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Abstract

Conventional generators in power grids are steadily substituted with new renewable

sources of electric power. The latter are connected to the grid via inverters and as such

have little, if any rotational inertia. The resulting reduction of total inertia raises important

issues of power grid stability, especially over short-time scales. With the motivation in

mind to investigate how inertia reduction influences the transient dynamics following a

fault in a large-scale electric power grid, we have constructed a model of the high voltage

synchronous grid of continental Europe. To assess grid stability and resilience against dis-

turbance, we numerically investigate frequency deviations as well as rates of change of

frequency (RoCoF) following abrupt power losses. The magnitude of RoCoF’s and fre-

quency deviations strongly depend on the fault location, and we find the largest effects

for faults located on the support of the slowest mode—the Fiedler mode—of the network

Laplacian matrix. This mode essentially vanishes over Belgium, Eastern France, Western

Germany, northern Italy and Switzerland. Buses inside these regions are only weakly

affected by faults occuring outside. Conversely, faults inside these regions have only a

local effect and disturb only weakly outside buses. Following this observation, we reduce

rotational inertia through three different procedures by either (i) reducing inertia on the

Fiedler mode, (ii) reducing inertia homogeneously and (iii) reducing inertia outside the

Fiedler mode. We find that procedure (iii) has little effect on disturbance propagation,

while procedure (i) leads to the strongest increase of RoCoF and frequency deviations.

This shows that, beyond absorbing frequency disturbances following nearby faults, inertia

also mitigates frequency disturbances from distant power losses, provided both the fault

and the inertia are located on the support of the slowest modes of the grid Laplacian.

These results for our model of the European transmission grid are corroborated by numeri-

cal investigations on the ERCOT transmission grid.

PLOSONE | https://doi.org/10.1371/journal.pone.0213550 March 21, 2019 1 / 17

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Pagnier L, Jacquod P (2019) Inertia

location and slow network modes determine

disturbance propagation in large-scale power grids.

PLoS ONE 14(3): e0213550. https://doi.org/

10.1371/journal.pone.0213550

Editor: Lei Chen, Wuhan University, CHINA

Received:November 23, 2018

Accepted: February 24, 2019

Published:March 21, 2019

Copyright: © 2019 Pagnier, Jacquod. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from https://github.com/geeehesso.

Funding: This work has been supported by the

Swiss National Science Foundation AP Energy

Grant PYAPP2_154275.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-0587-3535
https://doi.org/10.1371/journal.pone.0213550
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213550&domain=pdf&date_stamp=2019-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213550&domain=pdf&date_stamp=2019-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213550&domain=pdf&date_stamp=2019-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213550&domain=pdf&date_stamp=2019-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213550&domain=pdf&date_stamp=2019-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213550&domain=pdf&date_stamp=2019-03-21
https://doi.org/10.1371/journal.pone.0213550
https://doi.org/10.1371/journal.pone.0213550
http://creativecommons.org/licenses/by/4.0/
https://github.com/geeehesso


1 Introduction

The short-time voltage angle and frequency dynamics of AC power grids is standardly mod-

eled by the swing equations [1]. The latter determine how local disturbances about the syn-

chronous operational state propagate through the grid. They emphasize in particular how

voltage angle and frequency excursions are partially absorbed on very short time scales by the

inertia of rotating machines, before primary control sets in. With the energy transition, more

and more new renewable energy sources (RES) such as solar photovoltaic units—having no

inertia—and wind turbines—whose inertia is at this time essentially suppressed by inverters—

substitute for conventional power generators. The resulting overall reduction in rotational

inertia raises a number of issues related to system dynamics and stability [2, 3]. It is in particu-

lar desirable to determine how much inertia is sufficient and where to optimally locate it to

guarantee short-time grid stability. Determining the optimal placement of inertia is of para-

mount importance at the current stage of the energy transition, as it would help determine

where the substitution of conventional generators by RES crucially needs to be accompanied

by the deployment of synchronous condensers or synthetic inertia.

The impact of lowered levels of inertia on grid stability has been investigated in a number

of papers. Gautam et al. [4] and Eftekharnejad et al. [5] emphasized an interesting correlation

between the location of inertia reduction and specific electromechanical modes in the case of

increased wind turbine and photovoltaic penetration respectively. Ulbig et al. investigated the

impact of reduced inertia on power system stability for a two-area model [2]. Extended to

three-area systems their analysis led them to postulate that, at fixed amount of inertia, meshed

grids have a greater resilience to disturbances than unmeshed ones [6]. These works further

raised the issue of optimal inertia placement in a grid with reduced total amount of inertia.

This issue is interesting from the point of view of synthetic inertia, obtained by controlling

the inverters connecting RES to the grid [7–9] and which can in principle be deployed where

needed. It is moreover crucial to anticipate where the substitution of conventional power gen-

erators would require significant inertia compensation and where not. Borsche et al. evaluated

damping ratios and transient overshoots to optimize the placement of virtual inertia [10].

Poolla et al. proposed a different placement optimization based on the minimization ofH
2

norms [11], while Pirani et al. adopted an approach based onH1 norms [12]. As pointed out

by Borsche and Dörfler [13], the objective functions to be minimized in these works are not

directly related to the standard operational criteria of Rate of Change of Frequency (RoCoF)

or frequency deviations in electric power grids. To bridge that gap, Ref. [13] constructed an

inertia placement optimization algorithm based on these criteria.

In this paper we investigate RoCoF’s under abrupt power losses in high voltage power

grids. We set the fault magnitude at ΔP = 900 MW, large enough to generate a significant

response but small enough that it is smaller or equal to the generation capacity of many power

plants distributed all over continental Europe. This allows us to compare similar faults at vari-

ous locations and to directly relate discrepancies in the ensuing disturbance propagation to the

geographical location of the fault. By the end of the manuscript we briefly consider larger faults

of ΔP = 3000 MW corresponding to the ENTSO-E reference incident [14]. Our goal is to

understand how the ensuing disturbance propagates through the system, as a function of the

power fault location. To that end we construct a model of the synchronous high voltage grid of

continental Europe that includes geolocalization, dynamical parameters and rated voltage of

all buses, as well as electrical parameters of all power lines. Our approach is mostly numerical

and therefore is not limited by assumptions of constant inertia or damping coefficients that

are necessary to obtain analytical results. Our model is unique in that it is based on a realistic

map of the distribution of rotational inertia in the synchronous European grid. Disturbance
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propagation under noisy perturbations have been investigated in a number of works on

dynamical networks (see e.g. Ref. [15–17]). What makes the present work special is the spatio-

temporal resolution of our investigations on large-scale networks, which allows us to correlate

the impact of the location of the fault with the nonhomogeneous distribution of inertia and the

spatial support of the slowest modes of the network Laplacian.

We numerically simulate sudden power losses at different locations on the grid for various

loads. Using the swing equations, we evaluate how the resulting frequency disturbance propa-

gates through the grid by recording RoCoF’s at all buses. This is illustrated in Fig 1 for two dif-

ferent fault locations of the same magnitude, ΔP = 900 MW. This relatively moderate fault (on

the scale of the European grid) generates a significant response, with RoCoF’s reaching 0.5 Hz/

s, over large areas for a power loss in Greece. On the other hand, RoCoF’s never exceed 0.1

Hz/s when a fault of the same magnitude occurs in Switzerland. After a systematic investiga-

tion of faults over the whole grid, we relate these differences in behavior to (i) the local inertia

density in the area near the fault at times t≲ 1 − 2 s and (ii) the amplitude of the slowest

modes of the grid Laplacian on the faulted bus for times t≳ 1 − 2 s. Point (i) is expected and

well known, however point (ii) is, to the best of our knowledge, a new observation. It has in

particular the surprising consequence that, when the slowest modes have disconnected struc-

tures as is the case of the European grid, frequency disturbances propagate between distant

areas, almost without affecting some areas in between. Comparing different scenarios for iner-

tia withdrawal, corresponding to substituting new RES for conventional power plants in differ-

ent regions, we find that inertia withdrawal from areas with large components of the slowest

modes of the grid Laplacian results in significantly higher RoCoF’s. This has important conse-

quences for planning and optimal inertia location in future low-inertia power grids.

This manuscript is organized as follows. In Section 2 we give some details of our model and

approach. Section 3 presents numerical investigations of RoCoF’s under abrupt power losses

at different locations on the power grid. It relates the magnitude of the response to such faults

to the location of the fault, in particular the amplitude on the slowest Laplacian modes on the

faulted bus. Section 4 amplifies on Section 3 by investigating the effect of reducing the inertia

on different areas of the grid. We summarize our findings and results in the Conclusion Sec-

tion. Details on the model and further numerical results are presented in the Appendix.

2 Transmission grid model

We have imported and combined publicly available data to construct a geolocalized model

of the high voltage synchronous grid of continental Europe. The geographical location and

the electrical parameters of each bus is determined, including voltage level, dynamical parame-

ters (inertia and damping coefficients), generator type and rated power. Line capacities are

extracted from their length. They are compared with known values for a number of lines and

found to be in good agreement. Different load situations are investigated using a demographi-

cally-based distribution of national loads, together with a dispatch based on a DC optimal

power flow. Details of these procedures are given in S2 Appendix. To confirm our conclusions,

we alternatively used a model of the Texas ERCOT transmission grid [18], where inertia and

damping coefficients are obtained using the same procedure as for the European model.

The models are treated within the lossless line approximation [1], where the electrical

power Pe
i injected or extracted at bus #i is related to the voltage phase angles {θi} as

Pe
i ¼

X

j2V
Bij ViVj sinðyi � yjÞ : ð1Þ

Here, Bij gives the imaginary part of the admittance of the power line connecting bus #i at
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voltage Vi to bus #j at voltage Vj and V is the set of the N buses in the system. Voltages are

assumed constant, Vi ¼ V
ð0Þ
i and are equal to either 220 or 380 kV. We denote Vgen � V the

subset of buses corresponding to generator buses. Their dynamics is described by the swing

equations [1, 19]

mi _o i þ dioi ¼ P
ð0Þ
i � Pe

i ; if i 2 Vgen ; ð2Þ

where oi ¼ _y i is the local voltage frequency,mi and di are the inertia and damping coefficients

of the generator at bus i respectively. The complement subset V load ¼ V n Vgen contains inertia-

less generator or consumer buses with frequency dependent loads [19] and a dynamics deter-

mined by the swing equations [1, 19]

dioi ¼ P
ð0Þ
i � Pe

i ; if i 2 Vload : ð3Þ

In (2) and (3), Pð0Þ
i gives the power input (Pð0Þ

i > 0) at generator buses or the power output

(Pð0Þ
i < 0) at consumer buses prior to the fault. We consider that (2) and (3) are written in

a rotating frame with the rated frequency of ω0 = 2πf with f = 50 or 60 Hz, in which case
P

iP
ð0Þ
i ¼ 0.

In order to investigate transient dynamics following a plant outage, we consider abrupt

power losses Pð0Þ
i ! P

ð0Þ
i � DP with ΔP = 900 MW on the European grid model and 500

MW on the ERCOT grid model. In both cases, a single plant is faulted and only power

plants with Pi� ΔP can be faulted. The values of ΔP are chosen so that many contingencies

with different locations homogeneously distributed over the whole grid can be investigated.

Larger faults with significantly larger RoCoF’s will be briefly discussed in the Conclusion

Section. Frequency changes are then calculated from (2) and (3), with initial conditions given

by their stationary solution and the faulted bus #b treated as a load bus with power injection

Pb ¼ P
ð0Þ
b � DP, vanishing inertia,mb = 0, and unchanged damping coefficient db. This should

be considered as our definition of a fault, where for each faulted generator, the same amount

of power is always lost, together with the full inertia of the faulted generator.

Fig 1. Spatio-temporal evolution of local RoCoFs for two different power losses of ΔP = 900 MW in a moderate load (typical of a standard summer
evening) configuration of the synchronous grid of continental Europe of 2018. The top five panels correspond to a fault in Greece and the bottom five to a
fault in Switzerland. In both cases, the fault location is indicated by a purple circle. Panels correspond to snapshots over time intervals 0-0.5[s], 0.5-1[s], 1-1.5[s],
1.5-2[s] and 2-2.5[s] from left to right.

https://doi.org/10.1371/journal.pone.0213550.g001
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3 Disturbance propagation

Our numerical data monitor the voltage angle and frequency excursion following an abrupt

power loss. Fig 1 shows two such events with series of snapshots illustrating the propagation

of the disturbance over the continental European grid during the first 2.5 seconds after the

contingency. The two events differ only by the location of the power loss. In the top row the

faulted power plant is in Greece, while in the bottom row it is in Switzerland (fault locations

are indicated by purple circles). In both instances, the lost power is ΔP = 900 MW and the

grid, including loads and feed-ins, inertia distribution, damping parameters and electrical

parameters of all power lines, is the same.

The two disturbance propagations shown are dramatically different. For a fault in Greece,

RoCoF’s reach 0.5 Hz/s for times up to 2s. The disturbance furthermore propagates across

almost all of the grid. Quite surprisingly, it seems to jump from Germany to Spain while avoid-

ing Eastern France, Belgium and Switzerland in between. We have checked that this is not an

artifact of the way we plot the average RoCoF, but truly reflects a moderate effect on the local

grid frequency in those regions. This is illustrated in Fig 2(a) which shows frequency devia-

tions for three buses in the Balkans, in Eastern France and in Spain for the fault in the top row

of Fig 1. While the Balkanic and Spanish buses oscillate rather strongly, the french bus displays

weak oscillations about a frequency reduction reflecting the loss of power generation ΔP. Also
remarkable is the RoCoF persistence in eastern Europe at later times, t> 2 s.

Fig 3 shows load flow oscillations on the ten power lines in the network that exhibit the

largest response to the same fault as in the top row of Fig 1. The flows exceed their thermal lim-

its by almost 15% in several cases, however they quickly fall back below their thermal limit,

which they never exceed for times longer than 10 seconds. Accordingly one does not expect

any cascade of failures triggered by line faults in the cases considered here of power losses of

900 MW.

For a fault in Switzerland, on the other hand, RoCoF’s never exceed 0.1 Hz/s and the distur-

bance does not propagate beyond few hundred kilometers. We have systematically investigated

disturbance propagation for faults located everywhere on the European grid model and found

that major discrepancies between fault located in the Portugal-Spain area or the Balkans gener-

ate significantly stronger and longer disturbances, propagating over much larger distances

than faults located in Belgium, Eastern France, Western Germany or Switzerland.

This discrepancy in behaviors is partly due to the distribution of inertia in the European

grid. As a matter of fact, the latter is not homogeneous, as is shown in Fig 4. Inertia density is

smaller in Spain and Eastern Europe and larger in a strip from Belgium to Northern Italy,

including France, Western Germany and Switzerland. Inertia is not only position-dependent,

Fig 2. Frequency deviations as a function of time for the fault illustrated (a) in the top row of Fig 1 and (b) in the top row of Fig 5
[with inertia in France reduced by a factor of two compared to panel (a)], for three buses in the Balkans (green), France (blue) and
Spain (red).

https://doi.org/10.1371/journal.pone.0213550.g002
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it is also time-dependent as it is directly related to the rotating machines connected to the grid

at any given time [2, 6]. Our results below are obtained both for a typical summer evening

(with moderate load and thus reduced total inertia) and a typical winter evening (with large

load and thus larger total inertia).

To investigate the influence of inertia distribution on frequency disturbance propagation,

we simulated the same faults as in Fig 1, first, artificially reducing inertia by a factor of two in

France, second artificially increasing inertia by a factor of two in the Balkans. The results are

shown in Figs 5 and 6 respectively. First, one sees in Fig 5 that reducing the inertia in France

has only a local effect. Frequency disturbance from a nearby fault in Switzerland propagates

over a larger distance with reduced inertia in France, as expected, however there is very little

effect on disturbance propagation from a power loss in Greece. Particularly interesting is that

even with a two-fold reduction of inertia in France, there is no increase of the disturbance

affecting Eastern France and only a mild increase of it in Western France from a power loss in

Greece. Frequency deviations for three buses in the Balkans, in Eastern France and in Spain are

shown in Fig 2(b). Despite the reduced inertia in France, the french bus still displays only weak

oscillations of frequency about an average frequency decrease characteristic of power losses.

The overall frequency evolution is surprisingly almost indistinguishable from the case with nor-

mal inertia in France in Fig 2(a). Second, increasing the inertia in the Balkans certainly absorbs

part of the frequency disturbance from a nearby fault in Greece. This can be seen in Fig 6. How-

ever, relatively large RoCoF’s still persists at t> 2 s, with a magnitude that is reduced only

because the initial disturbance has been partially absorbed by the increased inertia at short

times, t< 1 s. We therefore conclude that strong discrepancies in frequency disturbance propa-

gation depending on the location of an abrupt power loss cannot be understood solely on the

basis of inertia distribution. In particular, (i) it is not inertia that renders France almost

immune to frequency disturbance generated by a power loss in Eastern Europe or Spain, (ii) it

is not only the lack of inertia in the Balkans that allows the persistance there of relatively large

RoCoF’s at t> 2s. Figs A and B in S1 Appendix further show similar behaviors in disturbance

propagation following different faults or under different initial load configurations.

We can gain some qualitative understanding into these phenomena through spectral graph

theory under simplifying assumptions on model parameters. From (2) and (3) and for small

Fig 3. Load flows F(t) on ten of the originally most heavily loaded lines that exhibit the largest response to the
same fault as in the top row of Fig 1. In all cases, flows are normalized by their thermal limit Fth which varies from
line to line.

https://doi.org/10.1371/journal.pone.0213550.g003
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angle differences between connected buses in the initial operational state, weak angle devia-

tions have a dynamics governed by

M _ω þ Dω ¼ P � L θ ; ð4Þ

with the diagonal matricesM = diag({mi}) (mi 6¼ 0 for generators only), D = diag({di})

and the Laplacian matrix L of the grid, with elements ðLÞij ¼ �BijV
ð0Þ
i V

ð0Þ
j , i 6¼ j and

ðLÞii ¼
P

kBikV
ð0Þ
i V

ð0Þ
k . Voltage angles and frequencies as well as power injections have

been cast into vector form in (4), i.e. θ = (θ1, . . .θN) and so forth. The Laplacian matrix is

real and symmetric, as such it has a complete orthogonal set of eigenvectors {u1, . . ., uN}

with eigenvalues {λ1, . . .λN}. The zero row and column sum property of L implies that

λ1 = 0, corresponding to an eigenvector with constant components, ðu
1
Þ> ¼ ð1; . . . ; 1Þ=

ffiffiffiffi

N
p

.

Fig 4. Inertia parameters of generators in our model of the synchronous grid of continental Europe. The disk size is proportional tomi and the colors label hydro
(blue), nuclear (orange), gas (pink), coal (black) and other (green) power plants.

https://doi.org/10.1371/journal.pone.0213550.g004
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If the grid is connected, as in our case, all other eigenvalues of L are strictly positive, λα > 0

for α = 2, . . ., N. This guarantees linear stability of fixed point solutions to (4) in the sense

that small angle and frequency deviations are exponentially damped with time.

Our initial state is a stationary state of (4), characterized by ωi = 0 8i (since we work in the

rotating frame) and a set of voltage angles θ(0). We then let this initial state evolve under (4)

after a power loss with Pb! Pb − ΔP at bus # b. Using the method of Ref. [20, 21] we can com-

pute frequency deviations at bus #i and time t as a spectral sum over the eigenvectors, {uα},

and eigenvalues, {λα} of the Laplacian matrix, under the assumption of homogeneous inertia

and damping coefficients,mi =m and di = d. One gets, with γ = d/m,

doiðtÞ ¼
DP e�gt=2

m

X

N

a¼1

uaiuab

sinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p

tÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p : ð5Þ

Fig 5. Spatio-temporal evolution of local RoCoFs for two different power losses of ΔP = 900 MW in a moderate load (typical of a standard summer
evening) configuration of the synchronous grid of continental Europe of 2018. The top five panels correspond to a fault in Greece and the bottom five to a
fault in Switzerland. In both cases, the fault location is indicated by a purple circle. Panels correspond to snapshots over time intervals 0-0.5[s], 0.5-1[s], 1-1.5[s],
1.5-2[s] and 2-2.5[s] from left to right. The situation is the same as in Fig 1, except that all inertia coefficientsmi in France have been divided by two.

https://doi.org/10.1371/journal.pone.0213550.g005

Fig 6. Spatio-temporal evolution of local RoCoFs for two different power losses of ΔP = 900 MW in a moderate load (typical of a standard summer
evening) configuration of the synchronous grid of continental Europe of 2018. The top five panels correspond to a fault in Greece and the bottom five to a
fault in Switzerland. In both cases, the fault location is indicated by a purple circle. Panels correspond to snapshots over time intervals 0-0.5[s], 0.5-1[s], 1-1.5[s],
1.5-2[s] and 2-2.5[s] from left to right. The situation is the same as in Fig 1, except that all inertia coefficientsmi in the Balkans have been multiplied by two.

https://doi.org/10.1371/journal.pone.0213550.g006
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In real power grids frequencies are monitored at discrete time intervals t! kΔt, with Δt
ranging between 40 ms and 2 s [22]. RoCof’s are then evaluated as the frequency slope between

two such measurements. In our numerics, we use Δt = 0.5 s. The RoCoF at bus #i reads

riðtÞ ¼
doiðt þ DtÞ � doiðtÞ

2pDt
: ð6Þ

Together with (5), this gives

riðtÞ ¼ DP e�gt=2

2pm

X

N

a¼1

uaiuab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p

Dt

�
h

e�gDt=2 sin
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p

ðt þ DtÞ
�

�sin
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p

t
�i

:

ð7Þ

The term α = 1 gives a position-independent contribution to the RoCoF, rð1Þi ðtÞ ¼ DP e�gt

ð1� e�gDtÞ=2pmNgDt. It is maximal and inversely proportional to the inertia coefficientm

at short times, rð1Þi ðt ! 0Þ ! DP=2pmN. All other terms α > 1 have oscillations with both

amplitude and period depending on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p

. High-lying eigenmodes with large α and

large eigenvalues λα therefore contribute much less than low-lying eigenmodes, both because

their oscillation amplitude is reduced and because they oscillate faster, which leads to faster

cancellation of terms. With our choice of Δt = 0.5 s we find
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la=m� g2=4
p

Dt 2 ½0:54; 416�
for α > 1 in our model. The second lowest value is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
3
=m� g2=4

p

Dt ¼ 0:89, almost twice

larger than the first one. Fig 7 shows the eigenvalues of the network Laplacian, in particular

how they quickly increase in value in the lower part of the spectrum and how their density

increases as one reaches the middle part of the spectrum. Accordingly, one expects that only

few eigenmodes of the network Laplacian, corresponding to its lowest nonvanishing eigenval-

ues, effectively matter in the spectral sum in (7). Higher-lying modes have only short-lived

contributions.

These results show that, for homogeneous inertia and damping, the short-time RoCoF

response ri(t) is inversely proportional to the inertia. The behavior at longer times is deter-

mined by the magnitude of the few slowest eigenmodes of the network Laplacian on both the

perturbation bus [through uαb in (7)] and the bus where the RoCoF is measured [through uαi].

Fig 7. Normalized spectrum λα/λ2 of the network Laplacian for our model of the high voltage synchronous grid of
continental Europe.

https://doi.org/10.1371/journal.pone.0213550.g007
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Despite its neglect of inhomogeneities in inertia and damping, this simple calculation suggests

that the so far unexplained behaviors observed in our numerical results in Figs 1, 5 and 6 are

related to slow modes of the network Laplacian. This hypothesis gains further support when

looking at the structure of the slowest, α = 2 mode, so-called Fiedler mode on the generator

buses of the European network shown in Fig 8. The large squared amplitude u2

2i of the Fiedler

mode on buses i in Spain and the Balkans is consistent with a disturbance propagating from

one to the other of these regions with only minor disturbance on intermediate regions (such

as Eastern France in Figs 1, 5 and 6). We have found, but do not show, that the next, α = 3

mode has essentially the same profile of u2

3i as the Fiedler mode. Furthermore, the next modes

α = 4, . . .6 largely avoid Belgium, France, Western Germany, Northern Italy and Switzerland.

Higher modes have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la>6
=m� g2=4

p

Dt > 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2
=m� g2=4

p

Dt (as can be inferred from Fig 7)

accordingly, their contribution to RoCoF’s, (7), are at least four times smaller and oscillate

four times faster than the Fiedler mode. We therefore neglect them in our qualitative discus-

sions to come.

To assess the disturbance magnitude of a power loss at bus #b over frequencies in the whole

grid, one needs to gather information on RoCoF’s at different times and locations. We there-

fore introduce the performance measure

Mb ¼
X

Nsim

k¼1

X

i

�

�riðkDtÞ
�

� ; ð8Þ

where Nsim = 10 is the number of time intervals Δt = 0.5s considered in our numerics. Qualita-

tively speaking,Mb is large, if the RoCoF magnitude |ri| is significant on many nodes and for

long times. Fig 2 shows that the total time NsimΔt = tsim = 5 s considered in our numerical cal-

culation ofMb is set to include major initial oscillations while neglecting oscillations at longer

times of little concern for power grids.

The above result (7) suggests that RoCoF’s are larger following power losses on buses

with large components of the eigenvectors with smallest eigenvalues of the Laplacian matrix.

To check whether this result also holds in realistic power grids with nonhomogeneous

Fig 8. Color plot of the normalized squared components u2

2k
of the Fiedler mode on generator buses in the European and ERCOT

grids. Labeled buses correspond to labeled symbols in Figs 9 and 10.

https://doi.org/10.1371/journal.pone.0213550.g008
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distribution of inertia, we numerically calculateMb for 20 abrupt power losses homo-

geneously distributed on the European and ERCOT grids. Fig 9 shows that the disturbance

magnitudeMb grows with the squared Fiedler component u2

2b of the location b of the power

loss. Everything else being kept constant, the disturbance magnitude is more than twice larger

in the European grid and almost three times larger in the ERCOT grid for power losses on

buses with largest u2

2b, than for losses on buses with low u2

2b. As for Fig 8, we have found that

the same trend persists when plottingMb against the squared component u2

3b of the second

slowest mode of the Laplacian. The magnitude of the disturbance following an abrupt power

loss is therefore determined by its location, in particular on the amplitude u2

ab on the faulted

bus b of the Fiedler mode (α = 2) and of the next slowest mode (α = 3) of the network Lapla-

cian. In what follows, we call, by some abuse of language, “Fiedler areas” (“non-Fiedler areas”)

the set of buses {i} where u2

2i and u2

3i are large (small).

4 Disturbance magnitude vs. inertia

So far we have established that disturbances have strongly location-dependent magnitudes,

and in particular that stronger disturbances originate from buses with large amplitude of the

two slowest eigenmodes of the network Laplacian. We next investigate how rotational inertia

influences this finding. To that end we modify inertia on the network following three different

procedures where the inertia of a generator on bus #i is increased/decreased according to one

of the following probability distributions

pUi / 1 ; ð9Þ

pFi / u2

2i ; ð10Þ

pnFi / 1=u2

2i : ð11Þ

The first procedure reduces/adds inertia uniformly (indicated by the superscript U), the sec-

ond one reduces/adds inertia preferentially on buses with large amplitude of the Fiedler mode

(hence the superscript F) and the third one reduces/adds inertia preferentially on buses with

small amplitude of the Fiedler mode (with nF indicating the “non-Fiedler” area).

Fig 9. Global RoCoF disturbance magnitudeM
b
as a function of squared Fiedler components u2

2b
for power losses on 20 different bus #b

for (a) the European and (b) the ERCOT grid. Labeled symbols correspond to locations indicated in Fig 8. The plots look similar whenMb is
plotted against the squared component u2

3b of the second slowest mode of the Laplacian.

https://doi.org/10.1371/journal.pone.0213550.g009
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Fig 10 shows the evolution ofMb as a function of total inertia,Msys = ∑imi, for power losses

of ΔP = 900 MW on the same 20 power plants as in Fig 9. The data corresponding to today’s

synchronous grid of continental Europe are the rightmost, with the largest amount of inertia.

The inertia is then reduced following the first procedure where generator buses become ran-

domly inertialess according to the homogeneous probability distribution (9). One sees that

Mb follows the ranking defined by the squared Fiedler components, almost regardless of the

amount of inertia in the system, and faults in the Fiedler areas are generically more critical

than those in the non-Fiedler areas.

The situation can be dramatically different when following other procedures to add/remove

inertia selectively on certain areas. In Fig 11,Mb is shown, always for the same power loss.

The top left data point (indicated by an arrow) corresponds to the data labeled 2 in the top left

of Fig 10 (also indicated by an arrow). Paths (1) and (3) correspond to adding inertia according

to procedure (11), i.e. mostly outside the Fiedler area. This procedure reducesMb by less than

10% upon increasing the total inertiaMsys by 30%. Path (2) follows procedure (10) by adding

inertia almost exclusively on the Fiedler area. It is much more efficient and leads to a reduction

ofMb by more than 30% with the same total increase ofMsys by 30%. Finally, path (4) illus-

trates a procedure where inertia is removed from Fiedler areas and added to non-Fiedler areas.

In that case, the RoCoF disturbance magnitude increases, even with a global increase of inertia.

Taken in reverse direction, path (4) in Fig 11 shows that, quite unexpectedly, grid resilience

against faults such as power losses can be enhanced while simultaneously reducing the total

amount of inertia.

We finally show in Fig 12 how global RoCoF disturbance magnitudes depend on the loca-

tion of each of the 20 power losses considered in Fig 10, once inertia is reduced starting from

Fig 10. Global RoCoF disturbance magnitudeM
b
vs. the artificially varied system inertia Msys in the European

grid. Each point corresponds to the loss of a single power station, with colors related to the squared component u2

2b of
the Fiedler mode on the power loss bus. Color code and label symbols are the same as in Fig 8. The arrow indicates the
data point corresponding to the top left data point, also indicated by an arrow in Fig 11.

https://doi.org/10.1371/journal.pone.0213550.g010
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the full inertia situation of Fig 10 with M0

sys ¼ 14:7 GWs2. The three data sets correspond to

unchanged inertiaM0

sys (crosses), inertiaMsys ¼ 0:6M0

sys reduced mostly in the Fiedler area, fol-

lowing the probability distribution (10) (empty circles) or outside the Fiedler area, according

to (11) (full circles). Fig 12 clearly shows that (i) regardless of the position of the fault, inertia

reduction on the Fiedler area systematically leads to an enhanced sensitivity to power loss,

compared to inertia reduction outside the Fiedler area and (ii) the sensitivity increase is larger

for faults on the Fiedler area.

Conclusion

We have presented numerical investigations on disturbance propagation following a generator

fault in the synchronous transmission grid of Continental Europe. The first step was to build

up a numerical model, including all necessary parameters to perform dynamical calculations.

To the best of our knowledge, no model of this kind is publicly available.

In real power grids, protection devices disconnect generators if the RoCoF or frequency

deviations exceed predetermined thresholds. Therefore we based our performance measure on

RoCoF and investigated how the latter evolves in space and time following an abrupt power

loss, depending on the location of the latter. We have found that disturbances are stronger,

they propagate further and persist longer for faults located on areas supporting significant

amplitude of the slowest modes of the network Laplacian. In the case of the European grid

we found that the two lowest (but nonzero) modes are particularly important in that respect.

They have similar geographical support which we called the “Fiedler area”, because the lowest

Fig 11. Global RoCoF disturbance magnitudeM
b
vs. artifically modified total system inertia.Along paths (1) and

(3), inertia is added according to procedure (11), i.e. mostly on the non-Fiedler area. Path (2) follows procedure (10) by
adding inertia almost exclusively on the Fiedler area. Path (4) follows a selected procedure where inertia is removed
from the Fiedler area and added on the non-Fiedler area. The top left data point corresponds to the data point
indicated by an arrow in Fig 10.

https://doi.org/10.1371/journal.pone.0213550.g011
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nonzero mode of a network Laplacian is often called the “Fiedler mode”. Amplifying on

those results we found that inertia reduction on the Fiedler area leads to an amplified RoCoF

response, while reducing the inertia on non-Fiedler area has a much weaker effect, with only a

moderate increase of RoCoF’s.

The faults considered above correspond to abrupt power losses of ΔP = 900 MW. They lead

to maximum RoCoF’s magnitudes of 0.5 Hz/s when the fault is located on a Fiedler area under

moderate network load conditions. When the fault is located on a non-Fiedler area, RoCoF’s

never exceed 0.1 Hz/s. These values are significantly larger when considering a normative con-

tingency of ΔP = 3000 MW [14]. This reference incident is usually taken as the tripping of two

of the largest European generators, connected to the same bus [14], however since no such

generators exist in the Balkans, we show instead in Fig 13 a similar event resulting from the

tripping of two nearby 1500 MW power plants, for the same load conditions as in Fig 1. In

the ensuing disturbance propagation, RoCoF’s reach values close to 1Hz/s over large areas of

south-east Europe for times at least up to 2.5s. Yet, even with a fault of this magnitude, the

RoCoF’s are much weaker in France and other non-Fiedler areas than in the Balkans and the

spanish peninsula—where the two slowest modes of the network Laplacian reside. Frequency

deviations are further shown in Fig 14 which shows the same qualitative, if not quantitative

behavior as in Fig 2, but amplified by the more than three times larger fault magnitude,

ΔP = 900 MW! 3000 MW.

Our findings emphasize an important aspect of optimal inertia location. Because long-

range RoCoF disturbance propagation is controlled by the slowest modes of the network

Laplacian, reducing inertia where these nodes reside, areas we called “Fiedler areas”, leads to a

Fig 12. Global RoCoF disturbance magnitudeM
b
horizontally ranked in increasing order of the squared Fiedler

mode amplitude u2

2b
on the faulted bus #b. Crosses are for a system with inertia M0

sys ¼ 14:7GWs2 (corresponding to

today’s European grid, Fig 1) and circles for reduced inertia Msys ¼ 0:6M0

sys, with system inertia mainly reduced

outside Fiedler areas (solid circles) or mainly reduced inside Fiedler areas (empty circles).

https://doi.org/10.1371/journal.pone.0213550.g012
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significantly more sensitive grid than reducing inertia outside these areas. Conversely, substi-

tuting inertialess new renewable sources of energy for inertiaful conventional generators criti-

cally needs to be accompanied by the deployment of synchronous condensers or synthetic

inertia in Fiedler areas, while the need for inertia substitution is lower outside the Fiedler

areas. Models similar to our dynamical model for the synchronous grid of continental Europe

should prove to be helpful tools in planning for inertia deployment as the penetration of new

renewables increases.

As a final comment future works should relate the correlations emphasized in this paper

between inertialocation, disturbance propagation and the slow modes of the network Lapla-

cian with those found between the location of inertialess, converter-connected new renewables

and specific electromechanical modes in Refs. [4, 5, 23].

Supporting information

S1 Appendix. Disturbance propagation for different faults or with different loads.
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S2 Appendix. A model of the synchronous grid of continental Europe.

(PDF)

Fig 13. Spatio-temporal evolution of local RoCoFs for two simultaneous abrupt power losses, each of ΔP = 1500 MW in a moderate load (and thus low
inertia, typical of a standard summer evening) configuration of the synchronous grid of continental Europe of 2018. The faults location is indicated by
purple circles. Panels correspond to snapshots over time intervals 0-0.5[s], 0.5-1[s], 1-1.5[s], 1.5-2[s] and 2-2.5[s] from left to right.

https://doi.org/10.1371/journal.pone.0213550.g013

Fig 14. Frequency deviations as a function of time for the double fault of ΔP = 3000 MW illustrated in Fig 13, for
three buses in the Balkans (green), France (blue) and Spain (red).

https://doi.org/10.1371/journal.pone.0213550.g014
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