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Abstract We show that in complete agreement with clas-

sical mechanics, the dynamics of any quantum mechanical

wave packet in a linear gravitational potential involves the

gravitational and the inertial mass only as their ratio. In

contrast, the spatial modulation of the corresponding energy

wave function is determined by the third root of the product

of the two masses. Moreover, the discrete energy spectrum of

a particle constrained in its motion by a linear gravitational

potential and an infinitely steep wall depends on the iner-

tial as well as the gravitational mass with different fractional

powers. This feature might open a new avenue in quantum

tests of the universality of free fall.

1 Introduction

The equivalence principle is a cornerstone in the foundations

of general relativity [1]. Indeed, the assumption of the pro-

portionality of inertial and gravitational mass implies that in

a linear gravitational potential all bodies experience the same

acceleration and fall with the same rate. Without this univer-

sality of free fall, the geometrization of gravitation and its

reinterpretation as curvature of spacetime would not be pos-

sible. The fact that several alternative gravitational theories

predict the breakdown of the universality of free fall [2] is one

of the main reasons that drives physicists to test this bedrock

of modern physics to higher and higher accuracy.

Motivated by the seminal papers on neutron interfero-

metry [3–7] and the more recent, impressive matter wave ex-

periments [8–14], we address in the present paper the ques-

tion how the inertial and gravitational mass enter in non-

relativistic quantum mechanics. We show that in the case of

a linear gravitational potential, quantum dynamics only in-

volves the ratio of the two masses in complete accordance

with classical Newtonian mechanics. However, depending on

the specific preparation of the initial state, inertial and grav-

itational mass may appear in a more complicated way in the

time evolution of a physical state. As an example of such an

initial state, we discuss the energy eigenfunctions in a linear

potential [15,16], which have been analyzed e. g. in the con-

text of the coherence of an atom laser [17] or in connection

with the so-called atom trampoline, also known as the quan-

tum bouncer [18–22]. Indeed, the energy eigenstate in this

system is non-classical since the corresponding phase space

equations for the Wigner function do involve Planck’s con-

stant ~. As a result such states are ideal objects to study the

role of inertial and gravitational mass in quantum mechanics.

Three central results obtained in this paper stand out: (i)

The quantum dynamics reduces to classical dynamics and

therefore can only involve the ratio of the inertial mass mi

and the (passive) gravitational mass mg, (ii) the spatial mod-

ulation of the energy eigenfunctions depends on the third root

of the product of the two masses, and (iii) the energy eigen-

values of the gravitational atom trampoline are proportional

to (m2
g/mi)

1/3.

1.1 Tests of the universality of free fall

The universality of free fall, often referred to as “weak equiv-

alence principle”, states that all bodies experience the same

gravitational acceleration independent of their internal struc-

ture and composition, provided they are so small in size that

one can neglect the effects of gravity gradients. In other

words, the (inertial) mass of a body is proportional to its

weight, with an universal proportionality constant. A viola-

tion of this principle would arise e. g. when the interaction

http://arxiv.org/abs/1006.1988v2


2 E. Kajari et al.

energy between the nucleons in an atom would not contribute

in the same manner to the gravitational mass, as it would for

the inertial.

The classical tests [1,2] of the universality of free fall as-

sume that the specific gravitational acceleration g̃(A) does

depend on the internal structure or the composition of the

body A. This assumption translates in terms of the inertial

and gravitational mass into the relation

g̃(A) ≡ g

(

mg

mi

)

A

. (1)

Here, the gravitational acceleration g should be considered

as a standardized acceleration corresponding to a particular

reference body.

A measure for the breakdown of the universality of free

fall is the so-called Eötvös parameter

η(A,B) ≡ 2 ·

(

mg

mi

)

A
−
(

mg

mi

)

B
(

mg

mi

)

A
+
(

mg

mi

)

B

= 2 · g̃(A)− g̃(B)

g̃(A) + g̃(B)
, (2)

which quantifies the normalized difference in the gravita-

tional accelerations between two different bodies A and B.

The first tests of the equivalence of inertial and grav-

itational mass relied on pendulum experiments and can be

traced back to Newton and Bessel [23]. A great step towards

higher accuracies was realized by the classical torsion bal-

ance experiments of Eötvös [24] and Roll et al. [25]. Cur-

rently the best upper limits for the Eötvös parameter [26]

come from lunar laser ranging on the one hand and from the

so-called ”Eöt-Wash“ experiment [27,28] on the other. The

latter uses a sophisticated rotating torsion balance and limits

the Eötvös parameter to

η(Be,Ti) = (0.3± 1.8)× 10−13

for the gravitational acceleration of Beryllium and Titanium

towards Earth.

The motivation for quantum mechanical tests [29,30] of

the universality of free fall stems from the increase in accu-

racy that atom interferometry is expected to offer in the fu-

ture. Matter wave interferometry with freely falling Rb85 and

Rb87 isotopes has already been performed [12], and several

other experiments worldwide using different species of atoms

are right now in preparation [31].

1.2 Discussion of related work

In this paper we study the quantum mechanics of a particle in

a linear potential. Needless to say, this topic appears promi-

nently in many papers, in particular in connection with the

atom trampoline [18–20] whose energy eigenstates have been

theoretically investigated in [21], as well as in the context of

cold neutrons [32].

The work closest to ours is that of Davies [33] who has

investigated the problem of a quantum mechanical particle

in a linear gravitational field to gain insight into the equiva-

lence principle. However, motivated by the classical motion

his main emphasis is on a thorough analysis of the travel time

of wave packets. In complete agreement with our conclusion

that the dynamics is classical, he finds that classical and travel

times agree far from the classical turning point. However,

there are quantum corrections near the turning point. His cal-

culations are based on the definition of the Peres quantum

clock [34].

1.3 Outline of the paper

We start in Sect. 2 by recalling the universality of free fall in

Newtonian mechanics. Since we are interested in the Wigner

phase space formulation of the corresponding quantum me-

chanical version, we first introduce in Sect. 3 the quantum

Liouville equation describing the dynamics of the Wigner

function in an arbitrary potential. Moreover, we present the

partial differential equations in phase space determining an

energy eigenstate in this potential. In Sect. 4 we then apply

these equations to analyze the dynamics of the Wigner func-

tion in a linear gravitational potential, as well as to determine

the Wigner function of the corresponding energy eigenstates.

Whereas the quantum dynamics just reflects the classical time

evolution and does not depend Planck’s constant ~, the phase

space analog of the energy eigenstates does display quantum

features and involves ~. This fact stands out most clearly in

the energy eigenfunctions of the linear potential discussed in

Sect. 5, where we show that the wave vector governing the

spatial modulation of the probability density is determined

by the third root of the product the inertial and gravitational

mass. In addition, we examine the energy eigenfunctions and

the eigenvalues of the atom trampoline, also known as quan-

tum bouncer, that is a particle trapped in the bounded poten-

tial resulting from the combination of a linear potential and an

infinitely steep wall. We conclude in Sect. 6 by summarizing

our results and by outlining possible experiments.

In order to keep the paper self-contained we summarize

concepts pertinent to the present discussion in several appen-

dices. For example in Appendix A we recall that the time

evolution of a particle in a linear potential can be represented

in phase space as a product of a shearing operator followed

by a displacement. It is only the displacement which contains

the gravitational acceleration. This decomposition provides

us with deeper insights into the physics of non-spreading

Airy wave packets as outlined in Appendix B. We dedicate

Appendix C to a discussion of the semi-classical limit of

the energy wave function in a linear gravitational potential.

Within the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) ap-

proximation we regain the universality of free fall. Moreover,

we can identify phase space quantization as the origin of the

unusual scaling properties of the energy eigenvalues of the

atom trampoline in terms of inertial and gravitational mass.

We conclude in Appendix D with a phase space analysis of

the atomic fountain.
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2 Universality of free fall in Newtonian mechanics

In the present section we briefly recall Newton’s law of mo-

tion for a single particle in a linear gravitational potential

which shows that the dynamics only depends on the ratio be-

tween the gravitational and the inertial mass. For this reason,

the free fall of two particles of different compositions is iden-

tical provided the inertial and gravitational mass are propor-

tional to each other and the particles start with the same initial

conditions. Note that the universality of free fall requires the

mentioned proportionality constant to be independent of the

particles composition, in which case it can be absorbed in the

universal gravitational acceleration.

Moreover, we examine the dynamics of a classical en-

semble of identical particles falling in linear gravitational po-

tential, thereby emphasizing some complications that come

along with tests of the universality of free fall based on clas-

sical statistical mechanics.

Since we consider a homogeneous gravitational potential,

we can restrict our analysis of the dynamics and kinemat-

ics to one spatial coordinate z. Moreover, instead of dealing

separately with the inertial and gravitational mass, we will

take advantage of the particle dependent gravitational accel-

eration (1) and denote the inertial mass of a particle most of

the time by m = mi.

2.1 Single particle dynamics

The time evolution of a particle moving in an external poten-

tial V = V (z) follows from Newton’s law of motion

mi z̈ = −∂V
∂z

, (3)

where the dots indicate differentiation with respect to time.

For a linear gravitational potential

Vl(z) ≡ mg g z (4)

we obtain from Eqs. (1) and (3)

z̈ = −mg

mi
g ≡ −g̃ . (5)

A breakdown of the universality of free fall would manifest

itself in a particle dependent gravitational acceleration g̃.

The solution of Newton’s law of motion (5) reads

z(t) = z0 + v0t−
1

2
g̃t2 ,

where z0 and v0 denote the initial position and velocity of the

test particle, respectively. Therefore, tests of the universality

of free fall require identical initial conditions for the two test

particles.

2.2 Ensemble dynamics

So far, we have concentrated on the dynamics of a single par-

ticle in a linear gravitational field with a well defined initial

position z0 and a well defined initial velocity v0. However,

in reality it is impossible to prepare the state of the physical

system with arbitrary accuracy. For this reason we now con-

sider the dynamics of an ensemble of particles described by a

classical distribution function

f0 = f0(z, v) .

The probability to find the particle between z and z+dz with

a velocity between v and v + dv is given by f0(z, v) dz dv.

The probability interpretation requires that f0 is positive ev-

erywhere.

Next we turn to the dynamics of the initial ensemble due

to a conservative force

F (z) = −∂V
∂z

originating from the potential V = V (z).
The requirement of conservation of probability leads us

to the classical Liouville equation

(

∂

∂t
+ v

∂

∂z
− 1

m

∂V

∂z

∂

∂v

)

f(z, v; t) = 0 (6)

subjected to the initial condition f0(z, v) ≡ f(z, v; t = 0).
For the linear potential Vl, given by (4), this equation

takes the form
(

∂

∂t
+ v

∂

∂z
− g̃

∂

∂v

)

f(z, v; t) = 0 (7)

where we have recalled the definition of specific gravitational

acceleration (1).

It is easy to verify, that the solution of (7) reads

f(z, v; t) = f0

(

z − vt− 1

2
g̃ t2, v + g̃t

)

.

This expression brings out most clearly the fact, that the

dynamics of f0 only depends on g̃, that is on the ratio of grav-

itational and inertial mass. However, this property does not

exclude the possibility, that f(z, v; t) can contain in addition

a dependence on the inertial mass, since the initial distribu-

tion f0 might involve the inertial mass.

For example, the stationary solution

fs(z, v) = N exp

[

− mv2

2kBT
− U(z)

kBT

]

(8)

of the Boltzmann equation representing a gas of colliding par-

ticles at temperature T in a trapping potential U = U(z)
involves the inertial mass m. Here, N and kB denote a nor-

malization factor and the Boltzmann constant, respectively.

When we take fs as the initial distribution of our ensem-

ble of particles propagating in the gravitational field, the final

distribution f(z, v; t) will obviously involve not only g̃ but

also the inertial mass m. Hence, in a comparison of the free
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fall of two ensembles of particles of different composition, it

is important to ensure that the initial distributions are identi-

cal. For the example of two different species of atoms, pre-

pared in the stationary solution of the Boltzmann equation,

given by (8), this requirement implies that the temperatures

and binding potentials have to be adjusted appropriately.

Hence, in the case of two initial ensembles of particles de-

scribed by a distribution function in position–velocity space,

a test of this universality of free fall is more complicated. Al-

though each member of the ensemble satisfies the universality

of free fall, the two initial distributions have to be identical in

order to create two comparable situations.

3 Wigner function: a few facts

In classical mechanics kinematics describes motion without

going into the origin of the motion. On the other hand dynam-

ics asks for the origin of the motion. In the same spirit quan-

tum kinematics describes the quantum states and quantum

dynamics their time evolution. Throughout our paper, this

distinction will be reflected in the separate treatment of ini-

tial states and their time evolution. In particular, we consider

energy eigenstates as natural candidates for initial states.

To the best of our knowledge the distinction between

kinematics and dynamics has been spelled out for the first

time most clearly by Weyl in his book “The Theory of Groups

and Quantum Mechanics” [35]. It is interesting that in this

book, Weyl also defines the concept of averages of symmet-

rically ordered operators using a distribution function, which

later became the Wigner function [36–38]. It is this phase

space function which we use in our quest to analyze how

the inertial and the gravitational mass manifest themselves

in quantum mechanics. We devote the present section to a

brief review of the Wigner distribution and focus on the ele-

ments most pertinent to the present discussion: the quantum

Liouville equation and the phase space analog of the time in-

dependent Schrödinger equation.

3.1 Definition

The Wigner function W = W (z, p; t) is a quasi-probability

distribution which lives in phase space spanned by the posi-

tion z and its conjugate variable, the momentum p. When the

state of the quantum system is described by a density operator

ρ̂ = ρ̂(t), the corresponding Wigner function reads

W (z, p; t) ≡ 1

2π~

∞
∫

−∞

dξ e−ipξ/~ 〈z + ξ/2 | ρ̂(t)| z − ξ/2〉 ,

(9)

where |z〉 denotes a position eigenstate.

This expression brings out the fact that the Wigner func-

tion is real. However, it is not necessarily positive. Moreover,

the Wigner function satisfies the marginal properties

∞
∫

−∞

dp W (z, p; t) = 〈z| ρ̂(t)|z〉 ≡ P (z; t) (10)

and
∞
∫

−∞

dz W (z, p; t) = 〈p| ρ̂(t)|p〉 ≡ P̃ (p; t) ,

that is the integrals over the phase space variables p and z
yield the corresponding quantum mechanical probability den-

sities P = P (z; t) and P̃ = P̃ (p; t) of the conjugate vari-

ables.

The definition (9) of the Wigner function suggests that

this formulation of quantum mechanics rests on the Schrödinger

representation and requires a wave function or a density op-

erator as a starting point. However, this impression is mis-

leading. The Wigner phase space formulation of quantum

mechanics is an approach in its own right. In principle, there

is no need to resort to wave functions or density operators.

For a more detailed introduction to the Wigner function we

refer to [38].

3.2 Quantum dynamics in phase space

The dynamics of a quantum state |ψ(t)〉 describing the mo-

tion of a non-relativistic quantum particle of inertial mass m
in a potential V = V (z) follows from the Schrödinger equa-

tion

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 (11)

with the Hamiltonian

Ĥ ≡ p̂2

2m
+ V (ẑ) .

This description is equivalent to the quantum Liouville

equation

(

∂

∂t
+

p

m

∂

∂z
− ∂V

∂z

∂

∂p
− L̂o

)

W (z, p; t) = 0 (12)

which governs the time evolution of the Wigner function

W =W (z, p; t). Here the differential operator

L̂o ≡
∞
∑

l=1

(−1)l

(2l + 1)!

(

~

2

)2l
∂2l+1V (z)

∂z2l+1

∂2l+1

∂p2l+1

involves only odd derivatives of the potential V and even

powers of ~.

Although the quantum Liouville equation is in general de-

rived from the time dependent Schrödinger equation (11), we

could also interpret (12) as the equation of motion for the

Wigner function without any reference to the Schrödinger

formulation of quantum mechanics. Indeed, if we possess a

priori knowledge about the initial Wigner function, there is

no need to refer to the time dependent density operator ρ̂(t),
since the Wigner functionW (z, p; t) contains all information

of a quantum system.
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3.3 Quantum kinematics in phase space

Energy eigenstates |E〉 of the time independent Schrödinger

equation

Ĥ |E〉 = E |E〉 (13)

are the elementary building blocks of quantum mechanics.

We now briefly motivate the phase space analog of this equa-

tion.

Three steps lead to the partial differential equations in

Wigner phase space for an energy eigenstate: (i) multiply (13)

by 〈E|, (ii) apply the Weyl–Wigner correspondence [38] and

(iii) take the real and imaginary part of the resulting equation.

In this way we obtain two partial differential equations for the

Wigner function WE = WE(z, p) of the energy eigenstate

that must be mutually satisfied.

The imaginary part yields the time independent quantum

Liouville equation

(

p

m

∂

∂z
− ∂V

∂z

∂

∂p
− L̂o

)

WE = 0 (14a)

which through Lo contains odd derivatives of the potential

only.

Equation (14a) is the quantum Liouville equation (12)

with a vanishing time derivative. This feature reflects the fact

that an energy eigenstate only picks up a phase during its time

evolution and the Wigner function is bi-linear in the state. As

a result, this phase factor drops out and the Wigner function

of an energy eigenstate is time independent.

From the real part we obtain the analog

(

− ~
2

8m

∂2

∂z2
+

p2

2m
+ V (z) + L̂e

)

WE = E WE (14b)

of the time independent Schrödinger equation which involves

only even derivatives of the potential in the differential oper-

ator

L̂e ≡
∞
∑

l=1

(−1)l

(2l)!

(

~

2

)2l
∂2lV (z)

∂z2l
∂2l

∂p2l
.

It is interesting that both, L̂e as well as L̂o, contain only even

powers of ~.

3.4 Constraints on the initial Wigner function

In order to obtain a unique solution of the quantum Liou-

ville equation (12), we must specify the initial Wigner func-

tion W0 = W0(z, p). However, the choice of W0 is a subtle

and context dependent enterprise. According to Planck every

quantum state must take up in phase space at least an area

2π~. In the language of Wigner functions this condition as-

sumes the form [38]

2π~ ≤





∞
∫

−∞

dz

∞
∫

−∞

dp W 2
0 (z, p)





−1

,

where the equal sign holds for pure states. Here we can inter-

pret the right hand side of this inequality as the effective area

of phase space taken up by a quantum state [39].

But even if we would choose a normalizable function in

phase space that satisfies this inequality, it is not clear that

it represents a physical Wigner function, since it must be re-

lated to a quantum state with positive semi-definite density

operator via the Weyl–Wigner correspondence. For a charac-

terization of the set of all phase space functions that represent

physical Wigner functions we refer to [40], or in the special

case of Gaussian phase space functions to [41]. We empha-

size that the energy eigenvalue equations (14) as well as the

dynamical equation (12) ensure the existence of a valid initial

Wigner function and its time evolution.

Since ~ appears differently in the dynamical and kine-

matical equations of Wigner phase space, one could imagine,

at least mathematically, an extended phase space theory of

quantum mechanics in which both Planck’s constants differ

from each other. For example, a problem where the concept

of two different ~ turned out to be useful [42] is Kramer’s

dilemma and the Langer transformation. However, such an

extension would probably lead to a physically inconsistent

theory. In this sense there is a parallelism between the equiv-

alence of gravitational and inertial mass in general relativity

and the identity of Planck’s constants of dynamics and kine-

matics in quantum mechanics.

4 Universality of free fall in Wigner phase space

Next we consider the partial differential equations (12) and

(14) determining the Wigner function from phase space for

the case of a linear gravitational potential given by (4). We

again analyze quantum dynamics and kinematics separately.

4.1 Quantum Liouville equation for a linear potential

For the linear potential (4) the second and all higher deriva-

tives vanish. As a result, the operator L̂o, containing all odd

derivatives of the potential are zero and the equation of mo-

tion for the Wigner function (12) reduces to

(

∂

∂t
+
p

m

∂

∂z
−mg̃

∂

∂p

)

W (z, p; t) = 0 (15)

and no longer involves Planck’s constant ~. In fact, the quan-

tum Liouville equation simplifies to the classical Liouville

equation (7) for the linear potential when we recall the rela-

tion

p = mv (16)

between the momentum and the velocity of the particle.

Accordingly, the solution of the quantum Liouville equa-

tion (15) is given by

W (z,m v; t) =W0

(

z − v t− 1

2
g̃ t2,m [v + g̃t]

)

, (17)
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with W0(z, p) ≡ W (z, p; t = 0) being the initial Wigner

function of the quantum system.

The explicit expression (17) for the time evolution of the

Wigner function emphasizes again the difference between dy-

namics and kinematics. Since the quantum Liouville equation

reduces to the classical Liouville equation in the case of a

linear potential, each point in phase space propagates accord-

ing to classical mechanics while maintaining its “weight” as

given by the initial Wigner function W0 = W0(z, p). As a

result, the dynamics only involves the ratio mg/mi. How-

ever, the initial state may depend on the inertial or gravita-

tional mass in a nontrivial way and therefore the Wigner func-

tion W (z, p; t) may not only involve the mass ratio mg/mi.

Here we find a complete analogy to the classical treatment of

Sect. 2.2, with one distinct difference: not every initial quasi-

probability distribution W0(z, p) in phase space corresponds

to a possible quantum state.

We emphasize that the time evolution of the Wigner func-

tion in a linear potential given by (17) can be related in a

straightforward manner to the free propagation, as discussed

in Appendix A. One important consequence of this consid-

eration is the fact, that the specific gravitational acceleration

g̃ does not influence the spreading of the wave packet, but

only its position along the z-axis. In other words, the vari-

ance ∆z2 ≡
〈

ẑ2
〉

− 〈ẑ〉2 is independent of g̃. In contrast, the

expectation value 〈ẑ〉 does depend on g̃.

Nevertheless, even a classical time evolution can, under

appropriate conditions, display non-classical features due to

a non-classical initial state. One prominent example is the

shrinking [43,44] of a free, radially symmetric wave packet.

4.2 Wigner function of an energy eigenstate

Next we turn to quantum kinematics and consider as an ini-

tial state the energy eigenstate of a quantum particle in the

linear gravitational potential given by (4). The partial differ-

ential equations determining the corresponding Wigner func-

tion WE =WE(z, p) with energy E follow from Eqs. (14).

In particular, the time independent quantum Liouville equa-

tion (14a) reduces to

(

p

m

∂

∂z
−mg̃

∂

∂p

)

WE(z, p) = 0 , (18a)

whereas the eigenvalue equation (14b) for the Wigner func-

tion reads
{

∂2

∂z2
+

8m

~2

[

E −
(

p2

2m
+mg̃z

)]}

WE(z, p) = 0.

(18b)

Since the time independent quantum Liouville equa-

tion (18a) represents a homogeneous first order partial dif-

ferential equation, we can apply the method of characteristics

and deduce that WE can depend on the phase space coordi-

nates z and p only via the classical Hamiltonian

Hl(z, p) ≡
p2

2m
+mg̃z (19)

of a particle in a linear potential.

The particular functional dependence of the Wigner func-

tion on Hl(z, p) is then determined by the eigenvalue equa-

tion (18b). The full solution [36,37]

WE(z, p) = NE ·Ai
[

(

8

~2mg̃2

)
1

3(

Hl(z, p)− E
)

]

(20)

is given in terms of the Airy function Ai = Ai(y), which

satisfies the ordinary differential equation [45]

(

d2

dy2
− y

)

Ai(y) = 0 . (21)

Note that the Wigner function WE(z, p) is not normalizable.

As a result the energyE remains a continuous parameter and

NE depends on E.

In Fig. 1 we depict the Wigner function WE =WE(z, p)
given by (20). We recognize a dominant positive-valued ridge

along the phase space trajectory p = ±pcl(z;E) given by the

classical momentum

pcl(z;E) =
√

2m(E −mg̃z) . (22)

following from the conditionHl(z, p) = E with the classical

Hamiltonian (19). To be precise, at ±pcl the second derivative

of the Airy function vanishes.

Fig. 1 Wigner function WE = WE(z, p) of an energy eigenstate

in a linear gravitational potential for E = 0 as given by (20).

The parabolic shape is due to the functional dependence of WE on

the Hamiltonian (19). The oscillatory behavior arises from the Airy

function which follows from the eigenvalue equation (18b) in phase

space.

In the classically forbidden domain of phase space

E <
p2

2m
+mg̃z

which is inaccessible for a classical point particle moving in

the linear gravitational potential, the Wigner function decays

exponentially.
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In the classically allowed realm of phase space WE is os-

cillatory and can take on negative values. This feature reflects

the interference nature of quantum mechanics and expresses

the fact that the energy eigenstate is the superposition of a

right and a left going wave, as shown in Appendix C.

We conclude by noting that the properties of the Airy

function have also been studied in the context of tunnel-

ing [46]. In particular, the dynamics of the Wigner func-

tion tunneling out of a binding delta function potential in the

presence of an external static electric field has been studied

in [47].

5 Energy wave functions in position space

The preceding section has employed a phase space analysis

to reveal the relationship between quantum and classical be-

havior of a particle in a linear potential. The dynamics of the

Wigner function are entirely classical, whereas the kinemat-

ics, and in particular the energy eigenstates, are quantum me-

chanical. We now address the question how the inertial and

gravitational mass make their appearances in the correspond-

ing energy eigenfunctions uE = uE(z) ≡ 〈z|E〉 in position

space.

In principle, we could obtain the probability density

u2E(z) by taking advantage of the marginal property of the

Wigner function (20) together with the integral formula [48]

∞
∫

−∞

dξ Ai(ξ2 + y) = 2
2

3 πAi2
(

y/2
2

3 ) .

However, it is equally straight forward to solve the cor-

responding time independent Schrödinger equation. In the

present section we pursue this approach and show that the

spatial modulation of the energy wave function in the linear

gravitational potential depends on the third root of the prod-

uct of the gravitational and the inertial mass.

5.1 Unbounded linear potential

For a particle in a linear potential, the time independent

Schrödinger equation reads

(

d2

dz2
− 2m

~2
[mg̃ z − E]

)

uE(z) = 0. (23)

Due to the similarity of this equation with the energy eigen-

value equation in phase space (18b), their solutions must be

similar in form. Indeed, with the help of the differential equa-

tion of the Airy function (21), we can immediately verify that

uE(z) = NE ·Ai
(

(

2

m~2g̃2

)1/3

[mg̃z − E]

)

(24)

satisfies (23). The constant NE has to be chosen so as to en-

sure the orthonormality relation

〈E|E′〉 = δ(E − E′)

between two different energy eigenstates |E〉 and |E′〉.
It is instructive to cast (24) into the form

uE(z) = NE ·Ai (kz − ε) ,

by defining the dimensionless energy

ε ≡ E

(

2

m~2g̃2

)1/3

and

k ≡
(

2m2g̃

~2

)1/3

, (25)

which has the same physical units as the familiar wave vec-

tor of a plane wave. For Rb87 atoms this quantity defines an

inverse length scale of the order of k ≈ 3.3× 106m−1.

When we insert (1) into (25), we find that the wave vector

k =

(

2mimg g

~2

)1/3

(26)

involves the third root of the product of the inertial and the

gravitational mass.

Therefore, the spatial modulation of the energy eigenstate

offers a possibility to compare the masses mg and mi by a

method independent of the classical experiments based on

dynamics. However, it is interesting to note that in the semi-

classical limit, there is a revival of the universality of free fall

as shown in Appendix C.

We conclude by noting that the energy eigenfunction (24)

exhibits a surprising feature when it undergoes a free time

evolution. In fact, the free propagation of uE does not dis-

play [49,50] the phenomenon of spreading, but just an overall

acceleration. Recently, such Airy wave packets have received

great attention in optics and have been realized experimen-

tally with light [51,52]. For an explanation of this effect in

Wigner phase space we refer to Appendix B.

5.2 Atom trampoline

Next we insert an infinite repulsive potential wall at z = 0.

Here, we are not concerned about the nature of this potential

wall, i.e. whether it originates from electromagnetic forces

or from gravitational ones that must include the gravitational

mass. Its purpose is simply to establish a Dirichlet boundary

condition for the wave function and to provide a Hamilto-

nian that is bounded from below. Moreover, we emphasize

that experimental realizations of such a trampoline (or quan-

tum bouncer) for atoms [18–22], neutrons [32], and light [53]

exist.

The boundary condition

uE(0) = 0 (27)

on the wave function (24) enforces the discrete energy eigen-

values

En =

(

m~
2g̃2

2

)
1

3

an+1 (28)
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Fig. 2 First ten energy eigenfunctions at the corresponding eigen-

values for the atom trampoline. The potential consists of a linear

part for 0 < z and a hard wall at z = 0.

where n = 0, 1, 2, ... and aj denotes the j-th zero [45] of the

Airy function, as depicted in Fig. 2.

When we recall the definition (1) of g̃ the energy eigen-

values read

En =

(

1

2
~
2g2
)

1

3

m
2

3

g m
−

1

3

i an+1 (29)

and thus depend on m
2/3
g and m

−1/3
i .

This is quite a remarkable result because the energy spec-

trum provides us in principle with a third way to compare the

inertial and gravitational mass. However, it is not yet clear

which additional degree of freedom of an atom should be

coupled to its center-of-mass motion in order to probe the

energy spectrum with the necessary energy resolution, since

(m ~
2 g2/2)1/3 ≈ 2.7× 10−12 eV for Rb87 atoms.

6 Conclusion

In the present paper we have studied the role of the inertial

and gravitational mass in the quantum mechanical treatment

of a particle in a linear gravitational potential. Experiments

involving the dynamics of wave packets, no matter how com-

plicated the initial state may be, only probe the ratio

ζ ≡ mg

mi
.

This parameter plays a crucial role in the classical experi-

ments on the universality of free fall and is closely connected

to the Eötvös parameter (2).

However, the probability density of a wave packet might

well depend on the gravitational and inertial in any arbitrary

combination. Using the phase space analysis, we can identify

two sources for this fact. (i) The initial Wigner function is a

matter of state preparation and thus might involve the inertial

mass as well as the gravitational mass. For example, when we

start from a particle in a box, the wave function does not de-

pend on the mass at all. In contrast, the energy wave function

of the harmonic oscillator depends on square root of the mass.

(ii) Due to the marginal property of the Wigner function, the

time evolved probability density follows from the integration

of the Wigner function and might create in this way new com-

binations of the gravitational and the inertial mass.

A particularly striking example of this additional free-

dom is provided by the energy wave function of a quantum

particle in linear gravitational potential. Experiments capa-

ble of measuring the Airy-function shaped probability density

would yield information about (mgmi)
1/3. Moreover, spec-

troscopy of the discrete energy spectrum of a particle bound

in an atom trampoline would provide us with another scaling

law (m2
g/mi)

1/3.

It is interesting to express these scaling laws in terms of ζ
and the geometrical mean

M2 = mimg

of the inertial and gravitational mass. Indeed, we find that

the spatial modulation of the energy wave function of the lin-

ear gravitational potential is sensitive to M2/3, whereas the

corresponding energy eigenvalues involve the combination

ζ1/2M1/3. The additional information concerning the rela-

tion between the gravitational and the inertial mass is made

possible by quantum mechanics and goes beyond the classi-

cal tests of the universality of free fall.

In the past century the spectroscopy of the matter wave

representing the electron in the hydrogen atom has triggered

the spectacular success of quantum mechanics and quantum

Electrodynamics (QED). Indeed, the discrete Balmer series

gave birth to matrix mechanics and the Lamb shift led to

QED. It would be amusing if in the new century the spec-

troscopy of matter waves of atoms or Bose–Einstein conden-

sates would shine some new light on the old question of iner-

tial and gravitational mass.
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A Time evolution in a linear potential

In Sect. 4 we have presented an exact expression for the time

evolution of the Wigner function in a linear potential. The

main emphasis of this section was the dependence on the in-

ertial and the gravitational mass. We dedicate the present ap-

pendix to represent this dynamics as the product of a shearing

and a displacement operator acting on the Wigner function in

phase space. This analysis is reminiscent [54] of the one in a

time dependent harmonic oscillator.

We start by recalling (17) for the time dependence

W (z, p; t) =W0

(

z − p

m
t− 1

2
g̃ t2 , p+m g̃ t

)

(30)

of the Wigner function in terms of the momentum rather than

the velocity variable.

In the absence of gravity, that is for g̃ = 0, equation (30)

reduces to

Wf (z, p; t) =W0

(

z − p

m
t , p

)

(31)

and represents the dynamics of a free particle described by

the Hamiltonian

Ĥf ≡ p̂2

2m
. (32)

The appearance of p in the first argument of the Wigner

function (31) is responsible for the familiar shearing effect

of the Wigner function. Due to the marginal property (10),

the shearing in phase space translates into a dispersion of the

wave packet in position space.

When we introduce the displacement operator

D̂(Z,P)F(z, p) ≡ F(z −Z, p− P) (33)

and the time dependent shearing operator

Ŝ (t)F(z, p) ≡ F
(

z − p

m
t , p

)

(34)

which act on any phase space function F = F(z, p), we can

represent the time evolution of the Wigner function in a linear

gravitational potential (30) in the compact form

W (z, p; t) = D̂(Zl(t),Pl(t)) ˆS (t)W0(z, p) . (35)

Here we have introduced the time dependent displacement

(Zl(t),Pl(t)) =

(

−1

2
g̃ t2 , −m g̃ t

)

(36)

containing the specific gravitational acceleration g̃.

We emphasize that the operator D̂ provides a representa-

tion of the Lie group of translations in phase space, whereas

Ŝ corresponds to the Lie group of shear mappings, accord-

ingly. In particular, the order of D̂ and Ŝ is important, as

reflected by the identity

ˆS (t) D̂(Z,P) = D̂

(

Z +
P
m
t , P

)

ˆS (t) . (37)

In Fig. 3 we show the time evolution of a Gaussian

Wigner function W0 = W0(z, p) in the presence and ab-

sence of a linear potential confirming the decomposition (35)

into the product of a time dependent shearing and displace-

ment. An important consequence of this feature is the fact

that the linear potential has no influence on the spreading of

the wave packet. The spreading is solely due to the free time

evolution of the particle given by the Hamiltonian (32).

Fig. 3 Comparison between the time evolution of a Gaussian

Wigner function in phase space (bottom) in the presence of a con-

stant or a linear potential (top), that is for Vf (z) ≡ 0 (blue) or

Vl(z) ≡ mg̃ z (red). The upper picture also indicates the average

energy E0 of the wave packet. The center of the Wigner function of

the free particle propagates along a straight line (blue line), whereas

the Wigner function in the linear potential follows a parabola (red

line). The time evolved quasi-probability distributions are depicted

at three different times and clearly illustrate the fact that the time

evolution in a linear potential can be decomposed into a free propa-

gation followed by a shift D = (Zl(t),Pl(t)) in phase space.

Another surprising implication of (35) is the fact that the

linear gravitational potential cannot influence the interference

fringes in phase space of a Schrödinger cat state that con-

sists of a superposition of two Gaussians centered around the

same position but with slightly different initial momenta. In

Fig. 4 we show the time evolution of the Wigner function

corresponding to this superposition state. We note that the in-

terference fringes do change in the course of time. However,

this change arises solely from the shearing effect and is not

due to the gravitational field. Indeed, according to (35) grav-
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ity only enters through the displacement of the Schrödinger

cat obtained from the shearing of free motion.

Fig. 4 Time evolution in the linear gravitational potential of the

Wigner function W0(z, p) corresponding to a Schrödinger cat state

consisting of a superposition of two Gaussian states located at the

same position but with different initial momenta.

The property of the Wigner function to track the classical

trajectory is not restricted to a time independent linear poten-

tial, but can be extended to arbitrary g̃ = g̃(t), resulting in a

generalized shift (Zl(t),Pl(t)) in phase space. We note that

this perspective has also been used in the context of many-

body theory and the Gross–Pitaevskii equation to separate the

center-of-mass motion from the internal dynamics [55–58].

B Non-spreading wave packets

An interesting feature of the energy eigenfunction uE given

by (24) is the fact [49–52] that it does not spread during the

free time evolution governed by the Hamiltonian Ĥf defined

by (32). Instead, it preserves its shape and accelerates in pos-

itive z-direction with a rate g̃ t2/2. The representation of the

quantum dynamics in a linear potential as a product of shear-

ing and displacement in phase space discussed in Appendix A

offers new insights into the origin of non-spreading Airy-type

wave packets.

Indeed, the Wigner phase space description of quantum

mechanics allows a rather straight forward derivation of this

effect. We elucidate its connection to a specific invariance

property of the Hamiltonian (19) and show that this symme-

try relation defines a broader class of Wigner functions that

all correspond to non-spreading wave packets. As an exam-

ple of this broader class we examine the Wigner function that

follows from an incoherent superposition of energy eigen-

states (24). We conclude with an alternative view on the effect

of non-spreading wave packets based on the transformation to

an accelerated reference frame.

B.1 Equivalence of shearing and displacement

The Wigner function (20) of an energy eigenfunction is time

independent. Thus, by inserting WE into the time evolution

equation (35), we arrive at the relation

WE = D̂ Ŝ WE . (38)

When we multiply (38) by the inverse operator D̂−1 of D̂ ,

we find

Ŝ WE = D̂
−1WE .

This equation enjoys an interesting interpretation: the shear-

ing of the Wigner function WE is equivalent to a displace-

ment of WE by (−Zl(t),−Pl(t)). Therefore, WE preserves

its shape during the free time evolution given by (31) and

shifts its position in phase space according to

Wf (z, p; t) =WE

(

z − 1

2
g̃ t2 , p−mg̃t

)

. (39)

When we take advantage of the marginal property (10) of

the Wigner function (39), we find the identity

∞
∫

−∞

dp Wf (z, p; t) = u2E

(

z − 1

2
g̃ t2
)

, (40)

which indicates that the initial probability density of the en-

ergy eigenstate (24) does not spread during the free time evo-

lution, but accelerates.

B.2 Broader class of non-spreading wave packets

The Wigner function WE is not the only quasi-probability

distribution whose marginal P (z; t) exhibits this interesting

feature. Since the non-spreading behavior of the wave packet

can be traced back to the invariance relation (38), any phase

space distribution W (z, p) that obeys the identity

W (z, p) = D̂(Zl(t),Pl(t)) Ŝ (t)W (z, p) . (41)

possesses a probability density P (z; t) in position space that

does not spread during free time evolution.

The invariance property (41) implies that the correspond-

ing function W (z, p) must depend on the phase space coor-

dinates z and p only via the classical Hamiltonian

Hl(z, p) ≡
p2

2m
+mg̃ z (42)

of the particle in a linear potential.

Indeed, when we apply the operators Ŝ and D̂ to Hl, we

find with the help of (36) the relation

D̂(Zl(t),Pl(t)) Ŝ (t)Hl(z, p) = Hl(z, p) . (43)
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Hence, any phase space function of the form

W (z, p) = F (Hl(z, p)) (44)

automatically satisfies the invariance property (41).

In order to show that the functions (44) are the only possi-

ble quasi-probability distributions that satisfy the invariance

relation (41), we differentiate (41) with respect to the time t
and insert t = 0. The resulting equation coincides with the

time independent quantum Liouville equation (18a), whose

general solution is found by the method of characteristics and

exactly coincides with the class of phase space functions (44).

We emphasize, that the phase space distributions (44)

cannot be normalized. In fact, when we introduce the new

phase space coordinates

z′ ≡ Hl(z, p) and p′ ≡ p ,

the normalization condition can be expressed as

∞
∫

−∞

dz

∞
∫

−∞

dp W (z, p) =
1

mg̃

∞
∫

−∞

dz′ F (z′)

∞
∫

−∞

dp′ . (45)

Since the integral over p′ diverges, W and therefore its

marginals cannot be normalized.

As a consequence, a wave packet that corresponds to a

Wigner function satisfying the invariance relation (41) can-

not be exactly realized in an experiment and does not allow

the definition of the expectation values 〈ẑ〉 and 〈p̂〉. This fact

saves the day for Ehrenfest’s theorem.

B.3 Incoherent superposition of energy eigenstates

Next, we consider an example for the general class of Wigner

functions (44) with a non-spreading probability density P =
P (z; t), namely an incoherent superposition

Winc(z, p) =

∞
∫

−∞

dE g(E)WE(z, p) (46)

of Wigner functions WE corresponding to a density operator

ρ̂ =

∞
∫

−∞

dE g(E) |E〉 〈E| . (47)

For the probability distribution g = g(E) to find the par-

ticle in the energy eigenstate |E〉, we choose the Gaussian

distribution

g(E) ≡ 1√
2πσ2

exp

[

− 1

2σ2
(E − E0)

2

]

(48)

with mean energy E0 and variance σ2.

When we recall (20) for the Wigner functionWE together

with the integral relation

∞
∫

−∞

dξ
e
−

1

2γ2
(ξ−ξ0)

2

√

2πγ2
Ai(ξ) = e

1

2
γ2

(

ξ0+
γ4

6

)

Ai

(

ξ0 +
γ4

4

)

for the parameters ξ0 ≡ α(Hl − E0) and γ ≡ ασ, we obtain

the exact formula

Winc(z, p) = N · e 1

2
(ασ)2[α(Hl(z,p)−E )+ 1

6
(ασ)4]

×Ai

[

α (Hl(z, p)− E ) +
1

4
(ασ)4

]

.
(49)

Here we have introduced the constant

α ≡
(

8

~2mg̃2

)
1

3

.

The incoherent superposition Winc(z, p) of a continu-

ous distribution g = g(E) of energy eigenstates |E〉 given

by (46) differs in general significantly from the Wigner func-

tion WE(z, p) of a single energy eigenstate, as illustrated in

Fig. 5. In particular, the domains of phase space where the

Wigner function Winc assumes negative values have almost

disappeared. However, due to its functional dependence on

Hl(z, p), the parabolic profile has survived.

In the limit σ → 0 for which the energy distribution

approaches a δ-function centered around E0, we recover

from (49) the Wigner function

lim
σ→0

Winc(z, p) =WE0
(z, p)

of the energy eigenstate |E0〉.

Fig. 5 Quasi-probability distribution Winc(z, p) corresponding to

an incoherent superposition of energy eigenstates |E〉 of a linear

potential, that is of Wigner functions WE(z, p) with a Gaussian

weight function (48) of energy spread σ and average energy E0.

In contrast to the Wigner function of a single energy eigenstate, this

distribution shows strongly suppressed oscillations in the domain
p2

2m
+ mg̃z < E0 and has a rather broad maximum sightly left to

the classical parabolic phase space trajectory corresponding to E0.

It is the average over the Gaussian that has eliminated most of the

negative contributions in Wigner phase space and has led to a broad-

ening of the maximum of WE .
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B.4 Transformation to an uniformly accelerated frame

An alternative explanation for the non-spreading wave packet

rests on a coordinate transformation [50] from an inertial to

an uniformly accelerated reference frame. It is worthwhile to

translate this idea into Wigner phase space in order to obtain

yet another interpretation of the invariance relation (43).

The transformation from the inertial coordinate system to

the uniformly accelerated reference frame reads

z′ ≡ z − 1

2
g̃ t2 , p′ ≡ p−mg̃t , t′ ≡ t,

with the new phase space coordinates z′ and p′ and implies

the following relations on the partial derivatives

∂

∂z
=

∂

∂z′
,

∂

∂p
=

∂

∂p′
,

∂

∂t
=

∂

∂t′
− g̃t

∂

∂z′
−mg̃

∂

∂p′
.

As a result, the quantum Liouville equation
(

∂

∂t
+

p

m

∂

∂z

)

Wf (z, p; t) = 0 (50)

of the free particle expressed in the accelerated reference

frame takes the form
(

∂

∂t′
+
p′

m

∂

∂z′
−mg̃

∂

∂p′

)

W ′(z′, p′; t′) = 0 , (51)

with the transformed Wigner function

W ′(z′, p′; t′) =Wf

(

z′ +
1

2
g̃ t′2 , p′ +mg̃t′; t′

)

. (52)

The quantum Liouville equation (51) is identical to (15) and

contains a fictitious linear gravitational potential arising from

the transformation into the accelerated reference frame.

We now assume that our initial quasi-probability distribu-

tion for the quantum Liouville equation of a free particle (50)

is given by the Wigner function of an energy eigenstate of a

linear potential, that is Wf (z, p; 0) ≡ WE(z, p). The initial

Wigner function in the accelerated frame governed by (51)

follows from (52) for t′ = 0 and takes the form

W ′(z′, p′; 0) =Wf (z
′, p′; 0) =WE(z

′, p′) , .

Since WE(z
′, p′) satisfies the time independent quantum Li-

ouville equation (18a), we conclude from (51)

∂

∂t′
WE(z

′, p′) = 0 .

Hence, the transformed Wigner function exhibits no time evo-

lution and we find

W ′(z′, p′; t) =WE(z
′, p′) .

Insertion of the last expression into (52) finally yields

Wf

(

z′ +
1

2
g̃ t′2 , p′ +mg̃t′; t′

)

=WE(z
′, p′) ,

which in terms of the original phase space coordinates z and

p simply reduces to the Wigner function (39) of the non-

spreading wave packet.

C Semi-classical limit of an energy wave function

The semi-classical limit of quantum mechanics, that is the

JWKB approximation, has always provided deeper insight

into the inner workings of quantum theory. In this appendix

we apply it to demonstrate that the mass ratiomg/mi emerges

in the semi-classical limit of the exact energy eigenfunc-

tion (24) far from the classical turning point. Moreover, we

identify phase space quantization as the origin of the unusual

scaling law of the energy eigenvalues of the atom trampoline.

C.1 Revival of the universality of free fall

When we recall the asymptotic expansion [45]

Ai(−|y|) ∼= 1√
π

1
4

√

|y|
cos

(

2

3
|y| 32 − π

4

)

of the Airy function valid for 1 ≪ |y|, we can approximate

the energy wave function uE = uE(z) given by (24) by a

superposition

uE(z) ∼= AE(z) e
iφ(z;E) +AE(z) e

−iφ(z;E) (53)

of two running waves with identical amplitudes

AE(z) =
NE

2
√
π(ε− kz)

1

4

and opposite phases

φ(z;E) ≡ 1

~

zE
∫

z

dz̃ pcl(z̃;E)− π

4
. (54)

Here, pcl = pcl(z;E) denotes the classical momentum (22)

and the turning point zE follows from the condition

E ≡ mg̃zE .

In this way, the energy wave function uE can be interpreted

as the most elementary matter wave interferometer. Indeed,

it consists of a wave running up and one down the linear po-

tential. Both waves have identical amplitudes and their phase

difference is governed [59] by an area in phase space deter-

mined by the strength of the gravitational constant. However,

the representation (53) is only justified appropriately away

from the turning point, that is for z ≪ zE .

From (54) we note the relation

pcl(z;E) = −~
∂φ

∂z
.

As a result we can connect the rate of phase change of the

JWKB wave given by (53) with the classical momentum pcl
at the position z.

When we recall the definition (22) of the classical mo-

mentum together with the relation (16) between velocity and

momentum, we arrive at the classical velocity

vcl =
√

2g̃(zE − z) (55)
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of the particle at position z, which only involves g̃, that is the

ratio mg/mi of the gravitational and the inertial mass. Thus,

in the semi-classical limit we obtain a form of the universality

of free fall expressed by the relation

vcl(z) = − ~

m

∂φ

∂z
.

A position-dependent velocity or momentum does not ex-

ist in the Schrödinger formulation of quantum mechanics. In-

deed, we either live in position space or in momentum space.

However, in the semi-classical limit we can obtain mixed

position-momentum variables. It is interesting that this re-

sult also follows directly from (20) of the Wigner function,

as discussed in Sect. 4.2.

However, we emphasize that in the neighborhood of the

turning point the decomposition (53) does not hold true. As a

consequence, there the wave function is not able to repro-

duce (55), where only the ratio of the two masses enters.

Around the turning point, the energy wave function thus de-

pends on the third root of the product of the inertial and the

gravitational mass.

Our result complements the work of Davies [33]. Here,

the travel time of a wave was calculated based on the Wigner

time

τ = ~
∂φ

∂E
=

zE
∫

z

dz̃
m

pcl(z̃;E)
=

zE
∫

z

dz̃
1

vcl(z̃;E)
(56)

which is valid appropriately away from the turning point of

the motion. Indeed, the universality of free fall holds true

again and the travel time only involves the ratio of the two

masses.

C.2 Phase space quantization as origin of the scaling law

The form of the eigenvalues in (28) and, in particular, the

scaling properties of the two masses in (29) can also be de-

rived in a straightforward manner from the Kramers improved

Bohr–Sommerfeld rule

J ≡
∮

dz pcl(z;E) = 2π~

(

n+
3

4

)

. (57)

The Maslov index is 3/4 because there is one “hard” reflec-

tion at z = 0 contributing 1/2, or equivalently π to the phase,

and one soft reflection at the classical turning point contribut-

ing 1/4, or π/2 to the phase [60].

With the help of the classical momentum (22), we can

evaluate the action

J =
4

3

√

2

mg̃2
E

3

2

which yields, with the quantization condition (57), the ap-

proximate expression

En ≈
(

m~
2g̃2

2

)
1

3
[

3π

2

(

n+
3

4

)]
2

3

for the energy eigenvalues. Thus, we find the same prefactor

as in (28) and the approximation [45]

aj ∼=
[

3π

8
(4j − 1)

]
2

3

for the j-th zero of the Airy function.

This treatment clearly identifies the origin of the unusual

scaling laws m
−1/3
i andm

2/3
g of the energy eigenvalues: The

quantization of the energy levels follows from the quantiza-

tion of the action, i.e. of an area in phase space. This quantity

involves both masses.

D Atomic fountain

In Appendix A we have shown that a constant gravitational

field has no influence on the phase space interference fringes

of a Schrödinger cat moving in a linear potential. On the

other hand atomic fountains provide us with precision mea-

surements of the gravitational acceleration. In order to bring

out the similarities and differences between these two mea-

surement schemes, we first summarize the essential ideas

that form the basis of an atomic fountain. In the spirit of the

present paper, which relies almost exclusively on the Wigner

functions, we then outline the physics of an atomic fountain

in phase space, thereby sketching the ideas only. In fact, we

do not intend to develop a complete description of this pre-

cision instrument. For this purpose we refer e. g. to [61–64]

and references therein.

D.1 Basic idea

In the atomic fountain experiments [8,9], an effective two-

level atom is moving vertically up against the gravitational

field of the Earth. Initially, the atom is in its ground state |g〉.
However, on its way up a laser pulse prepares a coherent su-

perposition of its internal levels. The wave vector k of the

laser is aligned along the z-axis. Since the transition to the

excited state |e〉 is accompanied by a momentum transfer due

to the photon recoil, the atom in the excited state has a differ-

ent momentum than the atom in the ground state. As a con-

sequence they accumulate different phases during their prop-

agation in the gravitational field. After a time τ a π-pulse

exchanges the population of the ground and excited state. Fi-

nally after another time τ , a third laser pulse mixes the inter-

nal levels of the atom and in this way erases the which-way

information. The quantity measured at the end is the proba-

bility to find the atom in the ground or excited state.

The measurement scheme used in the atomic fountain is

reminiscent of the problem of wave packet interferometry in-

volving two different molecular surfaces [65]. Whereas in

typical molecules these potentials are rather complicated, in

the atomic fountain they are linear in lowest order. For this

reason, the latter can be treated fully analytically.
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D.2 State vector description

It is straightforward to translate the atomic fountain exper-

iment into the language of state vectors. We start with the

initial state

|Ψi〉 = |ψ〉 |g〉 ,

where |ψ〉 represents the center-of-mass motion along the z-

axis. After the first laser pulse the atom is in the entangled

state

|Ψ1〉 ≡
1√
2

[

|ψ〉 |g〉 − iD̂ |ψ〉 |e〉
]

. (58)

Here, the unitary operator

D̂ = eikẑ (59)

imparts the extra momentum from the photon recoil and acts

as a displacement of the corresponding Wigner function in

phase space due the interaction between atom and laser. We

note that we refrain from including additional phases that

are imprinted on the atom by the laser which must be taken

into account in a real experiment. In (58), we also assume

that the interaction between the atom and the laser does not

otherwise affect the initial center-of-mass wave function |ψ〉,
which provides a good first order approximation for the real

situation encountered in atom interferometer experiments.

The time evolution of the atom in the linear gravita-

tional field for the time τ described by the unitary operator

Ûl ≡ exp(−iĤlτ/~) yields the state

|Ψl〉 ≡
1√
2

[

Ûl |ψ〉 |g〉 − iÛl D̂ |ψ〉 |e〉
]

.

The second laser pulse at the time τ is a π-pulse and inter-

changes the probability amplitudes of the ground and excited

state which leads to the expression

|Ψ2〉 =
1√
2

[

−iD̂ Ûl |ψ〉 |e〉 − D̂−1ÛlD̂ |ψ〉 |g〉
]

.

After another period τ of unitary evolution, a third laser pulse

mixes the internal states with a second π/2-pulse, and we

arrive at the final state

|Ψf 〉 =
1√
2

[

|ψg〉 |g〉+ |ψe〉 |e〉
]

where we have introduced the states

|ψg〉 ≡ − 1√
2

[

D̂−1 Ûl D̂ Ûl + Ûl D̂
−1 Ûl D̂

]

|ψ〉 (60)

and

|ψe〉 ≡ − 1√
2
(iD̂)

[

D̂−1 Ûl D̂ Ûl − Ûl D̂
−1 Ûl D̂

]

|ψ〉

of the center-of-mass motion of the atom in the ground and

excited state, respectively.

D.3 Determination of the phase difference

Using the definitions of the momentum displacement opera-

tor D̂ and the time evolution operator Ûl, the two terms in the

expression for the motional states of the atom |ψg〉 or |ψe〉 can

be combined and the nature of the interference of the trajecto-

ries can be made explicit. With the notation D̂−1 Ûl D̂ = Û ′

l ,

equation (60) can be rewritten in the simple form

|ψg〉 ≡ − 1√
2

[

Û ′

l Ûl + Ûl Û
′

l

]

|ψ〉 .

As shown below, using the commutation relation between the

position and momentum operator together with the Baker–

Campbell–Hausdorff formula, we can prove that

|ψg〉 ≡ − 1√
2

[

eikg̃τ
2

+ 1
]

Ûl Û
′

l |ψ〉 ,

which implies the well-known gravity-dependent expression

for the probability

Pg = Tr {|Ψf 〉 〈Ψf | · |g〉 〈g|} =
1

2
(1 + cos∆φ)

to find the atom in the ground state. Here, we introduced the

phase difference∆φ ≡ kg̃τ2.

In order to establish this result, we note that from the ex-

pansion of Ûl, one can prove

Û ′

l = exp(−iτD̂−1 Ĥl D̂/~) ≡ exp(−iτĤ ′

l/~) ,

where the boosted Hamiltonian Ĥ ′

l is just the original Hamil-

tonian Ĥl with the momentum p̂ replaced by p̂+ ~k, that is

Ĥ ′

l = D−1 Ĥl D̂ =
(p̂+ ~k)2

2m
+mg̃ẑ.

Finally, we use the Baker–Campbell–Hausdorff formula to

commute Û ′

l and Ûl and find

Û ′

l Ûl = Ûl Û
′

l e
(−iτ/~)2[Ĥ′

l ,Ĥl] = Ûl Û
′

l e
ikg̃τ2

,

which concludes our simple proof of the phase difference be-

tween the two interfering trajectories.

D.4 Phase space description

In Fig. 6 we represent in phase space the path of the quantum

state |ψ〉 of the center-of-mass motion in the course of time.

For an atom that is detected in the ground state |ψg〉, we have

two paths which start from the same point S in phase space

and end up at the final pointEg . One path corresponds to a se-

quence of unitary evolution, displacement, unitary evolution

and inverse displacement. Therefore, the atom first moves the

linear gravitational potential while being in the ground state

and then after a transition into the excited state continues its

motion in the potential. It concludes with a transition into

the ground state at the point Eg . The second path starts with
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the displacement, is followed by unitary evolution and neg-

ative displacement, and concludes by the inverse displace-

ment. Here the atom begins its trip by first making a transi-

tion into the excited state to be followed by motion in the po-

tential. After de-excitation the atom in the ground state com-

pletes its path in the gravitational field. Both paths define an

enclosed area in phase space that determines the phase differ-

ence between the two amplitudes contributing to |ψg〉.

Fig. 6 Phase space representation of an atomic fountain experiment.

Two π/2-pulses separated by the time 2τ surround a π-pulse at time

τ and cause transitions in the internal states of the atom which are

accompanied by displacements in phase space along the momentum

axis. Each parabola section corresponds to the center-of-mass mo-

tion in the linear gravitational field within the propagation time τ .

The atom starts its journey in the ground state at the point S. Atoms

eventually measured in the ground state end up at phase space point

Eg , whereas atoms detected in the excited state are to be found at the

point Ee. In both cases two distinct paths lead from the starting point

S in phase space to the same final point. The area enclosed by the

two paths expressed in units of ~ turns out to be twice the phase dif-

ference ∆φ between the two corresponding probability amplitudes.

Atoms that exit the interferometer in the excited state |ψe〉
have traversed the same path in phase space as atoms in the

ground state except that their final point Ee on the trajectory

is different. They either move in the potential, become ex-

cited, and then follow again the parabola or become initially

excited, follow the parabola, emit, follow again the linear po-

tential, and finally get re-excited.

In Fig. 7 we show the trajectory of the atom in phase space

during a fountain experiment for realistic parameters [11].

For this case the vertical straight paths due to the momen-

tum exchange with the laser pulse are much shorter than the

parabolas corresponding to the classical motion in a linear

gravitational potential.

Τ

Τ

v @m�sD

z @cmD5 10

1

-1

Fig. 7 Atomic fountain experiment represented in position-velocity

space for typical experimental parameters. Here the momentum

transfer due to the absorption or emission of a single photon is much

smaller than the typical momentum associated with the motion in

the linear gravitational potential. As a result the rather complicated

closed curve in phase space shown in Fig. 6 simplifies more or less

to two parabolas (dotted curves) which are connected at z = 0 by

vertical lines due to the interaction with the laser (solid line in upper

inset). At the time τ , the second laser pulse causes another internal

transition and a shift in the momentum. Consequently the parabolas

are interrupted by straight vertical lines representing the momen-

tum transfer (lower inset). For each trajectory we have marked with

the symbol τ the points in phase space that represent the end of the

first step of the unitary time evolution. Note that the straight line on

the inner trajectory (blue dashed line) is therefore traversed thrice,

whereas the corresponding section on the outer path (purple dashed

line) is traversed only once. The atom initially in the ground state

follows the parabola to the point in phase space indicated by τ . The

laser pulse moves the atom vertically up in phase space and the ex-

cited atom traverses the same vertical line again, but now as part of

the unitary time evolution in the potential. This picture is an approx-

imation; in reality the parabolas have a curvature that for parameters

of the experiment is negligible on the length scale of the momentum

transfer and invisible even on the magnified scale of the inset.

As a result we can approximate the closed circuit in phase

space by two parabolas pcl(z;E) and pcl(z;E +∆E) given

by (22), which are connected by two vertical lines of length

∆p = ~k at z = 0. The difference ∆E in energy is to first

order in ∆p

∆E =
pE
m
∆p =

pE
m

~k , (61)

where pE = pcl(0;E) denotes the momentum at zero poten-

tial.

The phase difference ∆φ between the two paths turns

out to be half of the phase space area enclosed by the two

parabolas (expressed in units of ~). In order to provide a sim-

ple derivation of this result, we first emphasize with the help

of (54) that 2~φ(0;E) represents the phase space area inside
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the parabola pcl(z;E) ranging from z = 0 to the turning point

zE . We then denote by δφ the area of the circuit expressed in

units of ~ and find for small ∆E the relation

δφ ≡ 2 [φ(0;E +∆E)− φ(0;E)] ≈ 2
∂φ

∂E
∆E . (62)

When we recall the definition (56) of the classical transit

time τ from z = 0 to the turning point zE , we find

δφ = 2
τ

~
∆E . (63)

Finally, substituting Eqs. (61) into (63) together with the

identity pE = mg̃τ , reduces to

δφ = 2kg̃τ2 = 2∆φ

and proves our conjecture in the limit of small momentum

transfer ∆p ≪ pE . We note that a more thorough analysis

shows that this result is actually exact.

This calculation brings to light a remarkable interpreta-

tion of the atomic fountain experiment. The phase differ-

ence ∆φ between the two paths is half the difference δφ
between the phases of two energy wave functions in a lin-

ear potential of slightly different energies. Each wave repre-

sents an interferometer—it is the interference of two counter-

propagating waves as expressed by (53). The phase 2φ(0;E)
is the area in phase space enclosed by a straight line at z = 0
and the parabola corresponding to the energy E. The area of

the “crescent moon” is thus the difference of the areas rep-

resenting the phases of the WKB energy wave functions in a

linear potential.

D.5 Comparison between cat and fountain

We conclude by comparing the interference contained in a

Schrödinger cat such as the one shown in Fig. 4 and the one

in the superposition state in the atomic fountain, depicted in

Fig. 6. In both cases we consider the quantum state of the

center-of-mass motion in a linear gravitational field. How-

ever, in the case of the Schrödinger cat state, we face the su-

perposition of two states that are located at different points in

phase space. This fact stands out most clearly in the language

of coherent states |z + ip〉 of the harmonic oscillator. Indeed,

the state

|ψCat〉 = NCat

[

|z + i p〉+ |z + i p′〉
]

of the Schrödinger cat corresponds to two Gaussians which

differ in their momenta p and p′. Here NCat denotes a nor-

malization constant.

In contrast, in the atomic fountain we have the states |ψg〉
and |ψe〉 each of which consists of the superposition of two

states which only differ in the phase ∆φ. In particular, the

wave function of the center-of-mass motion for the ground

state reads

|ψg〉 =
1√
2

[

1 + ei∆φ
] ∣

∣

∣
ψ̃
〉

,

where we have introduced the abbreviation

∣

∣

∣
ψ̃
〉

= −ÛlÛ
′

l |ψ〉.
The phase turns out to be half the enclosed area in phase space

shown in Fig. 6.

Needless to say, the Wigner function of |ψg〉 does not

contain this phase. However, a phase space approach to the

atomic fountain must contain this phase. It arises when we

include the internal degrees of freedom into the phase space

description. Unfortunately, this goes beyond the scope of the

present paper.
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