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Inertia Response Improvement in AC Microgrids: A

Fuzzy-Based Virtual Synchronous Generator Control
Amin Karimi, Yousef Khayat, Mobin Naderi, Tomislav Dragičević , Senior Member, IEEE, Rahmatollah Mirzaei,

Frede Blaabjerg, Fellow, IEEE, and Hassan Bevrani, Senior Member, IEEE

Abstract—The absence of rotational masses from synchronous
generators in converter-interfaced microgrids leads to a lack
of inertia. Consequently, the system exhibits steeper frequency
variations and higher frequency nadir, which may degrade the
dynamic performance and challenge the operation of sensitive
equipment such as protective relays in the grid. Virtual syn-
chronous generator is introduced as an effective solution to
increase the inertial response of converter interfaced renewable
energy sources. This paper proposed a fuzzy controller, which
is augmented on the virtual synchronous generator topology
to damp the perturbation during transients by increasing the
inertia of the system. The proposed fuzzy control adds a cor-
rection term to the the governor’s output power that increases
the system inertia during transients. In order to compare the
inertial response improvement, a comparison between proposed
fuzzy control technique and cost function based inertia and
damping coefficient optimization is done on a virtual synchronous
generator platform. It is shown that online measurement based
adaptive methods have a better inertial response against other
time-consuming techniques. To further verification, a number of
experiments are done, which confirm the merits of the proposed
fuzzy based virtual synchronous generator control method.

Index Terms—AC microgrids, converter interfaced generation,
frequency stability, transient performance, virtual inertia, virtual
synchronous generator.

I. INTRODUCTION

M ICROGRIDS and their flexible control features propose

a practical solution to employ better renewable energy

resources by converter interface power electronics [1]. On the

other hand, lack of synchronous generators in the converter

interfaced microgrids (MGs) leave more operation-protection

consequences. Though, low inertia of converter interfaced re-

newable energy sources (CIRESs) are introduced as a general

drawback, they have fast controllable dynamics, which may

be introduced as promising solutions for both power support

and frequency response reaction [2].

In order to improve the system stability and prevent them

from triggering the sensitive protection relays, performance

requirements are needed to increase the inertia response of

the CIRES based MGs [3], [4].

The concept of virtual synchronous generator (VSG) is pro-

posed to increase the ineria of the MGs by emulating the be-

havior of synchronous generator (SG) [5], [6]. A well-known

objective of VSGs is stated by employing CIRESs in the same
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way as synchronous generators. By this, the well-established

operation-protection methods for conventional power systems

can be used for MGs with a high penetration level of CIRESs

[7].

According to the AC MG operation modes, i.e. autonomous

and grid-connected, CIRESs can be categorized into grid-

forming, grid-feeding and grid-supporting power converters

[8]. The grid-forming CIRESs can just be operated in the au-

tonomous mode in order to form voltage sources with certain

frequency and voltage amplitude. The grid-feeding CIRESs

can be used in both autonomous and grid-connected modes

for the sake of supplying active and reactive powers. However,

in the islanded MGs, at least one grid-forming CIRES is

required in parallel. Note that the grid-feeding CIRESs are not

able to contribute in voltage/frequency regulation. The grid-

supporting CIRESs are operated as both current and voltage

sources. Although the current source grid-supporting CIRESs

can be operated in the grid-connected mode unconditionally,

they cannot be used independently in the autonomous mode.

Nevertheless, the voltage source grid-supporting CIRESs are

able to work in both modes. Generally, the grid-supporting

CIRESs contribute to supply active/reactive power and also

voltage/frequency regulation. Therefore, they are much more

flexible for supplementary control services, e.g. improving

inertia response and mitigating power fluctuations. The VSG

control strategy is a type of grid-supporting CIRESs.

The VSG-based grid-supporting CIRESs are allowed to be

the active components to support the frequency dynamics and

the role of inertia response will be performed by them. In these

CIRESs, the oscillations on the output power and frequency

may easily occur due to the high fluctuations of the distributed

generations. To address this problem, several control methods

have been designed to suppress the frequency and active

power oscillations [9]. By adjusting the inertia and/or the

damping coefficients of VSGs, the output oscillations and the

VSG behaviour can be changed directly. In order to better

understand the VSG parameter design, small-signal modeling

is done in [10], where the inertia and damping coefficients

of the VSG can be determined more accurately. A modelling

study is presented in [11], where the influences of parameter

variation and perturbation effects on the active power and

frequency oscillations for a VSG are studied by proposing the

small-signal model and illustrating the dynamic performances

in detail. A virtual capacitor algorithm to enhance the reactive

power sharing in VSG-based MGs in [12] and an adaptive

linear quadratic regulator-based VSG in [13] to improve the

inertial response of the system have also been presented.

From the inner loops architecture point of view, the VSG

based CIRESs can be classified into two categories [14]: 1)

without current control loop [15], [16] and 2) with current
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control loop [17]. The first category suffers from short-circuit

faults since there is not a current control loop in the con-

verter control framework. The VSGs belonging to the second

category, which includes the current controller to enable the

control of grid current and enhance the converter with fault

ride through capability. This control approach supplements the

outer control loop of a vector controlled converter without

modifying the structure of the overall system. It is worth to

note that the current control is necessary for the LCL-filtered

converter structure [18].

As presented in [19] a self adaptive VSG control method

based on rate of change of frequency (RoCoF), and in [20]

a self-tuning based algorithm were employed to continuously

optimize the virtual inertia among predefined inertia moment J

and damping coefficient D in order to minimize the frequency

deviation and output power oscillation of the VSG. Similar

methods are addressed in [21] and [22], where different values

of J and D were employed to improve the dynamics of

frequency response. In [23] and [24] by changing droop gain as

a function of frequency and frequency variation an improved

virtual inertia response is obtained. Authors in [25] have

proposed a fuzzy control to improve the frequency response of

a wind turbine system, which needs a detailed model on pitch

angle control, wind storage system, and wind speed. From

a practical point of view, the relationship between the inertia

response and dc-link energy as well as other design parameters

are addressed in [26]. Inspired by the VSG functions on the

flexible AC transmission system (FACTS), the authors in [27]

by employing the STATCOM functions into the VSGs have

improved the inertial response of CIRES based MGs.

In this paper, by employing a fuzzy controller (FC) which

is used in the VSG control platform, named FC-VSG, the

inertial response of CIRES based VSGs can be improved In

both grid-connected and autonomous modes of AC MGs and,

in addition, the active power performance in the transient state

is enhanced. The designed FC generates a correction term

which is added to the governor’s output power, i.e., input

power of the swing equation, to improve the VSG performance

in order to increase the system inertia during transients, with

a small computational burden. It is implemented by a set of

logic membership functions in transient states. The proposed

FC makes the VSG response more applicable for practical

implementations, since it employs three main effective param-

eters related to inertial response, i.e. the rotating angle change

∆δ, the MG frequency ω and the rate of change of frequency

(RoCoF). The proposed FC-VSG has the following advantages

over the existing methods.

• In this paper ∆δ, ω, and ω̇ (RoCoF) are employed by

an FC to improve the inertial response. Meanwhile, the

existing results in [21]–[24] are only working on the

tuning of the VSG parameters (J and D) by using

optimization methods. These approaches are not fast

enough to leave their impact on inertial response due to

their computations.

• Comparing with the existing tuning or gain scheduling

methods in [19] and [20], this paper utilizes an FC

representation, which is merged with a VSG scheme to

provide a novel nonlinear inertial response improvement
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Fig. 1. Frequency response to a disturbance such as intentional/unintentional
islanding, faults and load changes . (a) A low inertial CIRES-based power
system, and (b) a large inertial system (rotating-mass conventional power
system).

by modifying the governor’s output power using low

online computational burden.

• Comparing with the existing inertia response improve-

ment approach in [27], the proposed FC can compensate

the inertia and transient oscillations continuously, while

[27] improves the inertia response by a bang-bang control

method. The proposed FC rapidly adjusts the prime

mover power of the governor to improve the inertia

response.

The rest of this paper is organized as follows. In Section

II, common CIRES control methods and their role in order

to provide a sufficient level of inertia for the system are

discussed. Section III presents a nonlinear model of a VSG

connected to an equivalent Thevenin model of a weak grid

or an MG. The proposed FC controller with its membership

functions and design procedure are presented in Section IV.

In Section V, the effect of online measurement control FC-

VSG with direct search methods to tune the inertia and

damping coefficients is compared by simulations. Verification

by experimental tests are performed in Section V. Finally,

concluding remarks and future works are outlined in Section

VI.

II. INERTIA SUPPORT NECESSITY FOR GRID-CONNECTED

CIRESS

Increasing the inertia response in power systems with a

high penetration of CIRES is possible by implementing virtual

inertia algorithms in the power electronics devices, so they

mimic the inertial response of the synchronous generators.

As mentioned before, the two most common solutions to
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connect a CIRES are grid-feeding and grid-supporting op-

eration. The grid-feeding configuration is designed to inject

power proportional to the frequency deviation and the RoCoF,

which are measured by a phase-locked loop (PLL). On the

other hand, the grid-supporting configuration responds to the

power fluctuations by changing the frequency based on a

droop characteristics or swing equation of the synchronous

generators.

It is worth to note that a number of synchronous machines

may be disconnected when the renewable generation units

produce their expected production in a favor weather. A real-

life report on the system’s inertia variability is presented in

[28], which shows the time-variant German Power System

inertia for the year 2012. It is reported that the total system

inertia only for the cases that electric energy is generated

by synchronous generation machines is 6 s, but when the

penetration level of the CIRESs is increased, the inertia

constant of the system is easily reduced to 3 s.

By increasing the penetration level of CIRESs and replace-

ment instead of synchronous machines, the system inertia

becomes a stochastic and time-dependent variable as a function

of the expected wind and solar power output. Hence, the

system inertia is increasingly becoming a stochastic variable

subject to a significant level of variability and dependent on

weather conditions. More importantly, situations may emerge

when the power electronics based power system is not able

to provide inertia support or provide an acceptable inertial

response. Technical reports [29], [30] and [31] have discussed

this challenge. A possible solution to provide a sufficient level

of inertia independent from CIRES capacity is re-modelling

the system inertia as a time-dependent stochastic variable

that needs to be considered as an uncertain variable into

the dispatch and robustness analysis and modeling. Robust

analysis and modelling either by conservative modelling such

as unstructured or parametric uncertainty or lower conservative

approaches such as unstructured uncertainty modelling will be

promising solutions to the inertia issues.

The necessity of an accurate modelling of power electronics

converters, their control layers and limitations focusing on

the short time scales is required to analyze and propose new

solutions to provide the inertia level of the system.

Fig. 1 shows a conceptual frequency response of a CIRES-

based power system (Fig. 1(a)), and large inerta system

(rotating-mass conventional power system) (Fig. 1(b)) after a

disturbance. The frequency dynamics are addressed in many

power system text books, for example see Chapter 12 in [1]

or Chapter 8 in [2]. As illustrated in Fig. 1, the frequency

dynamics includes two parts: 1) inertial response once a

disturbance occurs, and 2) frequency restoring control, which

are performed by the primary and secondary control layers.

The inertia response is expressed using two common indices,

i.e. RoCoF and the frequency Nadir [20], which are also shown

in Fig. 1. The lower RoCoF and frequency nadir means more

improved inertia response [20].

III. VSG MODELLING

A VSG can be connected to a strong grid, weak grid, or an

islanded MG (as a very weak grid). It is worth to mention that

MG without CIRESi
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Fig. 2. General diagram of a very weak grid (MG) with focus on CIRESi as
a VSG.
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Fig. 3. CIRESi model: (a) A typical two CIRES based MG with lines and
loads, and (b) the equivalent of the system from a CIRESi point of view.

the strong grid can be modelled as an ideal voltage source,

while in the real grids the grid impedance Zg should be

included as a metric of the grid strength/weakness as follows

[14]:

SCR =
1

Zg(pu)
, (1)

where the short-circuit ratio (SCR) for strong grids is larger

than 3, for weak grids its value is between 2 and 3, and for

very weak grids, it is less than 2 [14]. In the case of islanded

MGs fully based on CIRESs, the well-known current limiting

function embedded in inner current controllers does not permit

an SCR larger than 1. Therefore Zg should be considered

precisely in this study. To this end, an equivalent Thevenin

model of an MG as a special challenging weak grid with

variable inertia and damping coefficients is presented in the

next subsection.

In the following we try to present a parametric model of a

VSG connected to an equivalent Thevenin model with equiva-

lent voltage Eth = |Eth|∠θth and equivalent impedance Zth.

A. Equivalent Thevenin based Model of MG Power side

The presented MG modelling in [32], also called static Zth

modelling, is employed here to simplify the rest of islanded

MG connected to a VSG. A conceptual diagram of an islanded

MG in a general case is shown in Fig. 2, where the focus is

on a single-line diagram of the CIRESi. As mentioned, the
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Equation (8)

Equation (9)
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Fig. 4. The dynamics of a VSG based CIRES connected to a weak grid.

CIRESi is controlled as a VSG and its DC-link voltage is

assumed to be constant [33]. The rest of MG includes other

CIRESs, loads, and lines, while they are electrically linked.

The other CIRESs are operated in the form of being grid-

forming [8]. Here, we aim to find a model for the MG power

side. To achieve this goal, the CIRES power part including a

dependent voltage source and an RLC filter are modelled in

details, and the effects of the rest of MG on the CIRESi are

considered in the form of an equivalent Thevenin circuit.

Fig. 3(a) shows the MG model having a voltage source

representing the inverter, filter inductance, capacitance, resis-

tances, and a Thevenin equivalent circuit. In this electrical

model, the Thevenin equivalent is composed of an impedance

equivalent to all other impedances in the MG including lines,

loads, and CIRES filters, and the impact of all other CIRESs

coupled at PCC with CIRESi is shown with a voltage source

equivalent. Three-phase equations in the abc-frame are as

follows

Ei
abc = Rii

i
Labc + Li

d

dt
iiLabc + V i

abc (2)

iiCabc = iiLabc − iiOabc = Ci
f

d

dt
V i
abc (3)

V i
abc = Zi

thi
i
Oabc + Ei

th (4)

where Zi
th and Ei

th are calculated easily according to the

structure of the rest of MG. In the case of two-CIRES MG as

shown in Fig. 3(b), Zi
th and Ei

th are obtained as










Zth = Z1
line + Zload||(Z

2
line + Z2||Z

2
f ),

Eth = (
(Z2||Z

2

f )(Zload||(Z
2

line+Z2||Z
2

f ))

Z2(Z2

line
+Z2||Z2

f
)

)E2
an∠θ2,

(5)

where all impedances can be observed in Fig. 3(a), E2
an and

θ2 are the voltage amplitude and phase angle of CIRES2 being

in the equilibrium point.

B. Non-linear Behaviour of VSG

Fig. 4 illustrates the topology and control platform of

the VSG. It is realized by implementing the virtual swing

equation, which employing active and reactive power droops

on the output powers of the CIRES. It can be connected to a

weak grid or a very weak grid, e.g., an MG, through an LC

filter and the grid impedance Zth.

The well-known inertia equation which illustrates the dy-

namics of the synchronous generators is given as

δ̇ = ωm − ω0 (6)

Jωm ˙ωm = Pm − Pe −D(ωm − ωg) (7)

where δ is the VSG voltage angle, ωm is the angular frequency

of the VSG, ωg is the measured angular frequency through

the PLL, J is the virtual moment of inertia, D is the damping

coefficient, and Pm is the governor’s output power. The active

and reactive power injected to the grid can be calculated based

on the electrical part modelling, as shown in Fig. 3(b), as

follows:

Pe = Yth(V
2 cosϕth − V |Eth| cos(ϑ+ ϕth)), (8)

Qe = Yth(V
2 sinϕth − V |Eth| sin(ϑ+ ϕth)). (9)

where Yth = |Z−1
th |, ϕth = ∠Zth, V is the RMS value of

the V i
abc, and ϑ = δ − θth. Zth, ϕth and θth are calculated

according to the equivalent Thevenin circuit model presented

in the previous subsection.

The output voltage of the VSG is controlled by a

proportional-integral (PI) controller with the following dynam-

ics:

E = (KP +
KI

s
)(Qr −Qe), (10)

where KP and KI are the proportional and integral gains of

the PI voltage controller. In order to find the voltage dynamics,

(10) can be rewritten as

Ė = KP Q̇r −KP Q̇e +KI(Qr −Qe), (11)

where the term Q̇r is related to the dynamics of the measured

voltage (V ), which can be neglected with respect to the

frequency dynamics [1]. Consequently, the voltage dynamics

(12) can be represented as:

Ė = −KP Q̇e +KI(Qr −Qe). (12)

To complete the modelling of the VSG, the governor model

should be included as:

Pm = P0 − kp(ω0 − ωm) (13)

Finally, equations (6) - (9), (12), and (13) present the nonlinear

dynamics of a VSG. Obviously, the nonlinear behaviour of the

VSG connected to a weak grid can be observed based on (7),

(8), and (9). Therefore, employing a nonlinear controller such

as an FC technique handles these nonlinearities and improves

the performance of the VSG.
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(a) (b)

Fig. 5. Specification of: (a) the voltage angle δ, and (b) the voltage frequency
under a perturbation used in the fuzzy-set rules control

.

TABLE I. EXPANDED FUZZY RULES BY TRAINING DATA

Membership Function Range Unit

F
u
zz

y
In

p
u
ts

∆δ
NQ nan - (-0.0084) (-0.006)

radZE (-0.006) - (0.00227) - (0.00582)

PQ (0.00227) - (0.00582) - (nan)

ω
NQ (49.9) (49.99) (50.04)

HzZE (50.03) (50.08) (50.13)

PQ (50.12) (50.26) (50.35)

ω̇
NQ (nan) - (-10.59) - (-5.168)

Hz/sZE (-5.253) (0.173) (5.599)

PQ (5.572) (11 16.43) - (nan)

O
u
tp

u
t

uP

NQ (nan)-(-0.004278)- (-7.778e-05)

puZE (-0.0001) (0.0041) (0.0083)

PQ (0.008189) (0.01239) (nan)

IV. FUZZY LOGIC CONTROLLER IMPLEMENTATION

One way to cope with a nonlinear feature of the physical-

dynamical systems is to represent a nonlinear model includ-

ing a number of differential equations, which are simple

and understandable for their respective sub-domains. Facing

nonlinear and complex systems, it should be recognized that

modelling has a key role and it is important to realize the

system modeling, behaviour, and system operation points in

various conditions.

The concept of fuzzy systems presents powerful control

techniques to cope with nonlinear systems by employing input-

output data based on the original mathematical description

of the system. Fuzzy rules, which are determined based on

the designer’s knowledge on the system nonlinear dynamics

are if-then fuzzy sets, logic and inference. These rules play a

fundamental role in representing a proficient control knowl-

edge in linking the input variables of the fuzzy controllers

to the output variable (or variables). Two major types of

fuzzy control techniques are categorized into the Mamdani

and Takagi-Sugeno (TS) fuzzy rules [34]. In this study, the

Mamdani FC is employed to improve the inertial response.

FC techniques as a powerful adaptive control method based on

online measurement represent a faster response against control

techniques that require a more time-consuming calculations.

This leads to a higher inertia response in CIRES based system.

A. Mamdani FC input/outputs

As mentioned, a suitable performance of an FC system is

achieved by an accurate study of input behaviors. The main

dynamics, which can impact the inertial response, are selected

in this paper based on the ∆δ, ωm, and ω̇m. The correction

term uP , as the output of the FC, adds a power adjustment

signal to the governor’s output power to support the inertia

response of the VSG.

According to the specification of inputs within disturbances,

the fuzzy rules are logically expanded as illustrated in Fig. 5.

Voltage Angle Deviation (VAD) of CIRESs with respect to

the angle of the steady-state is introduced to generalize the

rotor angle deviation security constraint for the multi-VSG

MG applications. Unlike a SG, in the VSGs, the electromotive

force, armature resistance, and synchronous reactance are not

defined [22]. Hence the rotor angle of a VSG is not available

to be used in stability considerations. However, the difference

between the voltage angle of a generating node with respect to

a reference angle for nominal operating point can be employed

to keep the VAD criterion for transient stability instead of the

rotor angle deviation of SGs. Maximum allowable for VAD

is selected as 70 degrees for rotor angle deviation [35]. In

addition, by employing the situation of frequency and RoCoF,

acceleration and deceleration modes can be diagnosed by the

fuzzy rules, which tune the injected power, and consequently,

the systems inertia during transients. In Fig. 5(a), the variation

of δ and its derivative (ω), and in Fig. 5(b) the variation of ω

and its derivative (RoCoF), are described and the significant

deviation zone of the responses is determined into four sectors

such that the quantity in each sector can be one of PQ (positive

quantity, implies upper deviation), ZE (zero, implies usual

quantity), or NQ (negative quantity, implies less deviation).

To improve the inertial response, the rules are implemented

such that in Zones 1 and 3, where the frequency response

deviates from its nominal value (such as massive load changes

or islanding after a fault), uP adjusts a large input power of

the swing equations by reducing the stress of the governor

power. On the other hand, in Zones 2 and 4, where the

frequency response is perverting towards the nominal value, a

low amount of the active power is injected through the control

input up, as showin in Fig. 6.

B. Mechanism and Implementation

Fig. 6 shows the proposed FC-VSG control. The basic VSG

control consists of virtual swing equation, the governor model,

Q − V droop, measurement and power calculation unit, and

voltage reference generator. Voltage and current are measured

from the output filter to calculate the active and reactive

powers. i.e. Pe and Qe. A PLL is employed to measure the

grid frequency ωg , which is used in (7) in an error term of

ωm −ωg . The main reason for feeding back ωg is closing the

frequency control loop in order to decrease the frequency error,

i.e. ωm−ωg and attenuate the disturbance effect. The governor

generates the reference power for (7) according to the nominal

power P0 and the P − ω droop expressed by (13), where ω0

is the nominal frequency and kp is the governor droop gain.

On the other hand, the reference voltage generator block, by
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Fig. 6. The proposed FC-VSG control scheme of a CIRES.

obtaining the reference voltage from Q − V droop and δ,

produces the pulse width modulation md for the converter

switches. Furthermore, to do a more rapid power injection, a

high-bandwidth single-loop predictive controller [36] can be

applied. The proposed FC modifies the active power only in

transient times with up as shown in Fig. 6, where the proposed

FC unit adjusts the governors output power, i.e. the swing

equation input power Pin, then (7) generates ωm.

In the proposed fuzzy control method, in order to have a

closed-loop frequency control, the grid frequency is fed back

using a PLL. Although the PLL may cause instability for

specific operating points or disturbances, in the normal PLL

operation, the frequency feedback to the virtual swing equation

improves the performance, i.e. decreases the frequency error

signal and attenuates the disturbances. In fact, according to

the term of frequency error (ωm − ωg) existing in the virtual

swing equation (7), the control method tries to decrease the

difference between the control and the grid frequencies.

The characteristics of the input/output membership func-

tions (MFs) such as the type of MFs and the training data

ranges are specified in Table I. A proper selection of fuzzy

rules has an impressive influence on the performance of the

proposed FC and consequently plays an important role in

modifying the transient state of the frequency and improving

the inertial response. The suitable performance is achieved

when the FC modifies Pin by the scheduled MFs. Thus,

according to the FC input specifications given within the

events or disturbances, the fuzzy rules are logically expanded

as given in Table I.

V. SIMULATION STUDIES

In order to show the effectiveness of the proposed method,

an investigation between the proposed FC-VSG method with

the self-tuning optimization based inertia and damping control

technique is done. Fig. 7 shows the control diagram of the

proposed FC-VSG and the self-tuning adaptive algorithm [20].

The self-tuning VSG continuously search for optimal values

of J and D during the utilization of the VSG to minimize the

RoCoF and frequency nadir of the system.

As it can be seen in the self-tuning method, the adaptive

block continuously searches and optimizes the VSG

parameters based on the following cost function:

min C = γ1(
dω

dtk+1
)2 + γ2(Jk+1)

2 + γ3(ek+1)
2

+ γ4(Dk+1)
2

subject to : if {(|ek| ≥ ε) and (ek
dω

dtk
≤ 0)}

(J,D) ∈ UJ × UD

γ1, γ2, γ3, γ4 > 0

else (J,D) ∈ ∅ × UD

γ1 = γ2 = 0, γ3,4 > 0 (14)

where γ1−γ4 are the design parameters, ek = ω0−ω, subscript

k + 1 shows the predicted value for the next time step, and

superscript ∗ indicates the optimal value. More details are

explained in [20].

It is worth to highlight that in bang-bang adaptive methods,

the control part selects appropriate inertia and damping coef-

ficients from a finite set of J and D. However, this approach

is fast enough to support the inertia response, but it leads

the system to have a finite combination of optional states

predefined by the algorithm. The self-tuning adaptive method,

as a modified design of the bang-bang adaptive method, selects

also the appropriate inertia and damping coefficients from a

finite set but with respect to a cost function. The selection

will be done after a minimizing the cost function over the

finite set by employing the frequency prediction. The main

issue in this self-tuning adaptive method is its time-consuming

feature due to: 1) calculation and time consumption of the

frequency prediction, and 2) calculation and time consumption

to minimize the cost function and select the optimal inertia

and damping coefficients. It will be worse by increasing the

elements of the finite set UJ × UD.

Fig. 8 shows the simulation results where comparing of

the proposed fuzzy VSG (FC-VSG) controller with the self-

tuning VSG (ST-VSG) and a conventional VSG controller
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Fig. 7. Control block diagrams of the proposed FC-VSG vs the existing self-
tuning VSG control scheme [20].

having constant parameters (CP-VSG) are illustrated. The load

increases by 0.2 kW at t = 0 s. After load change, and

consequently the frequency deviation, as a secondary control

is applied, the frequency restores to its nominal value, i.e. 50

Hz. The RoCoF and frequency nadir values can be observed

for all wave forms. Two different wave forms are shown for the

ST-VSG control, where the impact of the design parameters

γ1, γ2, γ3 and γ4 were highlighted. The initial state of the

inertia and damping coefficients are selected as the same as

their maximum values as it is shown in Table II. Although, the

frequency nadir in the ST-VSG can result in a lower value by

appropriate selecting the design parameters (in magenta color),

the inertial response of the proposed FC-VSG leads to a Lower

RoCoF and a desired frequency nadir by changing the input

power (Pin) by the FC-VSG after disturbances. Note that the

undesired selection of the design parameters can even cause

the worse inertial response (in black color) than the CP-VSG.

VI. EXPERIMENTAL VERIFICATION

To assess the effectiveness and appropriate performance of

the proposed FC-VSG, experimental tests are performed on

the prototype set up shown in Fig. 9. A three-phase grid-

connected converter, programmed as VSG, with a lower scale

voltage and power ratings, is employed to implement the

control platform. The FC-VSG control platform is coded from

Matlab/Simulink environment to the DS1007 dSPACE system

by its Control desk space. The DS2004 analog-digital board
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Fig. 8. Simulation result to compare the proposed FC-VSG vs Self-tuning
VSG control schemes and a constant parameter VSG.

TABLE II. ELECTRICAL AND CONTROL PARAMETERS FOR THE

SIMULATION AND EXPERIMENTAL SYSTEMS.

Electrical Parameters

Parameters Symbol Value

Output voltage of rectifier VDC 650 V

Nominal voltage magnitude Vi 325 V

Nominal Frequency f 50 Hz

Switching Frequency fs 10 kHz

Capacitance of LCL filter Cf 25 µ F

Input / output inductance of LCL filter Li / Lo 1.8 mH

Load 1 Z1 43 Ω , 0.3 H

Load 2 Z2 124 Ω , 0.1 H

VSG Inner Loop Coefficients and other Control Parameters

Control Parameters Symbol Value

Governor droop coefficient kp 0.0025 pu

Q-v droop coefficient kq 0.0125 pu

Apparant power Sbase 10 kVA

Moment of inertia (Jω2

0
)/Sbase 8 s

Damping coefficient (Dω0)/Sbase 17 pu

D
C

 

R
ec

ti
fi

er

Measurement

Unit

LCL Fil ter

Load 1

dSPACE

Grid 

Simulator

Load 2

C
IR

E
S

Fig. 9. Laboratory setup for experimented tests.
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Fig. 11. Experimental results: Moment of Inertia monitoring for Scenario 1:
Intentional islanding.

is used to collect the voltage and current measurements into

the dSPACE. The phase angle of the PCC voltage and the grid

voltage is detected by the PLL. A rectifier having a constant

dc voltage supply is used at the dc-side. In grid connected

mode, grid simulator Chroma 61850 with power rating 45

kVA is employed to generate the grid voltage. Other control

and electrical parameters are given in Table II.

To further verify and prove the effectiveness and merits

of the suggested FC-VSG, it is compared with the presented

method in [4]. Without loss of generality, consider a CIRES,

which is connected to the grid. Following, to show the

merits of the proposed FC-VSG, two scenarios are considered:

Intentional islanding and Load step.

A. Scenario 1: Intentional islanding

In this scenario, the goal is to show the improved perfor-

mance of inertial response of the proposed FC-VSG over the

existing VSG control approaches. The reference values for

the P0, Q0, and E0 are selected as the same as given in

[4]. Figs. 10(a) and 10(b) illustrate the inertial response of a

CIRES through the active power and the frequency compared

with the enhanced VSG [4] under an intentional islanding

event at t = 14.6 s. The overshoot of the proposed FC-VSG

and enhanced VSG controllers are as 0.42 Hz and 0.48 Hz
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Fig. 12. Experimental results: (a) Active power and (b) frequency response
for Scenario 2: Load step.
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Fig. 13. Experimental results: Moment of Inertia monitoring for Scenario 2:
Load step.

respectively. Their RoCoF are 2 Hz/s and 4 Hz/s respectively.

Therefore, one can conclude the inertial response improvement

is obtained according to the overshoot and RoCoF values.

Fig. 11 shows the moment of inertia of the closed-loop sys-

tem including the basic VSG controller and the supplementary

fuzzy controller, which can be calculated from (7) by finding

the moment of inertia as follows:

J =
Pm + up − Pe −D(ωm − ωg)

ωmω̇m

. (15)

It is obvious the moment of inertia is increased adaptively in

the transients caused by intentional islanding. It is due to the

performance of the employed fuzzy controller. In fact both

the conventional VSG approach [3] and the enhanced VSG

approach [4] are not able to improve the inertial response in

an islanding operation.

After the islanding process, since the local load is lower

than the power set-point, the governor mechanism tunes the

system frequency in steady state based on the consumed power

at the connected loads.

B. Scenario 2: Load step

In this scenario, the effectiveness of the proposed FC-VSG

to a load change as a common disturbance in islanded mode

is investigated. As shown in Figs. 12(a) and 12(b), a load
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change happens at t= 8 s, and the active power is increased

from 6 kW to 9 kW, and consequently the frequency is drooped

from 50 Hz to 49.4 Hz. The frequency nadir of the proposed

FC-VSG and enhanced VSG controllers are as 0.60 Hz and

0.62 Hz respectively. Their RoCoF is -3 Hz/s and -6 Hz/s

respectively. Therefore, the inertial response is improved by

the proposed FC-VSG controller with respect to the enhanced

VSG controller [4] according to the frequency nadir and

RoCoF values. Note that decreasing the rate of active power

is equivalent to the lower RoCoF, which means improving

inertial response.

Fig. 13 shows the moment of inertia of the closed-loop sys-

tem including the basic VSG controller and the supplementary

fuzzy controller, which can be calculated using (15). It can

be shown that the moment of inertia is increased adaptively

during transients of the load changing. Note that the inertia

increase is due to the performance of the embedded fuzzy

controller on the basic VSG controller.

It is noteworthy that the injected virtual inertia to the grid

by the proposed FC-VSG control can be remarkable in the

grid-connected MG mode when a considerable number of AC

MGs supported by FC- controlled VSG are connected to the

upstream grid.

VII. CONCLUSION

In this study, an FC-VSG control method is proposed as

a communication-less control method to improve the inertial

response for CIRES-based autonomous MGs. Firstly, the iner-

tia support necessity in grid connected CIRESs is highlighted.

The main idea of the proposed FC-VSG is developed based

on the transient control function which applied to the swing

equation’s input power, the injected governor power, in order

to increase the inertial response. Adjustment of the governor’s

power to increase the inertia is realized in an FC platform by

employing variation the voltage angle, frequency and RoCoF.

To highlight the effectiveness of the online measurement

techniques such as FC to support the inertia response, a

comparison with a self-tuning optimization based techniques is

done. Furthermore, experimental verification is demonstrated

where the proposed FC-VSG achieves desirable transient and

inertial performance, and keeps the RoCoF support feature

for CIRES-based MGs. Experimental results imply that the

proposed FC-VSG is able to do islanding and handle the

loading transition disturbances rapidly, without oscillations

and also obtain a better inertial response. Even when an

islanding event as a large disturbance occurs, the overshoot

is suppressed due to the increased system damping.
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