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ABSTRACT

Vortex dipoles provide a simple representation of localized atmospheric jets. Numerical simulations of a

synoptic-scale dipole in surface potential temperature are considered in a rotating, stratified fluid with

approximately uniform potential vorticity. Following an initial period of adjustment, the dipole propagates

along a slightly curved trajectory at a nearly steady rate and with a nearly fixed structure for more than 50

days. Downstream from the jet maximum, the flow also contains smaller-scale, upward-propagating inertia–

gravity waves that are embedded within and stationary relative to the dipole. The waves form elongated

bows along the leading edge of the dipole. Consistent with propagation in horizontal deformation and

vertical shear, the waves’ horizontal scale shrinks and the vertical slope varies as they approach the leading

stagnation point in the dipole’s flow. Because the waves persist for tens of days despite explicit dissipation

in the numerical model that would otherwise damp the waves on a time scale of a few hours, they must be

inherent features of the dipole itself, rather than remnants of imbalances in the initial conditions. The wave

amplitude varies with the strength of the dipole, with waves becoming obvious once the maximum vertical

vorticity in the dipole is roughly half the Coriolis parameter. Possible mechanisms for the wave generation

are spontaneous wave emission and the instability of the underlying balanced dipole.

1. Introduction

Prominent inertia–gravity waves are often found be-

neath the downstream portion, or exit region, of local-

ized upper-tropospheric jets (see the review by Uccel-

lini and Koch 1987). Upward-propagating waves can

also appear with a similar relation to the wind speed

maximum, but in the stratosphere, above the tropo-

spheric jet (e.g., Guest et al. 2000; Plougonven and

Teitelbaum 2003). While the source of these observed

waves is not yet settled, one possibility is that they arise

spontaneously from the larger-scale jet. We examine

that possibility in the present paper using numerical

simulations of a dipole vortex in a rotating, stratified

fluid. Because it possesses a localized jet between the

two counter-rotating constituent vortices, the dipole

vortex is a natural idealization of atmospheric “jet

streaks” (Houghton et al. 1981; Van Tuyl and Young

1982; Cunningham and Keyser 2004).

Large-scale atmospheric and oceanic flows outside

the Tropics are nearly balanced; that is, they can be

described to a reasonable approximation by reduced

equations sets, such as the quasigeostrophic (QG)

equations, that filter inertia–gravity waves. In certain

situations, however, inertia–gravity waves may arise

spontaneously in an otherwise balanced flow. Examples
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include fronts undergoing rapid frontogenesis (Snyder

et al. 1993; Griffiths and Reeder 1996); elliptical vorti-

ces (Ford 1994a; Plougonven and Zeitlin 2002); ideal-

ized baroclinic waves (O’Sullivan and Dunkerton 1995;

Zhang 2004; Plougonven and Snyder 2005, 2007); and

rotating, stratified flows subjected to horizontal shear

(Vanneste and Yavneh 2004). Fluid instabilities that

couple balanced motions and inertia–gravity waves (Sa-

kai 1989; Ford 1994b; Schecter and Montgomery 2003;

Plougonven et al. 2005; Molemaker et al. 2005;

Dritschel and Vanneste 2006) may also lead to the ap-

pearance of gravity waves in originally balanced flows.

Though our intention is not to imply a single mecha-

nism, for convenience we will use the term “wave gen-

eration” for all these instances in which balanced flows

inherently produce inertia–gravity waves or are un-

stable to instabilities involving inertia–gravity waves.

Theory for inertia–gravity wave generation is most

mature for rotating shallow-water flows having a

Rossby number R of the order of one and a small

Froude number (Ford et al. 2000). (Following typical

notation, R � U/fL, where U is a horizontal velocity

scale, L is a horizontal length scale, and f is the Coriolis

parameter.) There is a direct mathematical analogy for

this case to Lighthill’s (1952) theory for the spontane-

ous emission of acoustic waves by vortical motion. The

analysis proceeds by manipulating the governing equa-

tions into a single equation whose lhs is the linear op-

erator for waves (acoustic or inertia–gravity, as the case

may be) and whose rhs consists of terms of the form of

two spatial derivatives acting on quadratic products of

the dependent variables such as the components of ve-

locity. Emitted waves in this case have spatial scales

that are large compared to the characteristic scale of

the balanced flow and phase speeds that are large com-

pared to advective velocities.

Localized atmospheric jets (and our simulated vortex

dipoles), on the other hand, are characterized by small

R and are continuously stratified. These flows obey QG

dynamics to a first approximation and have an aspect

ratio H/L of the order of f/N, where N is the buoyancy

frequency. The Froude number F � U/NH is then also

small, in contrast to the shallow-water theory for wave

generation. When R is small, the time scales for inertia–

gravity waves are much shorter than the advective time

L/U that characterizes the balanced motion. Equiva-

lently, for a stationary solution such as the dipole, R K

1 implies that the wavelengths of stationary inertia–

gravity waves, which must be less than or comparable to

2�f/U, are small relative to the length scale L of the

dipole. We are interested in how waves appear in these

otherwise balanced flow as R increases, but is still less

than unity.

No general theory exists for fully stratified flows with

small R, but both analytic examples and numerical

simulations demonstrate that wave generation does oc-

cur. Vanneste and Yavneh (2004) show that plane-wave

disturbances in sheared, rotating stratified flow gener-

ate inertia–gravity waves whose amplitude scales as

aR�1/2 exp(�b/R), where a and b are known constants.

Both Snyder et al. (1993) and Reeder and Griffiths

(1996) present numerical simulations of wave genera-

tion by frontogenesis. They argue that wave generation

at fronts follows from a mechanism, similar to that of

Lighthill (1952), in which the balanced frontal circula-

tion forces a gravity wave response that increases as the

front contracts and the Lagrangian time scale for the

frontogenesis decreases. Reeder and Griffiths have cal-

culated the far-field wave response to the forcing and

shown reasonable agreement with full simulations.

Our approach is to simulate numerically an idealized

vortex dipole. The numerical solutions begin from the

surface-trapped QG dipole for a uniform potential vor-

ticity fluid of Muraki and Snyder (2007). This dipole is

associated with a potential temperature anomaly on a

flat horizontal boundary. In terms of atmospheric jet

streaks, the rigid boundary may be thought of as a

simple model for the tropopause and the computational

domain can represent either the stratosphere above the

jet streak or, inverting the vertical coordinate, the tro-

posphere below the jet streak.

These initial conditions and the numerical model are

described in section 2. We then present the numerical

solution in section 3. After some transient adjustment

associated with the initial conditions, the dipole begins

to propagate nearly steadily and exhibits embedded,

upward-propagating inertia–gravity waves of smaller

scale that are stationary with respect to the dipole. To

remove some residual oscillations and to rule out any

association of those with the stationary inertia–gravity

waves, we calculate (in section 4) time-averaged fields

in a frame of reference moving with the dipole and then

use them as initial conditions for additional simulations

(in section 5). The stationary inertia–gravity waves are

largely unaltered by this change of initial conditions.

Section 6 analyzes the characteristics of the stationary

waves, and section 7 presents the dependence of the

waves on the Rossby number. Our results are summa-

rized in section 8.

2. Preliminaries

a. Equations and the numerical model

As in previous idealized simulations of baroclinic

waves (Snyder et al. 1991; Rotunno et al. 1994, 2000),

we begin from the Boussinesq, f-plane primitive equa-
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tions. Both nonhydrostatic and compressible terms are

included, though they are negligible for the present

simulations. The equations are summarized in Snyder

et al. (1991).

The numerical techniques used in solving the equa-

tions of motion are also similar to those employed by

Snyder et al. (1991), Rotunno et al. (1994), and Ro-

tunno et al. (2000). The spatial discretization uses a C

grid and centered fourth-order differences for the ad-

vective terms, while the temporal discretization is as in

Klemp and Wilhelmson (1978) with a split-explicit

scheme in which acoustic modes are integrated with a

shorter time step that is implicit in the vertical. In ad-

dition, the numerical model includes damping of three-

dimensional divergence, which further stabilizes the

acoustic modes, and incorporates vertical advection of

a reference profile of potential temperature on the

small time step following Skamarock and Klemp

(1992). An explicit, fourth-order horizontal diffusion is

applied to the velocity and potential temperature with a

coefficient of 0.01 times the ratio of the fourth power of

the horizontal grid spacing to the time step.

The model has a domain of 3000 km in both hori-

zontal directions and 15 km in the vertical. Vertical

velocity is zero on the rigid upper and lower boundaries

and the horizontal boundary conditions are periodic.

The model includes a sponge layer above 12.5 km

where the damping rate increases linearly from zero at

the bottom of the layer to 10�4 s�1 at the model top.

For general aspects of the solution, we performed

low-resolution runs, with 128 points in each horizontal

direction and 64 points in the vertical, giving a grid

spacing of 23.4 km horizontally and 250 m vertically.

Runs with doubled horizontal and vertical resolution

are used in the analysis of the inertia–gravity waves and

to check for numerical artifacts.

b. Initial conditions

Initial conditions for the simulations are taken from

the QG vortex dipole of Muraki and Snyder (2007).

This dipole is a steadily propagating solution of the

inviscid QG equations and is surface trapped, having

uniform interior pseudopotential vorticity and a dipole

in potential temperature on the lower boundary. Hori-

zontal winds, pressure, and potential temperature are

set to their geostrophic counterparts from the QG so-

lution.

The QG dipole is determined solely by its nondimen-

sional phase speed, which we take to be 1/9. The solu-

tion of Muraki and Snyder (2007) is then dimensional-

ized according to standard QG scaling using a horizon-

tal length scale of L � 500 km, a horizontal velocity

scale of U � 10 m s�1, and values of f � 10�4 s�1 for the

Coriolis parameter, N � 10�2 s�1 for the Brunt–Väisälä

frequency, and �0 /g � 30.6 K m�1 s2 for the ratio of the

reference potential temperature to the gravitational ac-

celeration. The dimensional phase speed of the QG

dipole is then roughly 1.1 m s�1.

c. Estimating propagation speed

We estimate the dipole’s propagation speed over a

given time period by finding the translating reference

frame in which the solution is most nearly steady. The

time dependence is quantified by first time averaging

the solution in the translating frame and then comput-

ing �, the time average of the rms differences of the full

solution from the time-averaged solution. We then seek

the propagation speed c that minimizes � by evaluating

� on a grid of values for c and refining that grid until the

desired accuracy for c is achieved.

All propagation speeds given here are based on

analysis of the two-dimensional field of potential tem-

perature at the lowest model level. Other fields, such as

low-level winds or vertical vorticity, give very similar

propagation speeds.

Because of the initial adjustment of the dipole away

from the QG dipole of Muraki and Snyder (2007), the

potential temperature surrounding the dipole contains

debris, which does not move with the dipole. This de-

bris is excluded from the analysis of propagation speed

by setting the differences from the time-averaged solu-

tion in a given frame to zero wherever their absolute

value is less than 0.04 K.

3. Evolution from QG initial conditions

As discussed in section 2b, the initial conditions for

the simulation are the geostrophic winds, potential tem-

perature �, and hydrostatic pressure from the QG di-

pole solution of Muraki and Snyder (2007). These ini-

tial conditions do not directly yield a steadily propagat-

ing solution of the primitive equations for two reasons.

First, because the initial conditions are purely geo-

strophic, the solution undergoes transient adjustment in

which strong inertia–gravity waves radiate away from

the dipole. These waves are clearly apparent in the ver-

tical velocity w at early times as arcs of upward and

downward motion expanding outward from the dipole

(not shown). Consistent with this adjustment, time se-

ries of maximum and minimum w at a height of 5 km

(Fig. 1) show large values and rapid variations at early

times and then a decrease to much smaller values by 20

days.

Second, the full QG dipole (including ageostrophic

winds) only approximates a steadily propagating solu-
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tion of the primitive equations. Thus, the dipole evolves

away from the initially symmetric cyclone–anticyclone

pair over the first few days. At the surface, the warm

anomaly (associated with the cyclonic vortex) becomes

elongated in the direction of propagation and shrinks in

area, while the cold anomaly (associated with the anti-

cyclone) becomes more circular and spreads in area

(Fig. 2). Some of the warm air initially at the leading

edge of the dipole passes southward around the anticy-

clone and is ejected from the rear of the dipole.

Following the initial radiation of gravity waves and

evolution of its structure, however, the dipole propa-

gates with minimal further structural changes and along

a curved path for the remainder of the 40-day simula-

tion (Fig. 2). Thus, the dipole has returned to an ap-

proximately steadily propagating solution, albeit with

asymmetries between its cyclonic and anticyclonic sides

and a curved, rather than linear, path. The latter be-

havior resembles dipole solutions with a cyclonic

“rider,” which propagate in a large circle.

The dipole also exhibits slower, secular trends in its

evolution. Time series of � and the vertical vorticity � at

the lowest model level, displayed in the bottom panel of

Fig. 1, show a weakening of the warm anomaly and a

steady, almost linear increase in the (magnitude of the)

anticyclonic vorticity over 40 days. The minimum � and

the cyclonic � are both more variable but appear to

have downward trends. While the model’s weak fourth-

order hyperdiffusion may account for the decrease of

� anomalies, the causes of the increase of � in the an-

ticyclone are less obvious and are an open question for

future work.

Figure 3 illustrates the structure of the dipole once it

has returned to a nearly steadily propagating state. For

�, differences from the symmetric, QG solution are no-

ticeable but not huge. The low-level w, however, has

only a hint of the quadrupole of the QG solution, which

has descent in the northeast and southwest quadrants

and ascent to the southeast and northwest. Instead, w is

organized into elongated bands, centered roughly on

the dipole’s central axis and with the amplitude increas-

ing and the local wavelength decreasing toward the

leading edge of the dipole (Fig. 3a). The bands are

more prominent on the anticyclonic side of the dipole.

A vertical cross section along the central jet of the

dipole reveals that the bands in w extend upward from

the surface and tilt against the jet (i.e., to the east) with

height (Fig. 3b). The pattern of w suggests an inertia–

gravity wave and is consistent with upward group ve-

locity. In sections 5 and 6, we will examine these bands

in w in a higher-resolution simulation and present fur-

ther evidence that they are in fact inertia–gravity

waves.

As already noted, the dipole propagates almost

steadily by this time. Animations of the fields shown in

Fig. 3 indicate that the bands in the low-level vertical

FIG. 1. Time series of maxima (black lines) and the negative of

minima (gray) of (top) � at the lowest model level, z � 0.125 km,

(middle) w at z � 5.25 km, and (bottom) � at the lowest model

level.

FIG. 2. Potential temperature � at z � 125 m after t � 12.5, 25,

and 37.5 days. Contour interval is 1/10 of the difference between

the initial maximum and minimum of �, or roughly 0.56 K, with

positive and negative values shown in black and gray, respectively.

Two periods of the domain are shown in x for clarity; in reality the

dipole crosses the lateral boundary at x � 3000 km between days

12.5 and 25.
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velocity are, to a large extent, stationary with respect to

the propagating dipole.

Time dependence remains, however, even in a frame

of reference moving with the dipole. In addition to the

slow decay of the dipole’s signature in � (Fig. 1), an

elliptical distortion of � that rotates anticyclonically

with time is apparent within the low-level cold air. At

higher levels (near z � 5 km), bands in w with wave-

lengths between 300 and 500 km propagate to the

southwest. The amplitude of these bands is largest in an

envelope centered to the southwest of the dipole and

outside the dipole’s horizontal perimeter as defined by

surface �. The next section gives a more detailed de-

scription of both these disturbances.

4. Time-averaged fields and deviations

Next we partition the dipole simulation between days

20 and 22 into a time-averaged component in the frame

of reference moving with the dipole and deviations

from that time average. This decomposition will sub-

stantiate our claims that the dipole is close to a steadily

propagating solution and that the bands in the low-level

vertical velocity seen in Fig. 3 are stationary with re-

spect to the dipole. It also allows a clearer description

of the remaining, time-dependent aspects of the simu-

lation. Finally, in section 5, we will test whether the

time dependence in these solutions is an inherent char-

acteristic of the dipole or arises from the details of the

initial conditions (through geostrophic adjustment or

balanced remnants of the QG initial conditions).

The algorithm described in section 2c yields an esti-

mate of c � (0.86; 0.15) m s�1 for the propagation ve-

locity between days 20 and 22. Since the dipole propa-

gates neither precisely in a straight line nor precisely at

constant speed, this value differs by up to 10% from

estimates of c over 1-day intervals beginning between

days 20 and 21. Some artifacts of the variations in the

dipole’s propagation will be apparent in the deviations

from the time-averaged fields.

Time averages moving with the dipole are then cal-

culated by integrating the governing equations in a

frame of reference moving with velocity c and simply

accumulating the average at each time step. Through-

out the rest of the paper, we will work exclusively in this

moving reference frame, where the dipole becomes a

nearly steady solution.

We first consider w near the surface. Figure 4 shows

a profile of w(x) and its time average at the midpoint of

the domain in y and z � 250 m. The banding in w is

clearly evident and is well approximated by the time-

averaged solution. Thus, the dipole’s low-level w is

nearly steady in this moving reference frame and the

bands in w are, to a good approximation, stationary

with respect to the dipole.

Figure 5 displays � and �� at the lowest model level at

day 21, where overbars and primes denote time-

averaged fields and deviations from the time average,

respectively. Throughout the 2-day period, the devia-

tion field is no more than 3% of the amplitude of � and,

as can be seen by comparing Figs. 2 and 5, � is close to

the instantaneous �. Again, the simulation is approxi-

mately steady in the frame moving with the dipole.

The deviation field �� at day 21 consists of a small-

FIG. 3. The dipole at day 22. (left) Horizontal section of w at z � 250 m (colored, with red

positive and blue negative) and � at z � 125 m (thin black contours). (right) Vertical section

along the thick line indicated in (a) of w (colored) and section-parallel horizontal velocity

(black and gray contours). The contour interval for w in both panels is one-eighth the maxi-

mum value in the section of 0.8 � 10�3 m s�1 and that for the section-parallel velocity is

1 m s�1. The potential temperature � is shown as in Fig. 2. The gray contour in the right panel

indicates where the section-parallel velocity is equal to 0.87 m s�1, the propagation speed of

the dipole.
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scale couplet within the time-averaged anticyclone.

Nearer the beginning and end of the averaging period,

�� also includes deviations with spatial scale compa-

rable to the original dipole and amplitude comparable

to that shown in Fig. 5 (not shown). This larger-scale

component of �� is associated with the variation of the

dipole’s propagation about the estimated velocity c.

The small-scale couplet, in contrast, rotates anticy-

clonically and with roughly constant amplitude about

the center of the time-averaged anticyclone, completing

somewhat more than a full rotation over 2 days. The

nature of this feature is not clear; it may be a near-

inertial gravity wave trapped within the low absolute-

vorticity fluid, or it may be a balanced wave propagat-

ing on the surface-� gradient. We will show in section 5

that this feature depends on the detailed initial condi-

tions chosen for the simulation and is not an inherent

part of the dipole solution.

The horizontal structure of the time-dependent sig-

nal in w at midlevels is shown in Fig. 6. As already

mentioned in section 3, the vertical velocity is orga-

nized into mesoscale bands. These bands are the domi-

nant component of the deviations from w at this level.

The time-averaged w is close to the synoptic-scale qua-

drupole that is expected from QG considerations to

accompany the dipole. (Only one “quadrant” of w ap-

pears in Fig. 6, since only one-quarter of the domain is

shown.)

The propagation of the mesoscale bands at 5.25 km,

and of the couplet of �� within the anticyclone, is illus-

trated by Fig. 7, which displays time series of �� and w�

at the locations of the black dots in Figs. 5 and 6. Both

time series are roughly sinusoidal, with periods a little

less than 2 days for �� and a little less than 1 day for w�.

Phase propagation, which can be inferred by the rela-

tion of time series at the three locations, is anticyclonic

for �� and southward for w�.

FIG. 5. Potential temperature � (black contours) and �� (white

contours, with positive and negative values shaded light and dark

gray, respectively) at z � 125 m and t � 21 days. Contours for �

are the same as in Figs. 2 and 3, while those for �� are shown at

	0.01 K and every 0.02 K thereafter. Black dots indicate the

locations of the time series in Fig. 7.

FIG. 6. Same as in Fig. 5, but for w and w� at z � 5.25 km and

t � 21 days and for the southwestern quadrant of the dipole only.

Contours for both fields are shown at 	1 � 10�5 m s�1 and every

2 � 10�5 m s�1 thereafter. Values of w are negative except along

the upper edge of the figure. Black dots indicate the locations of

the time series in Fig. 7.

FIG. 4. Vertical velocity as a function of x at y � 1500 km and

z � 250 m. Values from Fig. 3a (i.e., from the original simulation

at day 22) are shown with a thick black line, while w, the time

average between days 20 and 22 in the moving reference frame, is

shown in gray. The thin black line indicates w from a 2-day simu-

lation that uses time averages of all fields as initial conditions (see

section 5). In some locations, the curves differ by so little that only

the thick black line is visible.
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5. Simulations initialized with time-averaged fields

Next we examine a simulation beginning from time-

averaged fields, as in section 4, between days 20 and 22

and in a frame of reference moving with the dipole.

This simulation tests the influence of the details of the

initial conditions both on the stationary bands in w and

on the time dependence that remains in the dipole.

The new simulation proceeds for two days, at which

point we again perform time-averaging moving with the

dipole over the 2 days. Figure 8 shows the time series of

deviations of � and w from the time average as in Fig.

7 (i.e., at the locations shown in Figs. 5 and 6). The time

series begin at t � 0, the beginning of the new simula-

tion, and continue for 2 days.

The different initial conditions for the new simula-

tion greatly reduce the amplitude of the temporal os-

cillations seen in Fig. 7. The magnitude of the devia-

tions from the time mean is also significantly reduced.

Animations of � and w at low levels confirm that the

time dependence is greatly reduced relative to the origi-

nal simulation. Nor do the temporal oscillations reap-

pear in longer simulations (not shown). Thus, the os-

cillations identified in Figs. 5–7 are tied to the initial

conditions for the simulation and are not directly asso-

ciated with the dipole.

At the same time, the dipole and its associated bands

in w are little changed between the two simulations.

Vertical velocities from the two simulations are com-

pared in Fig. 4, which shows w(x) for y � 1500 km,

more or less along the central axis of the dipole, and

z � 250 m. Though there are differences, the overall

structure, amplitude, and phase of the waves agree well

between the two simulations, demonstrating that the

stationary bands (in contrast to the temporal oscilla-

tions) are robust to variations in the initial conditions.

Consistent with Fig. 4, horizontal and vertical sec-

tions of w at day 2 in the new simulation (not shown)

are very similar to those from the previous simulation.

The bands again extend in arcs along the dipole’s lead-

ing edge, superposed on a weak signature of the QG

quadrupole, and tilt toward the interior of the dipole

with height.

We conclude that the stationary bands in w are in-

herent features of the dipole solution whose presence

and structure are not sensitive to the initial conditions

for the simulations. The time-dependent aspects of the

simulations initialized from the QG dipole, on the other

hand, appear to be related to the detailed initial condi-

tions in that simulation. Since the waves shown in Fig.

3 are near the grid scale, especially in the vertical and

near the dipole’s leading edge, we have also investi-

gated how they depend on the numerical resolution and

the explicit dissipation included in the model.

a. Simulations with doubled resolution

In Fig. 9 and subsequent figures, we present results at

day 22 from simulations using doubled resolution. The

horizontal grid has 2562 points and spacing of roughly

FIG. 7. Time series of (top) �� at z � 125 m at the locations

shown in Fig. 5 and (bottom) w� at z � 5.25 m at the locations

shown in Fig. 6. Gray curves correspond to locations with positive

values at day 21, black curves correspond to locations with nega-

tive values, and dotted curves correspond to “nodal” locations

with values near zero.

FIG. 8. Same as in Fig. 7, but for the simulation whose initial

conditions are fields averaged in time between days 20 and 22.
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12 km, while the vertical grid has 128 levels and spacing

of 125 m. The dimensional horizontal hyperdiffusion,

which is tied to the spatial resolution and the time step,

decreases by a factor of 8.

The evolution and overall structure of the dipole

changes little in the higher-resolution simulation. The

dipole still moves along a slightly curved path, although

its propagation velocity c � (0.70, 0.15) m s�1 is some-

what slower than in the original simulation. The asym-

metry between the warm and cold anomalies is also

more pronounced.

The bands in this simulation are again stationary with

respect to the dipole and have broadly similar spatial

structure. The higher-resolution simulation produces

larger-amplitude bands and yields additional detail in

w, particularly along the outer edge of the warm, cy-

clonic vortex and within the cold anticyclone (cf. Figs.

9a and 3a). At the leading edge of the dipole, where the

bands in the low-resolution simulation are almost at the

grid scale, the high-resolution simulation clearly main-

tains the bands with larger amplitude and allows propa-

gation farther aloft (Figs. 9b and 3b).

Away from the leading edge, however, the cross sec-

tion along the dipole’s axis reveals a very similar struc-

ture in the two simulations. Moving to the east along

the section at low levels, both simulations have a broad

region of descent centered near 400 km, followed by

broad ascent near 700 km, then smaller-scale bands of

descent and ascent near 800 and 850 km. Away from

the leading edge, the bands are also reasonably well

resolved in the high-resolution simulation, with hori-

zontal and vertical wavelengths of around 100 km and

650 m, respectively.

Thus, while it is clear that the original simulations are

not fully resolved, the low-level structure of the bands

away from the dipole’s leading edge is not sensitive to

a doubling of resolution. We conclude that the bands

are not numerical artifacts. Moreover, the dependence

on resolution of the bands near the leading edge is

expected since, as will be described in the next section,

they are inertia–gravity waves propagating in a defor-

mation field and being strained to smaller scales by it.

b. Simulations with different dissipation

In addition to reducing the hyperdiffusion in the

simulation with doubled resolution, we have also per-

formed a number of experiments varying the mag-

nitude and form of the dissipation with fixed, low

resolution. Doubling or halving the fourth-order hyper-

diffusion had effects similar to, but smaller than, those

produced by doubling the resolution: the banding in w

was still present, and with similar structure, but the

bands’ amplitude changed by roughly 25% (increasing

if dissipation decreased; not shown). The most notable

differences occurred in the anticyclone and near the

stagnation point at the rear of the dipole, where addi-

tional weak bands appeared. (Qualitatively similar

changes occur at doubled resolution; cf. Figs. 3 and 9.)

When the hyperdiffusion decreased by a factor of 10, so

that it was comparable to that used in the simulation

with doubled resolution, the vertical velocity was domi-

nated by noise of wavelength equal to twice the hori-

zontal grid spacing. We also explored solutions using

second-order diffusion. Using this less scale-selective

dissipation led to the substantial decay of the dipole

itself, so we took as initial conditions the fields at day 22

in the standard simulation (shown in Fig. 3) and inte-

grated for only 4 days. The stationary bands were

largely unchanged except for reduced amplitude (not

shown). Thus, the presence and general structure of the

FIG. 9. Same as in Fig. 3, but for the simulation whose initial conditions are fields averaged

in time between days 20 and 22 and that uses doubled resolution (horizontal grid spacing of

12 km). At this resolution, the lowest interior levels for � and w shown in the left panel are at

62.5 and 125 m, respectively.
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stationary bands does not depend sensitively on the

dissipation, although their amplitude increases as the

dissipation decreases.

6. Properties of the stationary inertia–gravity

waves

We next analyze the properties of the bands in more

detail. Figure 10 shows divergence, �
w/
z, in that por-

tion of the cross section of Fig. 9b where the bands are

most prominent. The cross section is approximately in

the direction of the local wave vector for the bands.

First, consider how the horizontal and vertical wave-

lengths in the simulation compare with the dispersion

relation for hydrostatic inertia–gravity waves. Looking

in Fig. 10 near the location (880 km, 690 m), where the

horizontal location is measured along the cross section,

we estimate local horizontal and vertical wavelengths of

70 km and 520 m, respectively, with corresponding

wavenumbers k � 0.9 � 10�4 m�1 and m � 1.2 � 10�2

m�1. Averaging the Brunt–Väisälä frequency N and the

dipole-relative flow U over a 70 km � 625 m box cen-

tered at the same (x, z) location, gives N � 10�2 s�1 and

U � 1.2 m s�1.

The intrinsic frequency, �̃ � kU � 1.1 � 10�4 s�2,

then compares well with the value 1.2 � 10�4 s�2 com-

puted by substituting these values of k, U, and N into

the dispersion relation:

�̃
2 � f 2 � N2k2

�m2. 1�

[Because the large-scale vertical velocity W scales as

R(H/L)U, its contribution to �̃ is small and can safely

be neglected. Moreover, the plane of the cross section

lies more or less along the dipole’s axis, where W is

particularly small.] Comparisons at other locations with

divergence of significant amplitude show similar agree-

ment. Since the bands’ structure is consistent with the

dispersion relation for inertia–gravity waves, we will refer

to them as gravity waves or simply waves in what follows.

The waves have the form of a packet extending up-

ward from the surface and downstream (i.e., from left

to right in Fig. 10, in the direction of the dipole-relative

flow). The tilt of the phase lines is such that an observer

moving with the flow will see downward phase propa-

gation and hence the packet has upward group velocity.

Figure 10 indicates the wave packet propagates upward

1.2 km over a horizontal distance of some 250 km, or at

a slope of roughly 1/200. Using the estimated values of

k, m, and N in the formulas for group velocity [obtained

by taking derivatives w.r.t. k or m of (1)] gives the

vertical propagation of the packet at roughly 0.4 � 10�2

m s�1 and the horizontal propagation upstream relative

to the flow at 0.5 m s�1. Since flow speeds are 1–2 m s�1

near the center of the packet, this implies a downstream

group propagation relative to the dipole at a slope of

between 1/300 and 1/120, broadly consistent with what

is shown in Fig. 10.

The horizontal and vertical variation of the dipole’s

flow also influences the structure of the waves. Near the

wave packet, both the flow and the wave vector are

nearly parallel to the section shown in Fig. 10; the varia-

tion of the flow normal to the section is also small. If we

choose a coordinate system whose x axis is aligned with

the section, the flow can be approximated locally as

u(x, z) � u0 � �x � �z. Assuming also that the waves

are linear and u(x, z) varies slowly on the wave scale,

the local wavenumbers for the packet evolve according

to (Jones 1969; Bühler and McIntyre 2005)

dk

dt
� ��k,

dm

dt
� ��k, 2�

where the time derivatives are taken along ray paths

(i.e., moving with the local group velocity). In Fig. 10,

the flow is confluent (� � 0) and decreases upward

(� � 0). Equation (2) predicts that both the horizontal

and, after sufficient time, vertical wavenumbers in-

crease exponentially at rate �� following the packet.

Consistent with this prediction, local horizontal and

vertical wavelengths estimated from Fig. 10 vary from

100 km and 650 m, respectively, at the location (840 km,

560 m), through 70 km and 520 m at (880 km, 690 m),

FIG. 10. Divergence (thick contours, negative values shaded) in

the plane of the vertical cross section indicated in Fig. 9a, together

with the section-parallel horizontal velocity (thin contours). Con-

tour intervals are 10�3 s�1 for divergence and 1 m s�1 for velocity.

Only a portion of the cross section indicated in Fig. 9a is shown.
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to less than 60 km and 500 m at (910 km, 810 m). Bühler

and McIntyre (2005) argue that even in more complex

flows wavenumbers will typically increase following a

wave packet and note that, because the group velocity

of inertia–gravity waves decreases with wavenumber,

the packet will also begin to move with the local flow,

a process they term “wave capture.”

Figure 10 also shows that the slope of the phase lines

steadily increases moving with the packet (upward and

to the right). Given (2), the slope of the phase lines,

k/m, evolves according to

d

dt
k�m� � �� � �k�m�k�m. 3�

The slope of phase lines will increase following the

packet when k/m � �/�, that is, when that slope is less

than the slope of lines of constant u(x, z), which is given

by �/�. This is the situation shown in Fig. 10.

If the packet is subject to constant deformation and

shear for sufficient time, the slope of phase lines ap-

proach the equilibrium slope, k/m � �/�. In this limit,

the phase lines are parallel to the lines of constant u.

Plougonven and Snyder (2005) found good agreement

between �/� and the slope of stratospheric inertia–

gravity waves generated within a baroclinic wave.

While there is some evidence of this alignment along

the upper portion of the wave packet, the wave slope in

the present simulation’s slope does not approach �/�

closely over much of the packet, since the time scale for

changes in k/m (��1 � 105 s) is comparable to the time

required for the packet to traverse the region of signifi-

cant vertical shear at a vertical group velocity of 0.5 �

10�2 m s�1 computed at the estimated k and m.

Finally, the model’s fourth-order hyperdiffusion also

has nonnegligible effects on the waves. The nondimen-

sional coefficient for the hyperdiffusion is fixed at

1/100, giving a dimensional coefficient of � � �x4/

(100�t), where �x and �t are the grid spacing and time

step, respectively. At the extreme upper, eastern end of

the packet, wavelengths are roughly 5�x, which implies

a decay time (�k4)�1 of about 3.6 � 104 s or 10 h. Closer

to the surface, however, the waves are better resolved

and decay times are greater than 105 s owing to the

scale selectivity of the hyperdiffusion.

7. Dependence on Rossby number

We next examine how the structure and magnitude

of w in the solutions varies with the strength of the

dipole. Varying the velocity scale U of the initial dipole

while fixing the parameters f, N, and L of section 2b

effectively varies the Rossby number, R � U/fL, of the

experiment. All simulations in this section use the

coarser 23.4-km horizontal resolution (and 250-m ver-

tical resolution).

When the dipole is weak and R is small, the QG

dipole of Muraki and Snyder (2007) will approximate

the full evolution closely. Varying R does not change

the structure or evolution of the QG dipole; it simply

changes the magnitude of the geostrophic velocities,

which scale as R, and the time scale for evolution, which

varies as R�1. (In addition, the ageostrophic velocities,

which are diagnostic in quasigeostrophy, scale as R

relative to the geostrophic velocities or R2 overall.) To

facilitate comparison between simulations with differ-

ent initial U, we extend each simulation having U � 10

m s�1 to a time equivalent under the QG scaling to the

22 days used when U � 10 m s�1. For example, the

simulation with U � 1.25 m s�1 covers 88 days. Simu-

lations with U � 10 m s�1 all end at day 22 to minimize

remnants of the initial adjustment, whose time scale is

set by f �1 rather than U/L. Since w becomes quite small

as U decreases, the simulations employ double-

precision arithmetic when U � 10 m s�1.

Figure 11 (top panels) displays w and � on the lowest

model levels above the surface at the end of five simu-

lations with initial U ranging from 1.25 to 15 m s�1. The

domain in each panel is centered on the dipole, and

contour values are normalized by the maximum w to

emphasize the spatial structure of the fields; we will

discuss how the magnitude of w varies with R later.

For U � 1.25 m s�1, the vertical velocity is dominated

by a large-scale quadrupole. In the center of the dipole

along the jet axis, there is also a weak couplet of de-

scent and ascent. A simulation with U � 2.5 m s�1 (not

shown) is similar but has a stronger couplet relative to

the quadrupole. At the other extreme (U � 15 m s�1),

inertia–gravity waves dominate the low-level vertical

velocity. These waves are qualitatively similar to those

in Figs. 3 and 9. They are, however, significantly stron-

ger relative to the quadrupole and, as expected for

near-inertial waves (Kunze 1985), more biased toward

the anticyclone and its decreased absolute vorticity.

With their increased amplitude, waves are also appar-

ent along the northern edge of the cyclone up to the

stagnation point at the rear of the dipole.

The transition between these two distinct structures

for w occurs for U in the range of 5–10 m s�1. At U �

5 m s�1, the descent–ascent couplet along the jet axis

becomes a prominent feature. At U � 7.5 m s�1, the

couplet continues to strengthen and waves are clearly

apparent downstream. By U � 10 m s�1, the case we

have considered throughout the rest of the paper, the

couplet and waves have larger amplitude than the

quadrupole. As a reference for the value of R at which
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the waves appear, U � 7.5 m s�1 corresponds1 to R �

U/fL � 0.15.

The changes in � across the entire range of U are

much less dramatic. As U increases, the orientation of

the dipole changes owing to its propagation along an

increasingly curved trajectory (not shown). Asymme-

tries between the cyclone and anticyclone also develop

at larger U, with the anticyclone becoming more circu-

lar and the cyclone less so.

A quadrupole in w arises at the level of the QG

approximation.2 To reveal more precisely how w differs

from that predicted by QG theory, we have computed

wQG, the QG vertical velocity, given � and the geo-

strophic velocities vg from each simulation. Solving

�N2� �
2

�x2
�

�
2

�y2� � f 2
�

2

�z2�wQG � 2� · Q, 4�

where Q � �g/�0(
vg /
x · ��, 
vg /
y · ��), yields wQG

(Gill 1982, his section 12.10).

Results for wQG are shown in the middle panels of

Fig. 11. As expected, a quadrupole with scale compa-

rable to the vortex dipole itself is the strongest signal

across all the experiments. Near the center of the di-

pole, however, there are additional features; these

strengthen relative to the larger-scale quadrupole as R

increases and have the form of an ascent–descent cou-

plet along the dipole’s axis. We have not developed a

comprehensive explanation for these features in the

1 The precise value of R of course depends on the definition

chosen. Using the maximum wind speed in this simulation (6

m s�1) and the distance between extrema in the ascent–descent

couplet (250 km), which gives a Rossby number of 0.24. A Rossby

number based on the maximum vertical vorticity would be even

larger since relative vorticity in the anticyclone reaches �0.6 f at

this time.
2 Northward ageostrophic flow near the surface at the upstream

end of the geostrophic jet accelerates parcels entering the jet and

southward ageostrophic flow has the opposite effect in the down-

stream “exit region” of the jet. This leads to a thermally direct

circulation upstream with descent on the colder, southern side of

the jet axis and ascent to the north, and the opposite pattern of w

downstream of the jet.

FIG. 11. Potential temperature � overlaying (top) w, (middle) wQG, and (bottom) w � wQG at the lowest interior levels for simulations

with initial dipoles using U � 1.25, 5, 7.5, 10, and 15 m s�1. Vertical velocity is contoured at 	1/16, 	3/16, and 	7/16 of its maximum

value in each panel. White contours and blue shading indicate descent (w � 0). Only absolute values greater than 	1/16 are shaded.

Thin lines are contours of � as in Fig. 2. In each panel the plotting domain is centered on the dipole.
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center of the dipole, but detailed examination of the

various terms contributing to � · Q indicates large sen-

sitivity to the slight bowing of the cold anomaly across

the dipole’s axis, which increases as R increases.

Of more interest is the difference between w and

wQG, displayed in the bottom panels of Fig. 11. The

most prominent features are a pronounced descent–

ascent couplet that is present for all R and, for U larger

than 5 m s�1, inertia–gravity waves downstream from

the couplet. The descent–ascent couplet is more cleanly

captured in w � wQG—most of the complicated central

structure in w appears to come from wQG. Removing

wQG also makes the wave propagation along the cy-

clone’s outer edge much more obvious.

Figure 12 quantifies the amplitude dependence of w,

wQG, and their difference on the maximum wind speed

in the dipole. To the extent that the wave generation

may be associated with the dipole’s jet, the maximum

wind speed is a natural surrogate for R, since the di-

pole’s scale varies little across the simulations. (The

maximum wind speed at the end of the simulations also

varies nearly linearly with U and is approximately given

by 0.85U.) Lacking an obviously better choice, we mea-

sure w, wQG, and w � wQG by their maximum values at

z � 250 m.

The full w increases as a power of the wind speed

(i.e., linearly in the log–log scale of Fig. 12) up to wind

speeds of roughly 6 m s�1 (corresponding to U � 7.5

m s�1) then begins a more rapid increase. This behavior

hints at the emergence of a second dynamical process

affecting w, consistent with the onset of wave genera-

tion shown in Fig. 11. For small wind speeds, wQG is the

dominant contribution to w but wQG retains power-law

behavior across the entire set of simulations. For large

wind speeds, w is much larger than wQG.

The exponents for w � wQG and wQG provide infor-

mation about the underlying dynamics. The slope of

wQG in Fig. 12 is 2.1, which conforms to the QG pre-

diction that w scales as R
2 [as implied by the quadratic

dependence of � · Q in (4) on the geostrophic flow]. In

contrast, the best-fit line for the first three points of

w � wQG has a slope of 3.1. This slope is consistent with

next-order, O(R
3) balanced corrections to wQG that

could be obtained by expanding the primitive equations

in R as in, for example, Muraki et al. (1999). The as-

cent–descent couplet along the jet axis in both w and

w � wQG thus arises as a balanced correction to QG

theory.

For larger wind speeds, w � wQG exhibits an approxi-

mate R
4 dependence (a slope of 3.9). The transition to

this steeper slope again coincides with the appearance

of obvious waves in w � wQG. While we believe the

steeper slope is a reflection of wave generation, we

attach little significance to the R
4 dependence because

of the presence in w � wQG of contributions other than

waves. We have also tried to separate the waves from

the rest of w � wQG by bandpass filtering all wave-

lengths greater than 1/10 of the domain size. This small-

scale component of w � wQG increases significantly

more rapidly with R, exhibiting a slope of 6 for 5 m s�1
�

U � 10 m s�1. A higher-order balanced approximation

to w will be necessary if we wish to quantify more pre-

cisely the variation with R of the wave generation

alone.

8. Summary and discussion

This paper has analyzed numerical simulations of a

synoptic-scale vortex dipole in a rotating, stratified

fluid. These simulations provide an example of the gen-

eration of inertia–gravity waves by balanced flows. Our

choice of a dipole is motivated as an idealization of

atmospheric “jet streaks,” which are often associated

with generation of inertia–gravity waves, and by its

simple dynamics (approximately steady propagation).

Beginning with geostrophic initial conditions taken

from the surface-trapped QG dipole of Muraki and

Snyder (2007), the dipole undergoes a transient period

in which waves radiate rapidly upward and away from

the dipole and the symmetry of the QG solution is bro-

ken, with the anticyclone expanding and the cyclone

shrinking. These transient waves arise through classical

geostrophic adjustment (Blumen 1972) or its generali-

FIG. 12. Maximum absolute values of w at z � 250 m as a

function of the maximum jet speed in the dipole (open circles).

Data are shown for each of the simulations in Figs. 11 and 12,

along with simulations using U � 2.5 and 12.5 m s�1. Also shown

are the maximum absolute values for wQG (dots) and w � wQG

(crosses) and best-fit lines for wQG (gray) and the first three and

last four points of w � wQG (thin lines). Those lines have slopes

of 2.06, 3.14, and 3.88, respectively.
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zations. Following the initial period of adjustment, the

dipole propagates along a slightly curved trajectory at a

nearly steady rate and with a nearly fixed structure for

many tens of days.

For dipoles that are sufficiently intense, with a

Rossby number R based on the jet speed and the dipole

radius of O(10�1) and maximum relative vorticity of

roughly 0.5 f, the flow also contains smaller-scale, up-

ward-propagating inertia–gravity waves that are em-

bedded within and stationary relative to the dipole. The

waves appear downstream from the jet maximum,

forming elongated bows aligned with the leading edge

of the dipole, and have strong similarities to the near-

inertial waves in the stratosphere found in baroclinic

wave simulations (O’Sullivan and Dunkerton 1995;

Plougonven and Snyder 2005, 2007).

In addition to the stationary waves, there are weaker

oscillations that appear to be long-lasting consequences

of the initial adjustment. These oscillations can be

largely removed by time averaging the solutions in a

frame of reference moving with the dipole and then

restarting the simulation from the time-averaged fields.

The stationary waves are almost unaffected by this pro-

cedure.

The stationary waves persist throughout the 40-day

(or longer) integrations despite the model’s explicit

horizontal hyperdiffusion, which on its own damps mo-

tions at the scale of the waves on much shorter time

scales. This argues strongly that the waves are an in-

herent feature of sufficiently strong dipoles rather than

remnants of the initial adjustment. The wave character-

istics are also clearly modified by their propagation

through horizontal deformation and vertical shear,

much as predicted theoretically by Bühler and McIn-

tyre (2005) and demonstrated in baroclinic wave life

cycles by Plougonven and Snyder (2005): their horizon-

tal scale shrinks and the vertical slope varies as wave

packets approach the leading stagnation point in the

dipole’s flow.

We have also explored the dependence of the wave

generation on R by varying the amplitude of the initial

QG dipole over an order of magnitude. For dipoles of

radius 500 km, stationary inertia–gravity waves obvi-

ously first appear once the maximum jet speed reaches

roughly 6 m s�1. To examine the waves’ amplitude and

structure more precisely, we have calculated the QG

vertical velocity wQG based on the simulated pressure

field and subtracted this contribution from the full w.

When R is very small, the most prominent feature in

w � wQG is a couplet of descent and ascent along the jet

axis and centered on the jet maximum. Its amplitude

increases approximately as R3, indicating that it arises

from next-order, balanced corrections to WQG. For

larger R, waves appear and w � wQG increases signifi-

cantly more rapidly.

In the exit region of the jet where their amplitude is

largest, the stationary waves’ general structure has little

dependence on the model resolution, or on the form or

magnitude of model dissipation. The amplitude of the

waves is more sensitive to dissipation, as is the detailed

structure of the wave field, especially near the stagna-

tion points at the leading and trailing edges of the di-

pole and within the anticyclone. Aside from the inertia–

gravity waves, the numerical solutions are very well

resolved. The dependence on resolution arises not

through truncation errors but mainly because we de-

crease the model’s hyperdiffusion as the resolution in-

creases—the waves are strained to small scales in many

regions of the flow and thus are sensitive to the model

dissipation.

These dipole simulations add to the list of idealized

examples in which balanced flows generate inertia–

gravity waves spontaneously, including frontogenesis,

vortices in shallow water and continuously stratified

flow, baroclinic waves, sinusoidal disturbances in

sheared rotating stratified flow, and instabilities that

couple balanced motions and inertia–gravity waves.

The dipole and its embedded waves, both of which are

approximately steady in an appropriate frame of refer-

ence, differ from other examples in which time depen-

dence of the balanced flow leads to wave emission

(Ford 1994a; Vanneste and Yavneh 2004). Moreover,

unlike the examples of Lighthill radiation (Ford 1994a;

Plougonven and Zeitlin 2002), the dipole has a small

Rossby number and the waves are on the small scale

compared to the balanced motions. On the other hand,

the waves in the dipole resemble those associated

with upper-level jets in baroclinic wave simulations

(Plougonven and Snyder 2005, 2007): they appear

downstream of a localized jet and near a system-

relative stagnation point, and they have arcing phase

lines that are stationary with respect to the jet exit and

roughly normal to the flow.

“Geostrophic adjustment” is one mechanism previ-

ously suggested for the generation of inertia–gravity

waves within synoptic-scale flows (Uccellini and Koch

1987). This terminology seems inappropriate for the

dipole since classical geostrophic adjustment is a tran-

sient process, dependent on initial conditions and oc-

curring on a time scale of several inertial periods. In the

dipole, the waves are not transient but steady over tens

of days; they are not sensitive to initial conditions ex-

cept to the extent that the dipole is; and if anything, the

dipole itself appears to be intensifying by some mea-

sures rather than becoming more balanced (Fig. 1, bot-

tom panel).
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We advocate an alternative mechanism,3 beginning

from the apparently reasonable assumption that the di-

pole can be closely approximated by a balanced solu-

tion. Deviations from that balanced solution, if they are

sufficiently small, will then satisfy linear equations

given by linearizing the primitive equations about the

balanced solution and forcing by the residual tenden-

cies (i.e., the difference between the tendencies pre-

dicted by the balanced solution and those obtained

upon substitution of the balanced fields into the full

primitive equations). Unless the balanced solution is so

simple that there is no projection onto temporal and

spatial scales for which there are propagating inertia–

gravity waves, the forcing inherently produces some

wave response. This argument immediately predicts

that a (nearly) steady balanced flow, such as the dipole,

must generate steady inertia–gravity waves.

Because its balanced dynamics are steady and un-

complicated, the dipole is a particularly simple setting

for further study of wave generation. A clear demon-

stration of the mechanism for the wave generation is an

important next step. We expect that this will also re-

quire a more quantitative understanding of the wave

propagation through the spatially varying flow of the

dipole. Another direction for further study is the effect

of the wave generation on the dipole’s evolution.

We have not attempted to explain the secular in-

crease in the maximum anticyclonic vorticity, but it is

suggestive of back reaction on the dipole from the wave

generation.
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