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Abstract— This paper presents the benefits of using a low cost
inertial measurement unit to aid in an implementation of inverse
depth initialized SLAM using a hand-held monocular camera.
Results are presented with and without inertial observations
for different assumed initial ranges to features on the same
dataset. When using only the camera, the scale of the scene is
not observable. As expected, the scale of the map depends on
the prior used to initialize the depth of the features and may
drift when exploring new terrain, precluding loop closure. The
results show that the inertial observations help to improve the
estimated trajectory of the camera leading to a better estimation
of the map scale and a more accurate localization of features.

I. INTRODUCTION

Performing Simultaneous Localization and Mapping
(SLAM) using a monocular camera has received a lot of
attention over the past few years [1][2][3][4]. Many suc-
cessful implementations have been demonstrated which work
in limited situations. The main limitation of SLAM with
bearing only sensors is that the scale factor of the map is not
observable as there is no measurement of the range from the
camera to the landmarks. This is addressed in some systems
by initializing the system looking at a pattern of known size
[1]. However, as this is the only measurement of distance,
the scale of the map may drift when exploring new areas,
making loop closure difficult.

In most bearing-only SLAM systems, the initialization of
new features in the map is delayed until there is enough
parallax to estimate the depth of the features. The work
presented in [4] highlights the differences between delayed
and undelayed initializations, the benefits of undelayed met-
hods and its implementation difficulties. A recent paper [5]
has proposed a new technique for undelayed initialization of
features using the inverse depth of the features relative to the
camera position from where the feature was first observed.
This technique is able to deal in an uniform way with close
and far features from the first instant they are detected.
In particular, far features provide very useful information
about the camera orientation, reducing the angular drift in
long motions. These characteristics make it desirable for use
in large unstructured environments. However, the undelayed
initialization technique uses a prior to initialize the inverse
depth of the landmarks (in the original paper, a Gaussian dis-
tribution with mean 0.5m−1 and standard deviation 0.5m−1).
As this initial prior is the only information of distance used
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by the system, it introduces a bias in the size of the final
map obtained. This lead not only to ambiguity in the overall
scale factor of the map, which is inevitable in a monocular
vision system, but also to varying scale factors in the relative
range between features in the map, which can make loop
closure impossible. The initial range estimate is also used as
a linearization point for subsequent observations, which can
introduce linearization errors leading to filter inconsistency.

In this paper we demonstrate the benefit of using a low
cost inertial measurement unit (IMU) to aid in an inverse
depth implementation of bearing only SLAM. It is shown
that the inertial observations constrain the uncertainty of
the camera location leading to more accurate initialization
of features. Furthermore there will be less variation in the
scale factor between features in the map which produces a
more consistent map with less uncertainty. This is akin to the
property of geometric similarity, congruency to a scale factor.
Another benefit of inertial measurements, not explored in this
paper, is its ability to provide more accurate predictions of
the location of features in the next image, improving the
robustness and efficiency of data association.

Section II of this paper gives a brief overview of inertial
SLAM as well as inverse depth initialization and the observa-
tion model used. Section III describes the experimental setup
and the characteristics of the sensors. Section IV presents
and discusses the results obtained and Section V provides a
conclusion and indication of future work.

II. INERTIAL SLAM

A. Brief IMU description

An inertial measurement unit (IMU) can be a valuable
sensor in many applications since it provides information
about the movement of the vehicle it is attached to inde-
pendently of the characteristics of the platform. The IMU
provides measurements of its own acceleration and angular
velocity at high update rates. From them position, velocity
and attitude of the platform can be calculated via integration.

However there are disadvantages when using an IMU,
especially for low-cost units as the ones described in this
paper. The errors in the estimation are fundamentally caused
by the bias in the accelerometers and gyros and the random
walk produced by integration of the intrinsic noise in them
[6]. Gyros errors have the most detrimental effect since
the attitude calculated is used to compute and cancel the
gravitational acceleration on the observed accelerations. If
the platform accelerations are smaller than the gravitational
ones then even small errors in attitude produce significant
drifts in the velocity and position estimates. To compensate
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these errors external information gathered by other sensors
is required. Further details can be found in [7].

B. State vector

In inertial SLAM [8] the vehicle position, velocity and
attitude and a map with the most relevant feature locations
of the environment are estimated using relative information
between the vehicle and each feature. The state vector to be
estimated is then given by:

x(k) =
[

xv(k)
Y(k)

]
(1)

where xv(k) represents the vehicle state

xv(k) =




rn(k)
vn(k)
Ψn(k)
f b
bias(k)

ωb
bias(k)


 (2)

and Y(k) the set of n features in the map

Y(k) =




y1(k)
...

yn(k)


 (3)

The components of the features yi(k) will be described in
II-D. The vehicle state xv(k) contains the three cartesian
coordinates of the vehicle position rn, velocity vn and
attitude in Euler angles Ψn, all of them represented with
respect to the navigation frame N and the bias in the
accelerometers f b

bias and gyros ωb
bias in the body frame B.

C. Process model

The dynamic evolution of the state in time is given by a
non-linear state transition function:

x(k + 1) = f(x(k),u(k),w(k)) (4)

where the input u(k) encloses the body-frame referenced
accelerations f b(k) and angular velocities ωb(k) measured
by the IMU

u(k) =
[

f b(k)
ωb(k)

]
(5)

and the term w(k) represents the noise in those measu-
rements as a zero mean uncorrelated gaussian noise with
covariance Q

w(k) =
[

δf b(k)
δωb(k)

]
(6)

The evolution of the vehicle state given the previous input
and noise can be calculated using the following equations:



rn(k + 1)
vn(k + 1)
Ψn(k + 1)
f b
bias(k + 1)

ωb
bias(k + 1)


 =

CB I

N

Fig. 1. Frames description.




rn(k) + vn(k + 1)∆t
vn(k) +

[
Cn

b (k)[(f b(k) + δf b(k)) − f b
bias(k)] + gn

]
∆t

Ψn(k) + En
b [(ωb(k) + δωb(k)) − ωb

bias(k)]∆t
f b
bias(k)

ωb
bias(k)




where Cn
b (k) and En

b are the direction cosine matrix and
rotation rate transformation matrix respectively [8]. The
biases are assumed to be constant and affected by gaussian
noise.

It can be observed in the velocity prediction that the
gravitational acceleration is canceled out on the observed
accelerations f b(k) by adding the term gn which is the
gravity vector in the navigation frame. As stated previously,
if the error in the attitude estimate (Cn

b ) is incorrect the
compensation achieved by adding gn will be incorrect and
the velocity and position estimates will drift.

D. Measurement equation

The method implemented to deal with the undelayed
bearing only SLAM is an adaptation of the inverse depth
algorithm proposed in a recent paper [5]. According to
this method the representation of the features is over-
parametrized as follows:

yi =




rn
i

θn
i

φn
i

ρn
i


 (7)

where rn
i represents the camera optical center, in cartesian

coordinates, from where the feature was first observed. The
angles θn

i , φn
i define the azimuth and elevation of the ray

that goes from the initial camera position to the 3D point
feature. Finally ρn

i = 1/di is the inverse of the distance di

between that camera position and the feature.
The frames involved in the prediction equation can be seen

in Fig. 1, where the navigation frame is represented by N ,
the body frame associated to the inertial by B, C is the
frame of the camera which is stuck on the inertial and I is
the reference frame associated with the image plane.

In our implementation of the inverse depth the observa-
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Fig. 2. Graphical representation of Eq(9). It shows the relations between
the components of the vehicle state and the feature i to obtain the ray vector
h that goes from the camera center to the 3D position of feature i.

tions are related to the state by:

zi =
[

θc
i

φc
i

]
= h(rn,Ψn, rn

i , θn
i , φn

i , ρn
i ) + v

=




arctan
(

hc
y

hc
x

)

arctan
(

hc
z√

(hc
x)2+(hc

y)2

)

 + v(8)

where [hc
x, hc

y, hc
z]

T are the components of the vector hc

which defines the ray that goes from the current camera
position to the 3D point in camera coordinates (c) and v is
the uncorrelated, zero-mean gaussian observation noise with
covariance R.

Equation (9) shows how to calculate the ray hc from the
components of the vehicle state xv and the corresponding
feature yi. The term rb

bc is the sensor offset from the
inertial measured in the body frame and the matrix Cc

b

is the transformation matrix from the body frame to the
camera frame. Fig.2 offers a graphical representation of this
equation.

hc = Cc
bCb

nhn

hn =
(
rn

i +
1
ρn

i

m(θn
i , φn

i )
)
− (rn + Cn

b rb
bc) (9)

The vector m in Eq(9) is a unitary vector that describes
the direction of the ray when the feature was seen for the first
time. It can be calculated from the azimuth θn

i and elevation
φn

i angles of the feature by:

m(θn
i , φn

i )) =


 cos(θn

i ) cos(φn
i )

sin(θn
i ) cos(φn

i )
sin(φn

i )


 (10)

After applying an undistortion process to the points of
interest in the image a pinhole camera model is used to
determine the azimuth and elevation angles in the camera

Fig. 3. Picture of the inertial and camera used in the experiments.

frame from the pixel coordinates (u, v) of the feature.

[
θc

i

φc
i

]
=


 arctan

(
u−u0

fu

)
arctan

(
v−v0

fv

)

 (11)

where u0,v0 are the center coordinates in the image and fu,
fv are the components of the focal length.

III. EXPERIMENTAL SETUP

The situation in which bearing only initialisation techni-
ques have the most difficulty is when the camera is moving
forward as relatively little parallax is experienced. This
results in features taking many observations to become well
localized. As we are investigating how inertial measurements
can aid in bearing only SLAM this experiment was set up
to assess the effect of the inertial measurements in situations
that are difficult for normal bearing only implementations.

The experimental data was acquired using raw accele-
rometer and gyroscope measurements from a MicroStrain
3DM-GX1 inertial measurement unit. Images were taken at
a rate of 7.5 frames per second at 640 by 480 pixels using a
Logitech QuickCam Pro 4000 with a 90 degree wide angle
lens attached. Fig. 3 shows the camera mounted onto the
3DM-GX1 unit. The sensors are connected to a laptop where
the data is logged.

Bearing only observations were taken of circular fiducials
extracted using SIFT [9]. Data association of the observations
were checked manually as it was not the focus of our
research.

Fig.4 shows the location of the landmarks used in the
experiment. This photo was taken from the initial camera
location at the start of the dataset used. Landmarks 0-5 are
on the wall at approximately 25 meters from the origin,
landmarks 6-9 are on trees approximately 15 meters from
the origin and landmarks 9-11 are approximately 6 meters
from the origin, where all measurements have been taken by
hand.

Fig.5 shows an example of the labeled observation data
used by the filter on the right and a plot of the feature map
on the left with currently observed features in red (dark),
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Fig. 5. Screen shot of the filter running showing the visual observations on the right along with ellipses representing the measurement prediction uncertainty
and the current map estimate on the left
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Fig. 4. Photo showing the location of landmarks used in the experiment.
Landmarks 0-5 are on the wall at approximately 25 meters from the origin,
landmarks 6-9 are on trees approximately 15 meters from the origin and
landmarks 9-11 are approximately 6 meters from the origin.

previously observed features in light blue (light) and the
camera location uncertainty in dark blue.

IV. RESULTS

The filter was run with and without inertial observations
in order to study the influence of the IMU data in the
final estimate. We were highly interested in observing if
the inertial measurements could aid vision to estimate the
scale factor of the map. Another interesting question was
the influence of the initial range estimate of the features in
the final map.

There are three important issues in the implementation of
both methods that have to be taken into account in order to
perform a fair comparison.

First, since we have less amount of information in the
pure monocular SLAM there are slight differences in the
prediction step of the filter implementation. The basic change

with respect to the inertial case is that the angular velocity ω
of the camera has also to be estimated since it is not a system
input anymore. Therefore it is included in the state vector.
A detailed description of the vehicle state and prediction
equations used in the pure monocular SLAM can be found
in [5]. There are no more differences in the equations.

Second, a priori information about the initial velocity of
the camera is needed in both cases. Otherwise, this value
could shift the scale factor making the comparisons impos-
sible. In the experiment the initial velocity was v0 = 0m/s.

Finally, it is of crucial importance in an inertial system
to have a rough estimation of the initial attitude. As it is
known, attitude and gyros errors (noise and bias) have the
most detrimental effect as the gravitational acceleration can
not be properly compensated producing significant drifts in
the velocity and position estimates. To estimate the initial
attitude of the inertial system (angles Roll and Pitch) a coarse
alignment method [7] has been used whereas the system was
still during the first steps of the experiment.

Results with and without inertial observations and with
different initial range estimates are shown in Fig.6. The
forward trajectory followed by the camera as well as the
distribution of the landmarks represents a singular motion
which makes the estimation with bearing only SLAM diffi-
cult. As can be observed, initially the camera goes forward
until is next to the building wall, going backwards almost
along the same path during the final steps of the experiment.

Figs.6(a) and 6(b) show the results obtained with bearing
only (without inertial aiding). Features in the left plot are
initialized with an initial range estimate of 10 meters whereas
features in the right plot are initialized at 100 meters.
Although the initial range has changed significantly, one
order of magnitude, the influence in the estimation of the
map scale is moderate, around 1.5 times bigger. However,
what is clear from the figures and from the real distribution
of the features (Section III) is that the scale factor is much
smaller than it should be. It is approximately 0.175 times the
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(a) Map with vision for initial range of 10m. (b) Map with vision for initial range of 100m.

(c) Map with vision + IMU for initial range of 10m. (d) Map with vision + IMU for initial range of 100m.

Fig. 6. Comparison of the final maps obtained using monocular SLAM with and without inertial measurements, for different initial range estimates. In
all cases the map is represented seen from above (top) and from a lateral perspective (bottom). Landmarks 0-5 are on the wall at approximately 25 meters
from the origin, landmarks 6-9 are on trees approximately 15 meters from the origin and landmarks 9-11 are approximately 6 meters from the origin.

real scale for the plot on the left and 0.26 times for the plot
on the right.

An interesting behavior of the trajectory can be observed
in the lateral perspective figures. The erratic trajectory des-
cribed by the camera after passing through features 6-8 is
due to the singular disposition of the landmarks stuck on
the wall. Their vertical baseline does not seem enough to
constrain and estimate the vertical trajectory of the camera
which explains its strange behavior.

Figs.6(c) and 6(d) show the results obtained with inertial
aiding. As in the previous plots, features in the left are

initialized at 10 meters and the ones in the right at 100
meters. In this case, the influence of the initial range in the
map scale is very small. On the other hand, the estimation
of the real scale factor seems much better than before. It is
approximately 1.33 times the real scale for the plot on the
left and 1.15 times for the plot on the right. Another visible
improvement is observed in the trajectory of the camera after
passing through features 6-8. With the aid of the inertial the
trajectory is much smoother than before which indicates that
the IMU is of great help in singular situations where the
camera alone has problems.
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V. CONCLUSIONS

This paper has shown the benefit that a bearing only
implementation of SLAM can get from the use of an inertial
measurement unit especially when initializing features in
situations that are difficult for bearing only sensors such as
during forward motion with a forward looking camera. The
IMU observations produce a more realistic map by reducing
the variation in the estimation of the scale factor of the map.

The inertial data can constrain as well the uncertainties
in the prediction of the camera motion between observations
which helps with data association and reduce linearisation
errors on observations. It has shown to be also helpful during
periods of no observations or in singular situations where
vision only presents difficulties.

Currently the authors are testing the performance of this
filter on a wider range of datasets to evaluate the benefit of
inertial observations in different situations. As a extension of
this work the effects of the inertial observations on the data
association process through providing more accurate camera
position predictions is being investigated.
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