We note here that both
geometrical integrals, W and G, depend on both, the
structure of the exchange interactions and the system size
through γk [28]. In the present work we useW ¼ 1.65 and
G ¼ 0.5, related to the finite size of the atomistic system
utilized in our computer simulations. Excellent agreement
between our analytical estimations of the vAFMDW and
computer simulations is found for a range of thermal
gradients, which allow us to conclude that in AFMs,
as for FM, the so-called entropic torques drive the DW
motion. Note, that for very high driving forces the DW
velocity cannot further increase, but more likely saturates,
as it should be limited by the maximum group velocity of
the excited magnons [18,29]. This limit cannot be further
explored due the finite system size.
Our discussion above rests on Eq. (3), which was derived

for a FM. Though our numerical results suggest agreement
with this equation a strict derivation of the DW velocity
of AFMs in temperature gradients should rest on a
two-sublattice version of the LLB equation [30], an effort
which is beyond the scope of this work. Furthermore, our
discussion above is purely classical. Taking into account
quantum effects the entropic torques in ferro- and anti-
ferromagnets are not necessarily identical. Nevertheless,
their symmetry will be the same and thus our main result,
the inertia-free behavior of the antiferromagnetic DW, will
still hold true. The effects of monochromatic spin waves
[17,18] which can indeed move the AFMDWwall in either
direction vanish in a thermally excited spin wave spectrum.
While circularly polarized spin waves cause the DW to
precess and are reflected, for linearly polarized spin waves
which can be seen as a combination of right- and left-
circularly polarized spin waves there is no net rotation of
the wall. In a temperature gradient right- and left-circularly
polarized spin waves are excited equally. Hence, on average
there is no (net) rotation of the DW and therefore no
reflection.
In conclusion, DWs in antiferromagnets are driven by

thermal gradients and move towards the hotter region. On a
macroscopic level this is explained by the minimization of
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the free energy and agrees with older results for thermally
driven DW motion in ferromagnets. However, in contrast
to FMs the dynamics of the wall is independent of the
intermediate anisotropy which defines the easy plane
containing the wall magnetization. The reason for this is
the fact that those torques which—in a FM—tilt the wall
cancel each other in the two sublattices of the AFM. This
has two consequences. One is the absence of the Walker
breakdown in AFMs leading to a higher wall mobility. This
is increasingly important in the limit of low intermediate
anisotropy where DWs in FMs always must precess with
low DW velocity. The other consequence of the lack of DW
tilting is that DW in AFMs are massless. Because of the
lack of inertia they do not accelerate but reach their
stationary DW velocity instantaneously. This is very
important for experiments and technical applications using
pulsed driving forces, since one could operate on much
shorter time scales. Furthermore, the argument of counter-
acting torques leading to massless DWs is not restricted to
temperature gradients but also applies to other driving
mechanisms in antiferromagnets featuring staggered tor-
ques, like Néel spin-orbit torques [29] or current driven DW
motion in synthetic antiferromagnets [8,31].

We thank the DFG for financial support through the
SFB 767 and SPP 1538. U. A. gratefully acknowledges
support from EU FP7Marie Curie Zukunftskolleg Incoming
Fellowship Programme, University of Konstanz (Grant
No. 291784).

[1] A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys.
82, 2731 (2010.

[2] A. Kirilyuk, A. V. Kimel, and T. Rasing, Rep. Prog. Phys.
76, 026501 (2013).

[3] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda,
T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E.W. Bauer,
S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).

[4] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater.
11, 391 (2012).

[5] S. R. Boona, R. C. Myers, and J. P. Heremans, Energy
Environ. Sci. 7, 885 (2014).

[6] P. Wadley et al., Science, doi:10.1126/science.aab1031
(2016).

[7] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320,
190 (2008).

[8] S. H. Yang, K. S. Ryu, and S. Parkin, Nat. Nanotechnol. 10,
221 (2015).

[9] D. Hinzke and U. Nowak, Phys. Rev. Lett. 107, 027205
(2011).

[10] D. Hinzke, N. Kazantseva, U. Nowak, O. N. Mryasov, P.
Asselin, and R.W. Chantrell, Phys. Rev. B 77, 094407
(2008).

[11] F. Schlickeiser, U. Ritzmann, D. Hinzke, and U. Nowak,
Phys. Rev. Lett. 113, 097201 (2014).

[12] X. S. Wang and X. R. Wang, Phys. Rev. B 90, 014414
(2014).

[13] P. Yan, Y. Cao, and J. Sinova, Phys. Rev. B 92, 100408
(2015).

[14] P. Yan, X. S. Wang, and X. R. Wang, Phys. Rev. Lett. 107,
177207 (2011).

[15] S. K. Kim and Y. Tserkovnyak, Phys. Rev. B 92, 020410
(2015).

[16] F. Keffer, H. Kaplan, and Y. Yafet, Am. J. Phys. 21, 250
(1953).

[17] E. G. Tveten, A. Qaiumzadeh, and A. Brataas, Phys. Rev.
Lett. 112, 147204 (2014).

[18] S. K. Kim, Y. Tserkovnyak, and O. Tchernyshyov, Phys.
Rev. B 90, 104406 (2014).

[19] D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153
(1935); [Ukr. J. Phys. 53 (2008)].

[20] T. Gilbert, Phys. Rev. 100, 1243 (1955); T. L. Gilbert and
J. M. Kelly, in Conf. Magnetism and Magnetic Materials,
Pittsburgh, PA, 1955 (American Institute of Electrical
Engineers, New York, 1955), pp. 256 263; IEEE Trans.
Magn. 40, 3443 (2004).

[21] W. F. Brown, Phys. Rev. 130, 1677 (1963).
[22] U. Nowak, Handbook of Magnetism and Advanced Mag

netic Materials (John Wiley & Sons, Chichester, 2007),
Vol. 2, pp. 858 876.

[23] N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406
(1974).

[24] A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Euro
phys. Lett. 69, 990 (2005).

[25] C. Schieback, D. Hinzke, M. Kläui, U. Nowak, and P.
Nielaba, Phys. Rev. B 80, 214403 (2009).

[26] A. Cavallo, F. Cosenza, and L. De Cesare, in New develop
ments in Ferromagnetism Research, edited by V. N. Murray
(Nova Science Publischers, Inc., New York, 2005), Chap. 6,
pp. 131 187.

[27] R. Bastardis, U. Atxitia, O. Chubykalo Fesenko, and H.
Kachkachi, Phys. Rev. B 86, 094415 (2012).

[28] U. Atxitia, D. Hinzke, O. Chubykalo Fesenko, U. Nowak,
H. Kachkachi, O. N. Mryasov, R. F. Evans, and R.W.
Chantrell, Phys. Rev. B 82, 134440 (2010).

[29] O. Gomonay, T. Jungwirth, and J. Sinova, Phys. Rev. Lett.
117, 017202 (2016).

[30] U. Atxitia, P. Nieves, and O. Chubykalo Fesenko, Phys.
Rev. B 86, 104414 (2012).

[31] M. Kuteifan, M. V. Lubarda, S. Fu, R. Chang, M. A.
Escobar, S. Mangin, E. E. Fullerton, and V. Lomakin,
AIP Adv. 6, 045103 (2016).

107201-5


