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Summary

1. The magnitude and distribution of the torques caused by inertial and
aerodynamic forces on the wings of Diptera in flight are calculated.

2. The bending torque at stroke reversal due to the inertia of the virtual mass of
air bound to the wing is only slightly less than the torque due to the inertia of the
wing mass itself. The maximum inertial torque due to both wing mass and virtual
mass is usually slightly greater than the maximum aerodynamic torque encoun-
tered by the wings.

3. Bending torques decrease rapidly away from the wing base.

4. Pitching torques are much smaller than bending torques at the wing base, but
do not decrease much until near the tip.

5. The pattern of loading affects the wing design. Wings are thicker nearer the
base to resist bending, but thin and light near the tip to minimize inertial energy
expenditure. Their open, corrugated structure resists bending, while allowing
them to be twisted as a result of the weak pitching moments.

Introduction

The torques generated by insects at the wing base to overcome aerodynamic and
inertial forces have been quite widely studied in the context of flight energetics
(Weis-Fogh, 1973; Ellington, 1984d). The torques that will be set up all the way
along the wing as a consequence, however, have largely been ignored: only
Pennycuick (1967) seems to have examined the bending and pitching torques set
up in a wing during flight, and only at certain points of the wings of his pigeons.

The bending torques produced in flight will vary both temporally and spatially.
Inertial forces will predominate at stroke reversal when acceleration is greatest.
Aerodynamic forces, however, will predominate in the middle of each halfstroke
during normal horizontal stroke plane hovering (Weis-Fogh, 1973), whether
circulation is produced by quasi-steady or rotational mechanisms, when the wing
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velocity is greatest. Both forces vary along the wing. This paper seeks to
investigate the relative magnitudes of the bending torques due to inertia, both of
the wing itself and of the virtual mass of air bound to the wing (Vogel, 1962;
Ellington, 1984a), and those due to aerodynamic forces, and to examine their
distribution along the wing.

Since the centre of mass of insect wings is located behind the torsional axis
(Norberg, 1972), acceleration of the wings should also tend to set up inertial
pitching torques which would tend to twist the wing. At stroke reversal, however,
when these torques would be set up, the inertia instead causes the wings to rotate
by over 90° at the torsionally compliant wing base (Ennos, 1987) into the correct
orientation for the coming halfstroke. Inertial pitching moments are therefore
ignored in this paper. I have shown elsewhere (Ennos, 1988b) that these inertial
effects are sufficient to cause the rotational velocities of the wing which are
observed at stroke reversal.

The chordwise centre of pressure of insect wings is generally behind the
torsional axis (Norberg, 1972), so aerodynamic forces will also produce pitching
torques along the wings. During the middle of each halfstroke the wing pitch is
more or less constant, showing that the pitching torques produced then are equal
to the restoring torque produced by the compliant wing base (Ennos, 1987). The
magnitude and distribution of the pitching torques set up by aerodynamic forces at
this time were investigated.

The distribution of torques will be very important in determining the wing
design: insect wings generally withstand the torques that are produced in flight
without noticeable bending, but they are generally twisted nose-down along their
length during the downstroke (Wootton, 1981; Ellington, 1984b). A wing of
optimal design would be as light as possible, to increase the energetic efficiency of
flight, while combining adequate bending and torsional stiffness.

Materials and methods

Five species of flies were investigated: the hoverfly Eristalis tenax (L.); the
March fly Bibio marci (L.); the bluebottle, Calliphora vicina Robineau-Desvoidy;
the conopid fly, Conops strigata Wied. in Meig.; and the crane fly Tipula paludosa
Meig.

Information that I had obtained on the morphology and kinematics of free flight
of these species (Ennos, 1989) was used to calculate the torque distribution along
the wings in flight due to both inertial and aerodynamic forces.

To simplify the calculations, several assumptions were made. Measurements of
wing acceleration and velocity from kinematic records would be subject to large
errors, so it was assumed that the wings oscillated along the stroke plane with
simple harmonic motion. The actual kinematics (Ennos, 1989) were very similar to
simple harmonic motion, as were those observed in free flight by Ellington (19845
and Dudley (1987). Acceleration at the ends of the beat was usually higher tha
in simple harmonic motion and peak velocity lower. This would mean that my
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analysis would underestimate inertial torques and overestimate aerodynamic
torques.

To calculate aerodynamic torques it was further assumed that the wings
produced equal lift on each stroke and did so using the quasi-steady mechanism, in
which the lift produced is proportional to the square of the local velocity. The
quasi-steady account of insect flight is increasingly under attack (Ellington, 1984b;
Dudley, 1987; Ennos, 1989), but remains the only mechanism yielding information
about the spatial and temporal distribution of force on the wing. Furthermore,
since the average force produced by the wings is known (lift must balance the
weight of the insect in flight), the estimates of the peak force and torque that the
quasi-steady assumption yields will be of the correct order of magnitude.

The analysis
Inertial bending torques

Let us examine the moment set up in a wing section a distance r from the wing
base (Fig. 1) by a wing strip of mass dm, centred a distance r; from the wing base,
when the wing is subjected to an angular acceleration of d’¢/dt?, where ¢ is the
instantaneous angular position of the wing along the stroke plane (Ennos, 1989).
The acceleration, a, of the strip is:

a=rd*¢/dt? €))
and this will require a force, f, where:
f=r,dmd?¢/dt* . )

This force acts at a distance (r; — r) from the wing section, so the moment set up
there by the strip, dTy, is

dTI = f(ri - I')
= I'i(l'i - r)dm dz(p/dtz . (3)

The total moment, T, set up is the sum of the torques produced by all the wing
‘strips outboard of the wing section:

T, = d?¢/dt? f ry(r; — r)dm . 4)

The moment will decrease away from the base both because there will be fewer
strips outboard of a given section, and because the moment arm (r; — r) of each
strip that is outboard of the section will be shorter.

< ' —p gm
Wing @
base < . o

Fig. 1. A wing strip of mass dm a distance r; from the wing base will produce a bending
torque around the section which is a distance r from the base, when the wing is
accelerated.
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In Ennos (1989) the wings of each animal that had been filmed were subjected to
strip analysis. The mass of each 2mm wide strip parallel to the wing chord was
found, as was the virtual mass of each 1 mm wide wing strip, equal to the mass of a
1mm long cylinder of air with diameter equal to the local wing chord (Vogel,
1962). These strip masses were substituted into equation 4 to give the values of
2.ri(r; —r)dm for wing sections at 1 mm intervals from the wing base, for both
actual and virtual mass. The distance 1; was taken to be the distance from the wing
base to the point halfway along each strip. The values at the base are equal to the
moment of inertia, I,, of wing mass ) r;2dm and I, of virtual mass Y r;2dm,. The
distribution of mass along the wing, as well as the total mass, will therefore govern
the magnitude of the torques. The moment of inertia will be the same as if the mass
were all concentrated a distance ,(m)R from the wing base, where R is the wing
length and f,(m) is the second nondimensional radius of wing mass (Ellington,
1984a) and is given by the formula:

to(m) = (Lri’dm/mR?)*> . ©)

The nondimensional radii of mass, f,(m), and virtual mass, ,(v), were
calculated from the strip masses (Ennos, 1989).

As it was assumed for the calculation that the wings followed simple harmonic
motion, the maximum angular acceleration, d2¢/ dt?.x, at stroke reversal was
estimated using the expression of Weis-Fogh (1973):

d2¢/dt? ax = 27°0%°D | (6)

where n s the frequency and ® the amplitude of the wingbeat in radians. The total
maximum inertial torque, Tjn.x, at the base is therefore given by:

Timax = 2720201, + 1,) . (7)

The moments of wing and virtual mass inertia, I, and I,, of each of the insects
are given in Table 1, as are the total values of wing mass, m,,, and virtual mass, m,,,
and the nondimensional radii of wing mass and virtual mass, f,(m) and £,(v).

The maximum inertial bending torque, Tynax, is the sum of that due to mass and
that due to virtual mass and was calculated using kinematic data from Ennos
(1989) (Table 1).

It can be seen that the moment of inertia of the wing virtual mass is typically only
slightly less than that of the wing mass, even though the wing virtual mass is
generally less than half the wing mass. This is because the wing mass is
concentrated nearer the base than the virtual mass, and £,(m) is consequently
lower than #,(v). Fig. 2 is an example of the raw data from which the moments
were calculated, showing the masses and virtual masses of wing strips for the
hoverfly, Eristalis tenax Et.1. The concentration of wing mass at the base can
clearly be seen.

The spanwise distribution of inertial bending torque was very similar in all the
species studied, so the results for the hoverfly sequence Et.1a alone are shown‘
(Fig. 3A). Bending torque falls extremely rapidly away from the wing base.
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Table 1. Inertial and aerodynamic moments about the wing base and torsional axis

m,, my Im Iv Tlmax TAmax TPmax

Insect  Sequence  (ug) tm)  £(v) (kgm?Xx107'%) (Nm x 107°)

Eristalis tenax

Et.1 a 370 117 042 0-512 857 414 119 5-89 0-38
b 13-0 5-89 0-38
c 12-3 5-89 0-38
Et.3 a 340 110 041 0-514 655 341 9-9 542 0-37
b 10-7 542 0-37
Bibio marci
Bm.1 a 224 134 045 0-531 566 475 51 3-96 0-27
b 53 396 0-27
Bm.2 149 70  0-45 0-515  2:63 1-63 34 1-33 0-09
Calliphora vicina
Cv.1 235 91 038 0-516  2.75 2-05 3-4 342 0-24
Cv.2 4-0 3-42 0-24
Cv.3 33 342 0-24
Cv.4 45 3-42 0-24
Conops strigata
Cs.1 76 31 0-40 0-598 072 065 1-4 1-21 0-06
Tipula paludosa
Tp.3 471 151  0-52 0-605 365 15-6 7-0 4-89 0-18

m,,, wing mass; m,, virtual mass; f,(m), second nondimensional radius of mass; ,(v), second
nondimensional virtual mass; I, and I,, moments of inertia about the base.

The maximum basal torques calculated for each sequence are given: inertial bending torque,
Timax; aerodynamic bending torque, T amax; aerodynamic pitching torque, Tppax.

Aerodynamic bending torques

During each halfstroke the wing must also withstand the bending torques caused
by the aerodynamic forces it produces: lift and drag. Using quasi-steady
aerodynamics, and assuming that equal lift is produced during symmetrical
hovering on the two halfstrokes, and that the wings are flapped with simple
harmonic motion, these torques can be estimated.

The peak velocity in simple harmonic motion is V2 times the average velocity.
Since lift is proportional to the square of velocity, the peak lift force, produced at
midstroke, will be about twice the average lift. To hover, therefore, each wing will
produce a peak lift force equal to the weight of the insect, mg. As aerofoils move
through the air at relative angles of attack of less than 20°, this lift will act nearly at
right angles to the wing chord, whereas the drag produced, generally a much
smaller force, will act nearly parallel to the chord. Drag may therefore be
konveniently ignored when calculating the peak force perpendicular to the wing
chord, which will be approximately equal to the peak lift.
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Fig. 2. The wing mass (A) and wing virtual mass (B) distribution of the hoverfly Et.1.
The masses of wing strips are given in micrograms. Mass strips are 2 mm wide; virtual

mass strips are 1 mm wide. Wing mass is concentrated near the wing base, virtual mass
halfway along the wing.

Torsion (Nm x 107%)
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Fig. 3. The distribution of maximum torques along the wing of a hoverfly during the
flight sequence Et.1a (Ennos, 1989). (A) Bending torques due to the inertia of the wing
mass (l), the wing virtual mass (A), to the total inertia of both wing mass and virtual
mass (@), and to aerodynamic forces (——=). The torque decreases rapidly away from
the base. (B) Pitching torques about the spanwise torsional axis caused by aerodynamic
forces. Although much smaller, the torque only decreases rapidly near the wing tip.

12
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Since the local value of the lift is proportional to the square of the local velocity,
the centre of pressure will be at the second radius of area, a distance f,(s)R from
the wing base, where R is the wing length and £,(s) the second nondimensional
moment of area (Ellington, 1984a). The maximum torque produced at the wing
base, T amax, is therefore given by the expression:

TAmax = ngfZ(S) . (8)

Values of T omax Were calculated from the data of Ennos (1989) (Table 1). It can
be seen that aerodynamic bending torques are generally slightly less than those
caused by inertia.

The spanwise torque distribution will be similar to that produced by inertial
forces. More force will be produced by the faster-moving distal parts of the wing,
just as they possess more inertia about the wing base. The moment will decrease
rapidly away from the wing base for the same reasons: the smaller fraction of the
wing outboard of the section, and the shorter moment arm of each force to the
section.

The approximate torque distribution is shown in Fig. 3A for the sequence Et.1a
of the hovering flight of the drone fly Eristalis tenax (Ennos, 1989).

Aerodynamic wing pitching torques

The aerodynamic forces produced by a wing section at the Reynolds numbers
characteristic of insect flight are centred approximately one-quarter of the chord,
c/4, back from the leading edge (Norberg, 1972; Ellington, 1984c). The torsional
axis of the wing, along which forces will not cause pitch changes in the wing
(Norberg, 1972), however, is usually closer to the leading edge. In the flies that I
examined (Ennos, 1988b), it was typically only one-eighth of the wing chord, c/8,
behind the leading edge. Aerodynamic forces will therefore act behind the
torsional axis and tend to produce a nose-down pitching moment on it.

The magnitude of this moment at the wing base may be estimated, with the same
assumptions as were made to calculate bending moments. The peak aerodynamic
force on each wing is estimated to be the weight of the insect. It is assumed that
this force acts at about 90° to the wing section at the quarter-chord point behind
the leading edge, and so a distance of one-eighth of the mean chord, ¢, behind the
torsional axis. The torque produced around the torsional axis, Tpnay, is therefore:

TPmax = mgé/S . (9)

The mean wing chord is equal to the area of the wing pair, S, divided by twice the
wing length, 2R, so equation 9 can be expressed as:

Thmax = mgS/16R . (10)

The pitching moments at the base, given in Table 1, are typically less than one-
twentieth of the magnitude of the bending moments.

The spanwise distribution of this torque will be quite different from that of the
bending torques, since the moment arm, c/8, of each section remains high until
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very near the tip, and does not decrease away from the base as does the moment
arm for bending. Aerodynamic force production is greatest at the fast-moving
wing tip during hovering, and falls to zero at the base, so most of the aerodynamic
pitching torque about the torsional axis is set up near the wing tip. The torque will
therefore decrease only gradually away from the base (Fig. 3B).

Discussion

Bending torques on insect wings decrease rapidly away from the base, values
halfway along the wing being typically only about one-quarter of those at the base,
and falling to zero at the tip. It is not surprising, therefore, that the wings of insects
are thicker at the base than at the tip. Mass is concentrated near the base to resist
the higher bending moments, and outer regions are as light as possible, to reduce
the stress caused at the wing base and to reduce the energy expenditure involved in
accelerating the wing, although much of the wing’s energy is recovered in the flight
muscles and thoracic box (Machin & Pringle, 1959; Ellington, 1984d). Torsional
moments stay at a high value until near the wing tip, but are far smaller than
bending moments.

The surprising aspect of the behaviour of the wings is that they twist but do not
noticeably bend in flight, despite the fact that the bending torques on them are far
larger than the pitching torques which tend to twist them by around 10° during
each wingbeat. This is due to their open, corrugated structure (Ennos, 19884),
which combines high bending stiffness with low torsional stiffness.

The pitch of the wings also changes greatly between strokes. The very high
torsional compliance of the wing base (Ennos, 1987) allows the inertia of the wing
to cause rotation of over 90° at stroke reversal. The aerodynamic pitching torque
can then maintain it at the correct pitch attitude during the next halfstroke.

I would like to thank Dr R. J. Wootton for his help and criticism during the
production of the manuscript. The work was carried out while under tenure of an
SERC research studentship.
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