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The late-stage demixing following spinodal decomposition of a three-dimensional sym-
metric binary fluid mixture is studied numerically, using a thermodynamicaly consistent
lattice Boltzmann method. We combine results from simulations with different numerical
parameters to obtain a unprecendented range of length and time scales when expressed
in reduced physical units. (These are the length and time units derived from fluid density,
viscosity, and interfacial tension.) Using eight large (2563) runs, the resulting composite
graph of reduced domain size l against reduced time t covers 1 . l . 105, 10 . t . 108.
Our data is consistent with the dynamical scaling hypothesis, that l(t) is a universal
scaling curve. We give the first detailed statistical analysis of fluid motion, rather than
just domain evolution, in simulations of this kind, and introduce scaling plots for sev-
eral quantities derived from the fluid velocity and velocity gradient fields. Using the
conventional definition of Reynolds number for this problem, Reφ = ldl/dt, we attain
values approaching 350. At Reφ & 100 (which requires t & 106) we find clear evidence
of Furukawa’s inertial scaling (l ∼ t2/3), although the crossover from the viscous regime
(l ∼ t) is both broad and late (102 . t . 106). Though it cannot be ruled out, we find
no indication that Reφ is self-limiting (l ∼ t1/2) at late times, as recently proposed by
Grant and Elder. Detailed study of the velocity fields confirm that, for our most inertial
runs, the rms ratio of nonlinear to viscous terms in the Navier Stokes equation, R2, is
of order ten, with the fluid mixture showing incipient turbulent characteristics. However,
we cannot go far enough into the inertial regime to obtain a clear length separation of
domain size, Taylor microscale, and Kolmogorov scale, as would be needed to test a re-
cent ‘extended’ scaling theory of Kendon (in which R2 is self-limiting but Reφ not). To
obtain our results has required careful steering of several numerical control parameters so
as to maintain adequate algorithmic stability, efficiency and isotropy, while eliminating
unwanted residual diffusion. (We argue that the latter affects some studies in the litera-
ture which report l ∼ t2/3 for t . 104.) We analyse the various sources of error and find
them just within acceptable levels (a few percent each) in most of our datasets. To bring
these under significantly better control, or to go much further into the inertial regime,
would require much larger computational resources and/or a breakthrough in algorithm
design.

† Present address: Optics Section, The Blackett Laboratory, Imperial College, London, SW7
2BW, UK.
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1. Introduction

Spinodal decomposition occurs when a fluid mixture of two species A and B, forming
a single homogeneous phase at high temperature T , undergoes spontaneous demixing
following a sudden drop in temperature (or ‘quench’). For suitable compositions and
quenches, one enters the ‘spinodal’ regime in which the initial homogeneous phase is
locally unstable to small fluctuations. (Elsewhere one finds instead a nucleation and
growth mechanism which is not the subject of this paper.) For compositions close to
50/50, there then arises, after an early period of interdiffusion, a bicontinuous domain
structure in which patches of A-rich and B-rich fluid are separated by sharply defined
interfaces. The sharpness depends on the temperature drop; we assume a ‘deep quench’
for which the interfacial thickness is, in practice, on a molecular rather than macroscopic
scale. In this late-stage structure, the local compositions of the fluid patches correspond
to those of the two bulk phases in coexistence; the interfacial tension approaches σ,
its equilibrium value. Although locally close to equilibrium everywhere, the structure
then continues to evolve so as to reduce its interfacial area. Local interfacial curvature
causes stresses (equivalently, Laplace pressures) to arise, which drive fluid motion. The
interface then evolves smoothly with time between isolated ‘pinchoff events’ or topological
reconnections. In principle these events reintroduce molecular physics at the short scale;
however it is generally assumed that pinchoff, once initiated, occurs rapidly enough not to
impede the coarsening process (but see Jury et al. 1999b; Brenner et al. 1997). Likewise
it is usually assumed that at late times, the presence of thermal noise in the system is
irrelevant, at least for deep quenches (but see G Gonnella & Yeomans 1999): the problem
is thus one of deterministic, isothermal fluid motion coupled to a moving interface. Precise
details of the random initial condition, which is inherited from the earlier diffusive stage,
are also thought to be unimportant (assuming that no long-range correlations are initially
present).

For simplicity we address in this paper only the maximally symmetric case of two
incompressible fluids with identical physical properties (shear viscosity η, density ρ), and
also equal volume fractions, that have undergone a deep quench. With the assumptions
made above, all such fluid mixtures should, in the late stages, behave in a similar manner.
More precisely, the dynamical scaling hypothesis is that, if one defines units of length and
of time by

L0 ≡ η2/(ρσ) , T0 ≡ η3/(ρσ2) (1.1)

(which are the only such units derivable from η, ρ, σ) then at late times any characteristic
structural length L(T ) should evolve with time T according to

dL/dT = (L0/T0)ϕ(L/L0) (1.2)

where ϕ(x) is the same function for all such fluids. (A specific choice of definition for L is
made later on, in terms of the mean domain size.) Integrating this once gives a universal
late-stage scaling

l = l(t) (1.3)

where we introduce ‘reduced physical units’,

l ≡ L/L0 , t ≡ (T − Tint)/T0. (1.4)

Here Tint an offset that is nonuniversal: it depends on the initial condition as fixed by
the early stage diffusion processes. (Note that in this paper, the symbol t is reserved for
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the reduced physical time; unscaled time is denoted T , and temperature T . An overdot
means time derivative in whatever units are being used.)

The form of l(t) has been discussed by several authors, notably Siggia (1979) and
Furukawa (1985). Siggia argued that, for t ≪ 1, the interfacial forces induce a creeping
flow of the fluid; simple force balance in the Navier–Stokes equation then gives l ∝
t in this, the ‘viscous hydrodynamic’ regime. Note that, in a creeping flow, the fluid
velocity depends only on the instantaneous structure of the interface. (This is why the
nonuniversal offset is in T and not L.) At later times, the force balance was argued by
Furukawa to entail viscous and inertial effects; balancing these gives l ∝ t2/3 for t ≫ 1,
the ‘inertial hydrodynamic’ regime. It has recently been shown by Kendon (2000) that
Furukawa’s assumption of a single characteristic length (for velocity gradients as well as
interfacial structure) is inconsistent with energy conservation; her more detailed analysis
nonetheless recovers l ∝ t2/3 for the domain size. Kendon’s arguments, with those of
Siggia and Furukawa, are discussed in § 4, 5.

For a general review of late-stage spinodal decomposition and other aspects of phase
separation kinetics, see that of Bray (1994). The problem is clearly intractable ana-
lytically: it involves a moving boundary with a complicated and non-constant topology
whose initial condition is defined, implicitly, by the preceding, early-time diffusion. These
features render it equally intractable to many numerical algorithms that might perform
well for other fluid mechanics problems. Indeed, symmetrical spinodal decomposition has
become a benchmark for various so-called ‘mesoscale’ simulation techniques, developed
to address the statistical dynamics of fluids with microstructure. The results from dif-
ferent techniques can be compared, not only with each other and with experiment (with
the caveat that one cannot realize exact symmetry between fluids in the laboratory), but
with the predictions of the various scaling theories already mentioned.

In the present work, we study in detail the physics of spinodal decomposition for a sym-
metrical binary fluid using the Lattice Boltzmann (LB) technique (Higuera et al. 1989),
in a thermodynamically consistent form pioneered by the group of Yeomans (see Swift
et al. 1996). Our work, of which a preliminary report appeared in Kendon et al. (1999),
advances significantly the state of the art for simulations of spinodal decomposition, and
for LB simulations of fluid mixtures. In any such simulation, a balance must be struck
between discretization error at small scales, and finite size errors (arising in our case
from periodic boundary conditions) at large ones; this compromise is quite subtle, as we
discuss below. It means that any individual simulation run can produce only around one
decade of data for the l(t) curve. This is true for all first-principles simulation methods:
in three dimensions there cannot be more than two decades, or at most three, sepa-
rating the discretization length from the system size, before deduction of a half-decade
safety margin at each end. (Three decades before such deduction is optimistic; it means
simulating at least 109 degrees of freedom.)

Despite this restriction, by careful scaling and combination of separate datasets for
eight large (2563) simulation runs, we are able to access an unprecedented range of l
and t (five and seven decades respectively) including regions of the l(t) curve not studied
previously. We find nothing to contradict the universality of Equation (1.3), but nor
can we completely rule out violations of it. We gain the first unambiguous evidence for
a regime in which inertial effects dominate over viscous ones, and find clear evidence
for t2/3 scaling in this regime. In this and other regions of the l(t) curve, we study
the statistics, not only of the interfacial structure, but also of the fluid velocity. (The
latter was not addressed in detail by previous simulations.) On entering the inertial
hydrodynamic regime we find some evidence for breakdown of simple scaling of velocity
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gradients, as proposed by Kendon (2000), but our data does not extend far enough into
this regime to offer a meaningful test of her alternative proposals.

To obtain our new results, we have had to push the LB technique to its limits. For
statistics based on the domain size, errors at the level of several percent, arising from each
of several different sources (residual diffusion, lattice anisotropy etc.) remain. We do make
a systematic attempt to identify and minimize the various sources of errors – a somewhat
arduous task that, our work suggests, has been neglected in several previous studies.
The errors for some of our velocity statistics (especially those for spatial derivatives of
the velocity) are much larger. Nonetheless we present the data, such as it is, because
it highlights several issues both in the physics of spinodal decomposition and in how
simulation results should be obtained, analysed and interpreted.

The rest of this paper is organized as follows. § 2 outlines the thermodynamics of the
binary fluid system, and § 3 its governing equations. § 4 and § 5 outline the simple and
extended scaling analyses referred to above. § 6 describes the LB method in the form that
we use; § 7 describes how the simulation parameters are chosen. § 8 outlines a number
of validation tests. § 9 gives our results for the evolution of the interfacial structure,
§ 10 those for the velocity field and § 11 those for the velocity derivatives and related
quantities. § 12 summarizes our conclusions. Two appendices give further information on
the effects of residual fluid compressibility in the LB method and on the relation between
our work and that of previous authors.

2. Thermodynamics

Although we are interested in the late-stage demixing of two isothermal, incompress-
ible fluids separated by sharp interfaces, the LB method resorts to a more fundamental
approach, in which these interfaces are described as excitations of a thermodynamic field
theory. The central object is the Helmholtz free energy

F = E − T S, (2.1)

where E is the internal energy, T the temperature and S the entropy of the system.
In a system at fixed volume V , and fixed contents and temperature, equilibrium states

are given by global minima of the free energy, F . For a symmetric fluid mixture, F is a
functional of a single composition variable φ(r), defined as φ = (nA − nB)/(nA + nB)
where the n’s are number densities, and of the mean fluid density ρ = nA + nB. (We
take unit mass for A and B particles without loss of generality.) In the incompressible
case, ρ is fixed; we leave it as a parameter in what follows. Further restricting attention
to homogenous states (so that φ is the same everywhere), we can write

F/V = V(φ). (2.2)

Within mean-field theories of fluid demixing, one predicts that V has everywhere positive
curvature at high temperatures, but becomes concave below a critical temperature Tc.
The resulting curve is as shown in Figure 1, with symmetric minima at ±φ∗. Below Tc,
the free energy is therefore minimized by creating two bulk domains (of equal volume)
at compositions ±φ∗ instead of a single homogenous phase with φ = 0 (which is our
presumed initial condition). The same phase separation occurs for any other φ between
±φ∗, but in this case the domain volumes are unequal; for sufficient asymmetry this
causes depercolation. (In a depercolated, droplet structure, coarsening can only occur by
diffusion so that the scaling arguments given above cease to apply. We do not address
this here.)

The resulting phase diagram is shown in Figure 2. Spinodal decomposition occurs for
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−φ* +φ*
φ

V(φ)

Figure 1. Model potential for phase separation, a symmetric double well, V(φ). The
equilibrium values of the order parameter are ±φ∗.
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Figure 2. Phase diagram for spinodal decomposition. The order parameter is
φ = (nA − nB)/(nA + nB) with ρ = nA + nB the mean fluid density. The temperature
axis shows the critical temperature, Tc, below which the system starts to separate, and above
which it remains completely mixed.

any quench that leaves the system beneath the spinodal line, on which d2V/dφ2 changes
sign. Immediately after such a quench, the system is locally unstable: the free energy
can be lowered, in any local neighbourhood, by creating two domains whose composition
differs only infinitesimally from the initial one. (The resulting free energy density lies on
a line connecting two points on V(φ) at the new compositions; in the convex region, this
causes a reduction in F .) Accordingly, infinitesimal fluctuations will grow by diffusion
until there is local coexistence of domains at compositions approaching ±φ∗.

To describe quantitatively both the domains and the interfaces between them, one
must specify not just V(φ) but the free energy functional, F [φ]. An acceptable choice is
the square gradient model (see Bray 1994)

F [φ] =

∫

dr
{

V(φ) +
κ

2
|∇φ|2

}

, (2.3)

where V(φ) is as shown in Figure 1, and the term in κ penalizes sharp gradients in
composition. This ensures smooth local deviations from ±φ∗ near the interface, and
provides a nonzero interfacial tension σ which can be calculated as follows. We consider a
flat interface between two domains, introducing a coordinate normal to it, g. Stationarity
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of F requires

κ∇2φ = κ
∂2φ

∂g2
=

dV(φ)

dφ
. (2.4)

Integrating this once across the interface and setting g = 0, φ = 0 at its centre gives

κ

2

(

∂φ

∂g

)2

= V(φ) − V(φ∗). (2.5)

The excess free energy per unit area of interface is then given by

σ =

∫

dg

[

κ

2

(

∂φ

∂g

)2

+ V(φ) − V(φ∗)

]

. (2.6)

By exploiting the fact that ∇φ → 0 in the bulk fluid, and using Equation (2.5), we obtain

σ =

∫ +φ∗

−φ∗

dφ (2κ)
1/2

[V(φ) − V(φ∗)]
1/2

. (2.7)

Given a form for the potential, V(φ), a value for the interfacial tension can thus be
calculated. This is done for the model used in our simulations in § 6.

We now turn to the (exchange) chemical potential, µ, which describes the change in
F for a small local change in composition:

µ ≡ δF

δφ
=

dV
dφ

− κ∇2φ. (2.8)

Within the LB approach, the coupling between interfacial and fluid motion arises as
follows. In the presence of a nonuniform composition, there is a thermodynamic force
density −φ∇µ acting at each point on the fluid. (The two species are pulled in opposite
directions by the chemical potential gradient; the net force vanishes only if φ = 0.) This
force density can also be written as the divergence of a ‘chemical’ pressure tensor:

φ∇µ = ∇.Pchem (2.9)

where it is a straightforward exercise to confirm that

Pchem
αβ = δαβ

[

φ
dV
dφ

− V − κ{φ∇2φ + 1
2 |∇φ|2}

]

+ κ(∇αφ)(∇βφ). (2.10)

Note that only the last term is anisotropic; the rest contributes, in effect, to the isotropic
fluid pressure P . By integrating (2.9) across an interface, and using Eq. (2.10), one finds
that there is, in static equilibrium, a finite pressure difference across a curved interface,
called the Laplace pressure:

∆P = σK (2.11)

where K is the interfacial curvature.
Throughout the above, our description in terms of a smooth composition variable φ(r),

usually known as the order parameter, assumes a coarse-graining so that the smallest
length scale under consideration is larger than the average distance between molecules.
In equilibrium, this coarse-graining is an almost trivial operation, but for the dynamical
description desired below, certain conditions must be met. On scales smaller than the
coarse-graining length, the system must remain in local equilibrium, while the variations
of interest at larger scales must be slow on the scale of the time it takes for that local
equilibrium to be reached.

This does not mean that the microscopic scales can be forgotten from here on. Although
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usually a macroscopic description is sufficient to fully understand the system, ultimately
it is still the microscopic interactions that are driving the system and determining the
dynamics. In particular, any interface between the two fluids will have a microscopic size
and structure. It is always a possibility that the microscopic behaviour can intrude at
the macroscopic level (for example, by interfering with pinchoff) and change the results
predicted by any simple macroscopic considerations. In particular, when using numerical
models, care must be taken that the microscopic behaviour in these models is admissible.

3. Governing Equations

The equation of motion for φ is taken to be a convective diffusion equation of Cahn
Hilliard type (see Bray 1994; Swift et al. 1996)

φ̇ + v.∇φ = M∇2µ = −M∇2

{

κ∇2φ − ∂V(φ)

∂φ

}

, (3.1)

where M is an order-parameter mobility (here assumed independent of φ) that controls
the strength of the diffusion, and v(r) is the fluid velocity. This equation states that the
order parameter responds to composition gradients by diffusion (the M∇2µ term), and
also changes with time because it is advected by the fluid flow (the v.∇φ term).

The fluid velocity in turn obeys the Navier–Stokes equation (NSE), which for an in-
compressible fluid reads

ρ [v̇ + (v.∇)v] = η∇2v − ∇.P th. (3.2)

Here Pth
αβ is the ‘thermodynamic’ (or conservative) part of the pressure tensor, and con-

tains two pieces: an isotropic contribution Pδαβ , chosen to maintain constant ρ, and the
‘chemical’ pressure tensor, Pchem

αβ , defined previously in (2.10). Recall that by (2.9), the

chemical term −∇.Pchem can equally well be represented as a body force density −φ∇µ
acting on the fluid, so that Eq. (3.2) also reads

ρ [v̇ + (v.∇)v] = η∇2v − φ∇µ − ∇P . (3.3)

Within the LB approach of Swift et al. (1996), the governing equations are solved by
relaxing slightly the requirement of fluid incompressibility. We return to this in § 6.

4. Simple Scaling Analyses

The pair of coupled nonlinear differential equations, (3.1) and (3.2), are intractable,
but various dimensional and scaling ideas may be used to find out how fast the domains
grow once the diffusive period is over. All these analyses assume that the interface can
be characterized by a single length scale — that is, it is basically smooth, with radii of
curvature that scale as the domain size itself, which is much larger than the interfacial
thickness.

Many domain-scale length measures are possible; we use L(T ), the inverse of the first
moment of the spherically averaged structure factor, S(k, T ):

L(T ) = 2π

∫

S(k, T ) dk
∫

kS(k, T ) dk
, (4.1)

where k = |k| is the modulus of the wave vector in Fourier space, and

S(k, T ) ≡ 〈φ(k, T )φ(−k, T )〉 (4.2)
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with φ(k, T ) the spatial Fourier transform of the order parameter. The angle brackets
denote an average over a shell in k space at fixed k.

The aim of scaling analyses is to find the form of the time dependence of L(T ) by
considering the NSE (3.3), and balancing the force from the interface,−φ∇µ, against the
viscous and inertial terms which tend to oppose its motion. The interfacial force density,
−φ∇µ, can be approximated as follows. The curvature, K, is of order 1/L, since L(T )
is roughly the size of the domains. This sets the scale of P

chem through (2.11), as σ/L.
Likewise the gradient operator, ∇, can be approximated by 1/L(T ) in Equation (2.10),
which then reads

− φ∇µ ≃ σ

L2
. (4.3)

Now we turn to the remaining terms in the NSE (3.3). We start by assuming that the
length L also controls the magnitude of ∇ as far as velocity gradients are concerned.
Approximating also the fluid velocity, v, by the velocity of the interface L̇(T ), gives for
the viscous and inertial terms respectively

η∇2v ≃ η
L̇

L2
, (4.4)

ρ [v̇ + (v.∇)v] ≃ ρL̈ + ρ
L̇2

L
. (4.5)

Under conditions in which the inertial terms are negligible, the force from the interface
will be balanced by the viscous force, giving L̇/L2 ≃ σ/(ηL2). Integrating this gives,

L ≃ σ

η
(T − Tint) . (4.6)

Thus the domain size is predicted to grow linearly with time in the region where the
fluid flow is viscous dominated. This is the result of Siggia (1979). Linear growth has
been reported in experiments by, for example, Kubota et al. (1992); Chen et al. (1993);
Hashimoto et al. (1994), and in simulations incorporating hydrodynamics by Koga &
Kawasaki (1991); Puri & Dünweg (1992); Alexander et al. (1993); Laradji et al. (1996);
Bastea & Lebowitz (1997) and Jury et al. (1999b).

To find the growth rate in the inertial region, Furukawa (1985) balanced instead the
inertial and interfacial terms; assuming again only one relevant length, he obtained

L̈ ≃ L̇2

L
≃ σ

ρ

1

L2
. (4.7)

Integrating this twice gives, for large enough T , L3 ≃ σT 2/ρ, so that the domain size
grows as L ∼ T 2/3. This result has not yet been observed experimentally (for reasons we
discuss later, § 12). There are a few previous claims to see this in simulation (Ma et al.
1992; Appert et al. 1995; Lookman et al. 1996), but none reliably establish dominance
of inertial over viscous forces as we do below in § 10.

Comparing the results of (4.6) and (4.7) allows us to estimate a characteristic domain
size, L = L∗, and characteristic time, T = T ∗ + Tint at which the crossover from viscous
to inertial scaling occurs. (To be precise, we can define L∗, T ∗ by the interception of
asymptotes on a log-log plot.) This leads to L∗ ≃ L0, T

∗ ≃ T0, with L0, T0 defined in 1.1.
Converting to reduced physical units l = L/L0, t = (T − Tint)/T0 as defined previously,
and invoking the dynamical scaling hypothesis, we have respectively

l = b1t t ≪ t∗ viscous regime

l = b2/3t
2/3 t ≫ t∗ inertial regime, (4.8)
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where b1, b2/3 and t∗ are dimensionless numbers that should be universal to all incom-
pressible, fully symmetric, deep quenched fluid mixtures. What scaling theories cannot
predict, of course, are values of the universal constants b1, b2/3, t

∗, other than to state
that these are ‘of order unity’.

In fact our simulations show that t∗ ≡ T ∗/T0 is between 104 and 105, which is ‘of
order unity’ only in a rather unhelpful sense; the implications of this are discussed in §
12 below. We will also find that the crossover region, between the asymptotes described
by (4.8), is several decades wide. Although there is no explicit scaling prediction for the
behaviour within this crossover region, its width means that each individual simulation
dataset, either within or outside the crossover, can be well-described by a single scaling
exponent, α, such that

l ≃ bαtα, (4.9)

where b1 6 bα 6 b2/3, and 1 6 α 6 2/3. We use this form below, when analysing our
numerical data.

5. Extended Scaling Analysis

In what follows we will find it useful to compare directly the relative magnitude of
the various terms in the NSE. Two ratios have therefore been defined, the rms ratio R1

between the acceleration term and the viscous term,

R2
1 ≡ 〈|ρv̇|2〉

〈|η∇2v|2〉 , (5.1)

and the rms ratio R2 between the nonlinear term and the viscous term,

R2
2 ≡ 〈|ρ(v.∇)v|2〉

〈|η∇2v|2〉 . (5.2)

Here 〈〉 denote spatial averages (though an ensemble average might be preferable under
some conditions). These ratios obey R1, R2 ≫ 1 where the inertial terms dominate
and R1, R2 ≪ 1 where the viscous term dominates. The ratio R2 we identify as the
‘true’ Reynolds number, that is, a dimensionless measure of the relative importance of
nonlinearity in the NSE.

When R2, (5.2), is simplified using the normal scaling assumption (∇ ∼ 1/L), the
result is the following estimate:

R2 ≃ ρv2/L

ηv/L2
≃ vL

η/ρ
. (5.3)

Assuming that the characteristic velocity scale is v ≃ L̇, one finds (following Furukawa
1985; Grant & Elder 1999) the Reynolds number estimate Reφ,

R2 ≃ Reφ ≡ ρ

η
L(T )L̇ = ll̇ = αb2

αt2α−1. (5.4)

This ‘order-parameter Reynolds number’ has the advantage, in simulations, that it is
computable from L(T ) without direct access to any fluid velocity statistics. However,
Reφ is only a good estimate of the true Reynolds number R2, if the simple scaling for
velocity gradients of ∇ → 1/L does indeed hold. This assumption leads to the following
paradox, as noted by Grant & Elder (1999). According to (5.4), if in the inertial region
α = 2/3, then Reφ ∼ t2α−1 which becomes indefinitely large as time proceeds. Grant and
Elder argued that this could not be physical, on the grounds that an infinite Reynolds
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number would imply turbulent remixing of domains: this would limit the domain growth
to such a speed that Reφ remained bounded at late times. (5.4) then demands a lower
asymptotic growth exponent, α 6 1

2 , as t → ∞.
However, a closer look at the scaling of all the terms in the NSE admits an alternative

resolution. Kendon (2000) pointed out that a minimally acceptable scaling theory should
allow, not only force balance in NSE, but a balance of terms in the global energy equation,
which for an isothermal, incompressible fluid reads

d〈ρv2〉
dt

= −ε + εin (5.5)

where ε = η〈(∇αvβ)(∇αvβ)〉 is the dissipation rate, and εin is the rate of energy transfer
from the interface to the fluid. Retaining the assumption that the interface (as opposed
to the velocity field) has just one characteristic length, εin is readily estimated from (4.3)
as σL̇/L2.

Applying the simple scaling for velocity gradients (∇ ∼ 1/L) to each term in (5.5)
gives the following energy ‘balance’ in the inertial regime where L ∼ T 2/3:

− ρT−5/3 ∼ −ηT−2 + σT−5/3, (5.6)

where factors of ρ, η, σ are retained to aid identification of the terms. At first sight
this suggests a balance of interfacial and inertial terms, with the viscous contribution
negligible, at late times: this is Furukawa’s assumption. However, the signs show this
to be inconsistent: the kinetic energy and the energy stored in the interface are both
decreasing with time, so these cannot properly be balanced against each other.

This exposes a central defect of the simple scaling analysis in the inertial regime. It is
well known, of course, that even the simplest theories of fluid turbulence entail several
length scales (whereas more modern ‘multiscaling’ theories have, in effect, infinitely many,
Frisch 1995). In the simplest, Kolmogorov-type approach (see Frisch 1995; Kolmogorov
1941), the important lengths are the Taylor microscale†

λ ≡ (5η〈v2〉/ε)1/2, (5.7)

characteristic of velocity gradients, and the Kolmogorov (dissipation) microscale,

λd ≡ 2π(η3/ρ3ε)1/4, (5.8)

the length scale below which nothing interesting occurs. (Energy is dissipated at or above
the scale λd.)

Kendon (2000) argued that in a binary fluid system where the fluid motion has become
turbulent, the velocity follows the interface and scales as L̇, but the first and second
gradients of velocity have scalings set by λ and λd respectively, rather than by L. Within
this simplified (Kolmogorov-level) description, the only scalings for these three lengths
found physically admissible by Kendon for the inertial regime were λ ∼ T 1/2, λd ∼
T 5/12, L ∼ T 2/3. In the NSE, this gives for the acceleration, convection, viscous and
driving terms the following scalings:

ρT−4/3 + ρT−7/6 ∼ ηT−7/6 + σT−4/3. (5.9)

The predicted outcome is thus a balance between the nonlinear and dissipative forces
that is decoupled from the interfacial motion, while interfacial stresses balance fluid
acceleration. The existence of a nonlinear/viscous balance implies an asymptotically finite

† The prefactors in the definitions of the Taylor and Kolmogorov microscales differ between
sources.
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Quantity viscous inertial region

region simple new
scaling scaling

L(T ) 1 2/3 2/3

λ = (5η〈v2〉/ε)1/2 1 2/3 1/2

λd = 2π(η3/ρ3ε)1/4 1/2 1/2 5/12
v 0 −1/3 −1/3

ρv̇ = 0 −4/3 −4/3
ρv.∇v = 0, −1 −4/3 −7/6
η∇2v −2 −5/3 −7/6
φ∇µ −2 −4/3 −4/3

Reφ = ll̇ 1 1/3 1/3
R1 = 0 1/3 −1/6
R2 = 0 1/3 0
ε = η(∇v)2 −2 −2 −5/3

Table 1. Summary of predicted scaling exponents for the viscous and inertial regions. The ‘new’
scaling theory (Kendon 2000) gives the same predictions as simple scaling for the viscous region,
except for the NSE term ρv.∇v. Entries are powers of T , an entry of 0 indicates the quantity
is constant, while an entry of = 0 indicates the quantity is assumed to be zero in the viscous
approximation. Bold entries indicate scaling predictions that differ from the simple theory. From
Kendon (2000).

value for the ratio of the corresponding terms in NSE, that is, a finite asymptote for the
true Reynolds number R2. On the other hand, since the result for the domain scale, L ∼
T 2/3, survives unaltered from the simple scaling theory, the Reynolds number estimated
from the order parameter, Reφ, continues to grow indefinitely. This suggestion, although
speculative, appears to resolve the issue raised by Grant and Elder, without requiring a
change in the domain scale growth law (nor any breakdown of universality of (1.3)).

To summarise, Kendon (2000) predicts a balance in which energy is first transferred
from the interface (−φ∇µ) to large scale fluid motion (ρv̇). The nonlinear term (ρv.∇v)
then transfers the energy from the large scales down to smaller scales where dissipative
forces (η∇2v) finally remove it from the system. The resulting energy cascade thereby
decouples the energy input scales from the dissipation scales — a familiar enough idea in
turbulence theory (Kolmogorov 1941). In contrast, in the viscous hydrodynamic regime,
the simple (one-length) scaling theory is already consistent with energy conservation, and
all its results are recovered. Kendon’s predictions for scaling are summarised for ease of
reference in table 1.

6. Numerical method

The model system described by (3.1) and (3.2) was simulated numerically using a mod-
ular LB code called Ludwig, described in detail in Desplat, Pagonabarraga & Bladon
(2000a). It has both serial and parallel versions; the parallel code uses domain decompo-
sition and the MPI (message passing interface) platform. Any cubic lattice can be used
with the Ludwig code; the lattice parameter is taken as unity, as is the timestep ∆T ,
thereby defining ‘simulation units’ of length and time.

Here we chose the D3Q15 lattice, a simple cubic arrangement in which each site com-
municates with its six nearest and eight third-nearest neighbours. The fluid dynamics
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is, as usual (see Higuera et al. 1989; Ladd 1994) encoded at each site by a distribution
function fi, where the subscript obeys 0 6 i 6 14. This ascribes weights to each of 15
velocities ci: one null, six of magnitude 1, eight of magnitude

√
3, with directions such

that each velocity vector points toward a linked site. In order to model the binary fluid,
a second set of distribution functions, gi, is also used, following Swift et al. (1996). The
f ’s are defined such that

∑

i

fi = ρ (6.1)

where the sum is over all directions, i, at a single lattice point, while for gi the same sum
gives the order parameter,

∑

i

gi = φ. (6.2)

(At this point, our algorithm departs from that of Swift et al. (1996), who would have
φρ on the right. The two methods differ only by terms that vanish in the incompressible
limit of interest, where ρ → 1 everywhere.)

The momentum, ρvα (with α a cartesian index) is then given by

ρvα =
∑

i

ficiα, (6.3)

where ciα ≡ (ci)α. The full pressure tensor, Pαβ , is given by

Pαβ =
∑

i

ficiαciβ . (6.4)

This expression includes not only the conservative stress Pth
αβ but also dissipative (viscous)

contributions, and a trivial ‘kinetic pressure’ ρvαvβ which arises in any fluid moving at
constant velocity v.

The distribution functions fi, gi obey discrete evolution equations involving simple
first-order relaxation kinetics toward a pair of equilibrium distributions:

fi(r + ci, t + 1) − fi(r, t) = −(fi − f
(eq)
i )/τ1 (6.5)

gi(r + ci, t + 1) − gi(r, t) = −(gi − g
(eq)
i )/τ2 (6.6)

thus defining two relaxation parameters τ1, τ2. In our use of the code we select τ2 = 1

which causes gi to be reset to g
(eq)
i each time step. The viscosity is determined by τ1, with

η = (2τ1 − 1)/6 in lattice units. The equilibrium distributions, f
(eq)
i and g

(eq)
i , can be

derived from (6.1) – (6.3), along with the condition that the order parameter is advected
by the fluid,

∑

i

g
(eq)
i ciα = φvα, (6.7)

and that the pressure tensor and chemical potential at equilibrium obey
∑

i

f
(eq)
i ciαciβ = Pth

αβ + ρvαvβ (6.8)

∑

i

g
(eq)
i ciαciβ = M̃µ δαβ + φvαvβ . (6.9)

The parameter M̃ controls the order parameter mobility M via M̃∆t(τ2 − 1/2) = M , so
that M̃ = 2M in our case. (Note that in Kendon et al. (1999) and Cates et al. (1999), the
quoted values of M are in fact M̃ values and should therefore be halved to give the true
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order parameter mobility.) The second term on the right in (6.8) is the trivial ‘kinetic
pressure’, with an analagous term in Eq.(6.9).

By expanding f
(eq)
i , g

(eq)
i to second order in velocities and solving for the coefficients

one obtains

f
(eq)
i = ρων

{

Aν + 3vαciα +
9

2
vαvβciαciβ − 3

2
v2 + Gαβciαciβ

}

. (6.10)

Here, ν is an index that denotes the speed, 0, 1, or
√

3, and ων , Aν and Gαβ are constants
given by

ω0 = 2/9; ω1 = 1/9; ω3 = 1/72, (6.11)

A0 =
9

2
− 7

2
TrPth; A1 = A3 =

1

ρ
TrP th, (6.12)

Gαβ =
9

2ρ
Pth

αβ − 3δαβ

2ρ
TrPth. (6.13)

The equilibrium distribution for the order parameter, g
(eq)
i , is the same as for f

(eq)
i ,

with P
th replaced by M̃µ 11 in the above equations. The above results follow Swift et al.

(1996), generalised to three dimensions.
To complete the model specification, one must introduce expressions for the pressure

tensor and chemical potential derived from the free energy functional. In this study we
chose in (2.3) a simple ‘φ4’ model for V(φ):

F [φ, ρ] =

∫

dr

{

A

2
φ2 +

B

4
φ4 +

κ

2
(∇φ)2 +

1

3
ρ ln ρ

}

(6.14)

where A < 0. (The term in ρ is discussed below.) With this choice one finds φ∗ =
±(−A/B)1/2, and using (2.7), (2.8),

σ = (−8κA3/9B2)1/2 (6.15)

µ = Aφ + Bφ3 − κ∇2φ. (6.16)

The equilibrium interfacial profile in given by φ/φ∗ = tanh(g/ξ0), where g is the normal
coordinate introduced previously, and

ξ0 = (−κ/2A)1/2 (6.17)

is a measure of the interfacial width.
An important addition to (6.14) is the term dependent on density ρ, here chosen as

an ‘ideal gas’ type contribution (up to the factor 1/3). This gives a diagonal term in the
thermodynamic pressure tensor, which becomes

Pth
αβ =

{

ρ

3
+

A

2
φ2 +

3B

4
φ4 − κφ∇2φ − κ

2
(∇φ)2

}

δαβ + κ(∂αφ)(∂βφ), (6.18)

so that the thermodynamic stress obeys Pth
αβ = (ρ/3)δαβ + Pchem

αβ . Thus in practice
ρ/3 = P , which is the isotropic pressure contribution normally viewed as a Lagrange
multiplier for incompressibility. But in fact, our LB algorithm does not know that the
fluids are meant to be incompressible; instead the ideal-gas term is relied upon to en-
force incompressibility to within acceptable numerical tolerances. (This avoids a sepa-
rate calculation, at each time step, of the fluid pressure P and renders the algorithm
local.) Compressibility errors can be minimized by increasing the coefficient of ρ ln ρ in
(6.14), which would require a shortened time step, or for fixed time step, by reducing
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the magnitudes of A, B, and κ together so that an acceptable level of incompressibility
is maintained. The second route is followed here.

The chosen functional, (6.14), has a number of points in its favour for numerical sim-
ulation. The main terms in Pth

αβ and µ are simple powers of φ, so are easy and quick to
evaluate. (Models involving logarithms or trigonometric functions (Swift et al. 1996) pay
a heavy price in computational efficiency.) Further, the shape of the “φ4” potential is
fairly smooth, avoiding very steep gradients that might lead to inaccuracy and instabil-
ity when approximated numerically on a lattice. We nonetheless need to evaluate spatial
gradients of φ; this is done using all 26 (first, second and third) nearest neighbours on
the D3Q15 lattice, so that numerically

∂αφ(x) =

∑

i ciαφ(r + ci)
∑

i ciαciα
(6.19)

∇2φ(r) =
1

9

[(

26
∑

i=1

φ(r + ci)

)

− 26φ(r)

]

. (6.20)

Note that these are not the only possible choices and that others will only coincide when
all gradients are small on the scale of the lattice. There may be considerable scope for
improvement by optimising the choices made, but we leave this for future work.

As usual in LB, we have chosen a lattice with enough symmetry to ensure that the
rotational invariance of the fluid mechanics is faithfully represented (Higuera et al. 1989).
However, this does not guarantee that the same holds for the thermodyamic properties.
With our choice of free energy functional, (6.14) and the above gradient discretisation,
rotational invariance in the thermodynamic sector is recovered only when all order pa-
rameter gradients are weak, which in principle requires ξ0 ≫ 1. In practice, a compromise
is necessary; we return to this in § 8.2 below.

Finally, the hydrodynamic behaviour of the LB technique requires detailed comment.
The hydrodynamic equations that correspond to LB can be obtained by making a
Chapman-Enskog expansion of the Boltzmann equations (6.5,6.6). If we consider the
expansion for the distribution function f (which relates to the fluid momentum) we
arrive at

∂T (ρvα) + ∂α(ρvαvβ) = −∂βPth
αβ − ∂β

[

η

(

∂βvα + ∂αvβ − 2

3
δαβ∂γvγ

)

+ ξ∂γvγδαβ

]

+
3η

ρ
∂β

[

vα∂γPchem
βγ + vβ∂γPchem

αγ + vγ∂γPchem
αβ

]

− 3η

ρ
∂β∂γ(ρvαvβvγ)(6.21)

where η and ξ are the shear and second viscosities, respectively. For our single-relaxation
LB scheme ξ = 2η/3.

The first line of Equation 6.21 corresponds to the standard Navier Stokes equation,
and shows that, through these terms, the model recovers both the compressible and
incompressible features of isothermal hydrodynamics. †

The second line in Equation 6.21 contains spurious terms, which arise partly because
the enthalpic interactions that lead to the non-ideal behaviour of the LB fluid (or fluid
mixture) are introduced through equilibrium information only. (In a Hamiltonian system,
the same interactions that perturb the equilibrium state away from an ideal gas would
also be responsible for the dynamics.) Of the two terms, the second one is not Galilean

† Note that when modeling a macroscopic length, L, the ratio η/(csρL) will be larger than
in typical real fluids; due to the presence of the lattice, LB does not have a sharp separation
between the compressible and incompressible time scales. In this respect, it resembles a high
viscosity fluid, Hagen et al. (1997).



Inertial effects in spinodal decomposition 15

invariant but is cubic in the velocity. It will be negligible for small velocities (recall
that the LB algorithm anyway requires fluid velocities that are small in lattice units).
The first term can be decomposed into a Galilean-invariant part, which is a product
of gradients of the pressure and velocity, and a non-Galilean invariant contribution.
The product term is small compared to the Navier-Stokes terms, which are linear in
such gradients, whenever these are weak; the non-Galilean invariant term is small under
the same conditions. There have been recent proposals to enforce Galilean invariance
within compressible multiphase lattice-Boltzmann schemes, Holdych et al. (1998), and
this is a desirable feature of future algorithms. Nonetheless, under circumstances where
all hydrodynamic fields vary smoothly on the lattice scale, the spurious terms appearing
in the second line of (6.21) will typically be smaller than the retained ones of the NSE
equation in the first line.

The evolution equation for the order parameter can be obtained analogously, by per-
forming a gradient expansion of the linearized Boltzmann equation (6.6). This leads to

φ̇ + ∂α(φvα) =

(

τ2 −
1

2

)[

∇2M̃µ − ∂α

(

φ

ρ
∂βPth

βα

)]

(6.22)

Equation (6.22) has the usual form of a convection-diffusion equation, so long as one
chooses M̃ as a constant, except for the last term. As with (6.21), this Galilean-invariant
term arises as a result of the way in which the non-ideality of the fluid mixture is in-
troduced; like the first spurious term in (6.21) it contains one higher derivative than
the term ∂αPth

αβ that enters the Navier Stokes equation, and is expected to be small for
similar reasons. In Appendix A we confirm explicitly that, in the incompressible limit
only, this spurious term does not modify the hydrodynamic modes of a binary mixture,
at the level of a linearised expansion about a uniform quiescent fluid.

In summary, for a nominally incompressible fluid the correct fluid behaviour is re-
covered in the only regime where it can justifiably be expected, namely, when all the
hydrodynamic fields vary slowly on the lattice length scale. Within the current LB al-
gorithm, one also depends on having only slight fluid compressibility: this eliminates a
spurious coupling between order parameter and momentum fluxes (Appendix A, and
Swift et al. 1996; Holdych et al. 1998). Because of this it is important, with the current
algorithm, to monitor closely the actual fluid flow.

7. Parameter Steering

Since it is possible in a single simulation to sample only a small piece of the l(t)
curve, it is necessary to work one’s way along this curve via a series of different runs.
This means varying L0 relative to the lattice constant so that an appropriate window of
reduced length scales l lies within the range of the simulation. Put differently, one must
set, in lattice units, 1 ≪ L0l(t) ≪ Λ.

In the simulations, however, we need to choose not one parameter value (L0) but seven
(A, B, κ, ρ, M , and also τ1, τ2). Few of these parameters can, in practice, be set indepen-
dently: an unguided choice would typically produce a simulation that either did nothing
over sensible timescales or became unstable very rapidly. To avoid these outcomes, care-
ful parameter steering is required. This was done by semi-empirical testing using small
(workstation) simulation runs until satisfactory choices emerged. Runs on 963 and 1283

lattices were used to confirm these before committing the resources for 2563 runs. The re-
sulting parameters are summarized in tables 2 and 3. The guiding principles that emerged
from this process, as well as the actual parameter values, are of some interest to those
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planning future work with LB. They are now summarised briefly, followed by a discussion
(§ 8) of several validation exercises that were then undertaken.

In essence, our navigation of the l(t) curve involves steering three parameters (η, σ, M)
at fixed values of the remaining four (B/A, κ/A, ρ, τ2). Firstly, the (mean) density ρ can be
set to unity without loss of generality; we do this. Second, we set φ∗ = 1 by choosing B =
−A; in terms of the original definition of the order parameter (φ = (nA−nB)/(nA +nB))
this amounts to a simple rescaling of φ → φ/φ∗. Varying κ in proportion to A then gives
control over the interfacial tension σ (6.15) while retaining a fixed interfacial width ξ0 in
lattice units (Eq. (6.17)); this keeps thermodynamic lattice anisotropies under control (§
8.2).

To achieve an efficient simulation, one requires the interfacial velocity L̇ to be of order
0.01 in lattice units during the main part of each run. (Any slower will exhaust resources;
any faster will give compressible and inaccurate fluid motion, and, in all likelihood,
numerical instability.) At each point on the l(t) curve, this gives, a posteriori a relation
between η and σ. Thus to access large l one clearly requires small L0 = η2/(ρσ); but
to avoid compressibility problems (§ 8.4) this must be done by reducing viscosity rather
than increasing interfacial tension. Maintenance of numerical stability (§ 8.1) requires in
fact that we decrease σ with decreasing η; however, these factors do not cancel in L0 and
a wide range of values (about six decades) can stably be achieved. Thus we were able to
explore the viscous, crossover, and inertial regimes; these various regimes are delineated
quantitatively in § 9.2 below.

Setting the correct mobility M is crucial throughout. Across the whole l(t) curve, one
has to ensure that M is large enough that interfaces relax to local equilibrium on a time
scale fast compared to their translational motion. But if M is made too large, residual
diffusion becomes a significant contributor to the coarsening rate, contaminating the
data. This tradeoff can be eased in principle by going to larger system sizes than those
currently available. It could also be improved by making M a function of φ, setting
(for example) M = M0(1 − φ2). This would have the effect of giving strong diffusion
only where it is needed, in the interfacial region. However, implementation of this within
LB is not trivial (Swift et al. 1996); specifically it is not enough to make M̃ in (6.9)
φ-dependent†.

It is not surprising that mobility is a limiting factor at large L0 (viscous regime, small
l): diffusion will always enter if the fluid flow is slow enough (high enough η). But mobility
factors also come into play at the inertial end (small L0, large l): in physical units, the
interface in this regime is unnaturally wide and to maintain it in diffusive equilibrium
(and keep the algorithm stable) again requires relatively large M . These cause residual
diffusion which, for our system sizes, limits from above the range of l accessible.

Finally, we found that accuracy in the viscous regime (small l, large L0) is compromised
when the viscosity becomes too large (of order unity, in lattice units). The signature of
this is an apparent breakdown of energy conservation (see § 11.5). We are not sure of its
origins, but note that too large a viscosity causes the dynamics of momentum diffusion
and that of sound propagation (density equilibration) to mix locally. In an almost steady
flows this should not matter, but in the small l regime the viscous and interfacial terms
in NSE are both numerically large. In principle these balance to give negligible fluid
acceleration but their numerical cancellation may be imperfect. Although any such local
accelerations are numerical in origin, the response to them may need to be accurate, if

† Since in (6.22) M̃ enters in the form ∇2(Mµ) rather than as ∇.(M∇µ) as would be
required if M were not constant.
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Run L0 T0 −A, B κ η M̃ σ

Run028 36 935 0.083 0.053 1.41 0.1 0.055
Run022 5.95 71 0.0625 0.04 0.5 0.5 0.042
Run033 5.95 71 0.0625 0.04 0.5 0.2 0.042
Run029 0.952 4.54 0.0625 0.04 0.2 0.3 0.042
Run020 0.15 0.885 0.00625 0.004 0.025 4.0 0.0042
Run030 0.01 0.016 0.00625 0.004 0.0065 2.5 0.0042
Run019 0.00095 0.00064 0.00313 0.002 0.0014 8.0 0.0021
Run032 0.0003 0.00019 0.00125 0.0008 0.0005 10.0 0.00083

Table 2. Parameters used in 2563 lattice-Boltzmann runs.

Run L0 T0 −A,B κ η M̃ σ

Run010 381 25656 0.125 0.08 5.71 0.5 0.084
Run026 36 935 0.083 0.053 1.41 0.25 0.055
Run027 36 935 0.083 0.053 1.41 0.1 0.055
Run014 5.95 71 0.0625 0.04 0.5 0.5 0.042
Run008 0.952 4.54 0.0625 0.04 0.2 0.5 0.042
Run018 0.15 0.885 0.00625 0.004 0.025 4.0 0.0042
Run015 0.00095 0.00064 0.00313 0.002 0.0014 8.0 0.0021
Run031 0.0003 0.00019 0.00125 0.0008 0.0005 10.0 0.00083

Table 3. Parameters used in 1283 lattice-Boltzmann runs.

the global physics is to be handled correctly. We speculate that this is a limiting factor
in our exploration of the l(t) curve at the lower end.

In this study, the largest system size was Λ3 = 2563, although due to disk storage lim-
itations, the results from this system size were analysed only after coarse-graining down
to 1283. The coarse-graining was done by averaging over blocks of eight neighbouring
lattice sites to create one coarse-grained value. Runs at 1283 and 963 were also done, and
results for all calculated quantities were compared between 2563 and 1283 runs with the
same parameters, to identify any effects of coarse-graining. The main 963 and 1283, 2563

simulations were run respectively on the EPCC Hitachi SR-2201 machine (4 processors)
and the EPCC Cray T3D (64 and 256 processors). Follow-up studies used in some of the
velocity analysis work, and for additional visualisation, were made on the CSAR Cray
T3E at Manchester.

Typical runs required, in the 2563 case, around 3000 T3D processor hours CPU, and 104

time steps to reach the point where finite size effects set in (see § 8.5). All simulation were
run with periodic boundary conditions; the initial configuration was always a completely
mixed state, with small random fluctuations. For each run, the order parameter, φ, and
the fluid velocity vector at each lattice site were saved periodically for later analysis. The
sampling frequency was limited by the available disk space. Typically, data was saved
every 300 time steps giving, over a run of 104 time steps, around 4Gb of data.

8. Validation and Error Estimates
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Figure 3. Interface profiles (φ) and gradient profile (∇φ), for spherical droplet equilibrated in
the opposite fluid. Data has been collected in bins of width 0.1 lattice spacings, and the error
bars are one standard deviation. The sphere radius is 32. Left: interface width set by ξ0 = 0.57.
The theoretical profile is tanh(g/ξ0), for a flat interface, where g is a coordinate normal to the
interface. Right: interface width set by ξ0 = 0.88.

8.1. Numerical stability

The LB method is not generally stable. In fact, our experience suggests that, whatever
parameters are chosen, any run would eventually become unstable if continued for long
enough; this is not dissimilar to some molecular dynamics algorithms, Allen & Tildesley
(1987). During testing, a reliable picture was acquired of the characteristic way in which
this happens. When the inaccuracies have built up to the point of failure, the velocities
become very large over a small number of time steps until numerical overflow causes the
code to stop running. There seems to be no danger of taking data from a period when
the system might be far from accurate but still apparently running successfully, since the
onset is so rapid. Thus there are several runs among the set used for final data analysis
where the run ended prematurely due to instabilities, but the data prior to the instability
has been considered sufficiently reliable to be used.

8.2. Anisotropy and interfacial tension

The elimination of lattice anisotropy in the thermodynamic sector of the model requires
ξ0 ≫ 1 in lattice units, to ensure that the interfacial tension σ is independent of interface
orientation. In practice this goal must be balanced against other demands. To test the
extent of the problem, a spherical droplet (radius 32 lattice units) of fluid B surrounded by
fluid A was allowed to equilibrate. The interface profile was then measured by evaluating
the mean and standard deviation of the order parameter φ(r) at various radii r (binned
on the scale of 0.1 lattice units) from the droplet centre. The result is presented in figure
3 for ξ0 = 0.57 and for ξ0 = 0.88. Note that the ‘width’ of the interface, as judged by
eye, is actually about 5ξ0.

A closer look at the droplet shape (not shown) in each case reveals that the sphere
has deformed slightly by squeezing along the Cartesian lattice directions and expanding
along the diagonals. This deformation is about 3.5% for the narrower profile and about
1.5% for the wider profile. A similar test, done with a sphere of radius 31.5, confirmed
that this deformation was not due to any tendency of the interface to lock onto specific
lattice sites but purely from anisotropy of the tension.

If all else were equal, the wider interface would be chosen. However, the computational
penalty for wider interfaces is severe. To maintain these in local equilibrium, the mobility
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−A, B κ η M̃ σ theory σ measured

0.083 0.053 1.41 0.1 0.063 0.055
0.063 0.04 0.5 0.5 0.047 0.042
0.0063 0.004 0.025 4.0 0.0047 0.0042
0.0031 0.002 0.0014 8.0 0.0024 0.0021
0.0013 0.0008 0.0005 10.0 0.00094 0.00083

Table 4. Interfacial tension, theoretical and measured values.

M̃ must be high enough to allow diffusion across several ξ0 on a timescale faster than
fluid motion. For the wider interface (ξ0 = 0.88) the resulting residual diffusion then
contaminates much of the remaining L range. It was thus found necessary to sacrifice
some isotropy for efficiency, and the narrower profile with ξ0 = 0.57 was used for the
main runs in this work. The resulting anisotropies are marginally detectable by eye in
visualisations of the interface for the spinodal system (e.g. figure 10 below). We estimate
that they contribute systematic errors of a few percent to the growth rate L̇(T ), which
is comparable to other sources of error.

The mean interfacial tension was measured for each parameter set by allowing an
interface to come to equilibrium and numerically performing the integration in (2.7).
Both terms were evaluated, and an average taken over various configurations. This gives
values for the interfacial tension, shown in table 4, that are systematically about 10–15%
smaller than the theoretical values. (The statistical error is a few percent.) The difference
is due to the narrow interface leading to inaccuracies in the gradient calculations. But
as far as the simulation is concerned, this systematic effect is removed by our using the
measured value of the interfacial tension in subsequent calculations of L0 and T0.

8.3. Local equilibrium and residual diffusion

Errors in the intereface-driven dynamics can arise if the interface is not maintained
in local equilibrium. This was tested as follows. Since the bulk fluid is fully separated
(φ = ±1), one expects 1−〈|φ|〉 ∝ A/V ∝ 1/L where A/V is the area per unit volume and
angle brackets are a real-space (site) average. Within a given run, any departure from
constancy of the product L(1−〈|φ|〉) is thus an indicator that the interfaces are failing to
keep up with the evolution of the surrounding fluid. (This product could have different
asymptotic values in the viscous and inertial regimes, so the product need not be the
same in different runs.) At the lowest values used for the mobility M (deep in the viscous
regime) there was measurable deviation from constancy, from which the nonequilibrium
deviations in σ were estimated to be of order 5%. Any deviations in the inertial regime
were, however, smaller than this.

Careful checks were made to exclude residual diffusive contributions to the coarsening
process. This was done using comparator runs in which the viscosity was set to an
extremely large value so that coarsening was purely diffusive. (Such runs are depicted
in figure 7 below.) From this, the diffusive coarsening rate was found as a function of
domain size. Then for the full run (with fluid motion reinstated) all data was excluded for
which this diffusive coarsening rate exceeded 2% of the full rate. This whole procedure
was repeated with a limit of 1% instead of 2% on the residual diffusion. The values of
the fitted exponent α as per (4.9) (given in the last column in table 5), did not change
beyond the estimated errors so the limit of 2% diffusion was taken to provide sufficient
accuracy.
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Figure 4. Left: ratio of the radial to transverse velocity components in Fourier space for various
runs. Right: velocity structure factor showing relative magnitude of the Fourier space velocity
at different wave vectors. Wavevector axis is labelled by wavelength in lattice units.

The result of this choice was exclusion of data with L < Lmin ≃ 15 − 25 (varying
somewhat between runs). Had a wider interface been used (see § 8.2) then by the same
criterion Lmin would be much larger giving very little usable data.

8.4. Compressibility and small scale structure

The Ludwig code will only work correctly at low Mach number. This requires L̇ ≪ c
where the sound speed is c = 3−1/2 in lattice units. Since in our simulations L̇ is of order
0.01, we expect our the binary fluid mixture to remain incompressible (∇.v = 0), at least
at length scales larger than a few lattice sites; in Fourier space, we expect k.v(k) = 0
at all but high k. figure 4 shows the rms ratio of the radial to the transverse veloc-
ity components in Fourier space as a function of wavenumber, and also the spherically
averaged velocity structure factor, Sv(k) = 〈|v(k)|2〉, for various runs. Also shown for
comparison is single fluid turbulence†, generated using pseudo-spectral direct numerical
simulation (DNS) code by Young (1999), and a LB run with a single fluid (no interface)
but otherwise the same parameters as Run031 (inertial region).

At low wavenumbers the sytem is incompressible. At higher wavenumbers, there is
some compressibility, whose effect varies in the different growth regimes. In the viscous
regime, the longitudinal/transverse ratio rises with k, but the velocity structure factor
shows that that all velocity components become small at high k and contribute little to
the overall dynamics. This is still true in the crossover region, where the compressibility
ratio is highest; a peak in Sv(k) is found at a wavelengths around 3 lattice spacings. In
the inertial region, this peak shrinks, and splits into two (at around 3.5 and 2.5 lattice
spacings). The transverse velocity component is now larger although still an order of
magnitude smaller than the velocity at the peak of Sv(k).

Comparison with the single fluid turbulence, as simulated by both DNS and LB, shows
that these peaks in Sv(k) are mainly due to the presence of the interface. Their presence
only in the crossover and inertial runs suggests that perhaps capillary waves are forming
on the interface giving structure the velocity field on scales of the order of the interface
width. Subsequent visualisation work showed that underdamped wavelike motion of in-
terface is undoubtedly present at large l, Desplat et al. (2000b), but predominantly at

† The single fluid turbulence simulation method sets the radial component identically to zero
thus guaranteeing perfect incompressibility.
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wavelengths much larger than the interfacial width. Another argument against the capil-
lary wave explanation is that no similar bumps are seen in the order parameter structure
factor S(k) (figure 5).

The nature of the velocity fields close to the interface certainly deserves further investi-
gation (see, for example, Theissen, Gompper & Kroll 1998, for related work on a different
system). Meanwhile, to have some compressibility on the length scale of the interface it-
self appears unavoidable within current LB. Specifically, in the immediate vicinity of the
interface the various diagonal terms in the chemical contribution to the pressure tensor,
(2.10), are individually large, although these should nearly cancel for a slowly moving,
weakly curved interface. Any numerical error here will lead to local deviations in the
fluid density ρ, even if the bulk fluid motion is effectively incompressible everywhere else.
On molecular physics grounds also, some coupling between density and order parameter
can be expected at the interface between otherwise incompressible fluids. Such coupling
is present in real physical systems, but care is needed with the current LB code where
compressibility effects also bring violations of Galilean invariance (§ 6).

8.5. Finite size effects

Various estimates were made of when our (periodic) boundary conditions started to sig-
nificantly influence the behaviour of L(T ). This included several comparisons of different
sized runs with the same values for other simulation parameters. On this basis, the data
for the 963 and 1283 was pruned at L = Lmax = Λ/4 before analysis, and the 2563

runs terminated at this point. This criterion is much more conservative than in some
previous work (e.g. Jury et al. 1999b), and, given Lmin, limits the range of L accessible
in a single large run to about half a decade. To balance this, averaging over different runs
with the same parameter values should not then be necessary, since one has in effect
(Λ/Lmax)3 = 64 different (albeit correlated) samples being simulated within each run.
Indeed, in the crossover and the inertial regime, we saw no sign of statistical fluctuations
in the L(T ) plots.

Interestingly, the same was not true for the extremely viscous runs, which showed
somewhat erratic statistics (see § 9). One possible reason for this is the presence of
correlations, in the velocity field, over much larger length scales than L(T ), causing the
local coarsening rates in different parts of the simulation to fluctuate coherently. Long
range velocity correlations are, in fact, clearly visible in the structure factor Sv(k) shown
in figure 4. Specifically, for the most viscous run analysed (Run 027, L0 = 36), Sv(k)
shows no sign of saturating at low k; instead the data suggests a power law divergence,
and is consistent with Sv(k) ∼ k−2. (A theoretical argument leading to this result for
the viscous regime is given in § 10.1.) In real space this translates into a long range,
1/r velocity correlation extending to either the system size (which is the likely case in
any simulation) or some large physical length scale beyond which the purely viscous
approximation (Stokes flow) breaks down.

If this is correct, it could be practically impossible to avoid finite size effects when sim-
ulating the viscous regime. The most benign outcome is if the main effect is to correlate
(rather than alter) local coarsening rates; this could be countered by averaging over a
number of different runs (Jury et al. 1999b; Laradji et al. 1996). However, this would
have to be done for several system sizes before concluding that no other finite size effects
were present.
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Figure 5. Left: structure factor, S(k), for Run028 (viscous regime) for timesteps 14000 – 19000,
L(T ) = 38 – 52. Right: S(k) for Run032 (inertial regime) for timesteps 11000 – 17000, L(T ) = 45
– 64. Different open symbols denote different times T ; filled circles show the same data corrected
at low k for discretisation effects (see text).

9. Order parameter results

We now present our results for the time evolution of the interfacial structure. These
results can be extracted directly from knowledge of the order parameter using well-
established procedures (see Jury et al. 1999b; Appert et al. 1995; Laradji et al. 1996;
Bastea & Lebowitz 1997). We defer to § 10 our explicit analysis of the fluid velocity field.

9.1. Structure factor scaling

The first step in the analysis of the order parameter data was calculation of the structure
factor. The φ field saved from the simulation runs was processed through numerical
Fourier transform routines, and the structure factor calculated as:

S(k) =
1

nk

∑

k−π/Λ<|k|<k+π/Λ

φ(k)φ(−k), (9.1)

where φ(k) is the Fourier transform of the order parameter, and nk is the (actual) number
of lattice sites in a shell of radius k and thickness 2π/Λ in Fourier space (compare (4.2)).

Dynamical scaling requires that, in reduced physical units, not only the characteristic
length l(t) but also the statistical distribution of different interfacial structures should be
the same for each l. In either the viscous or the inertial regime, therefore, the structure
factor S(k) should asymptotically collapse onto a single plot when appropriately scaled,
so that in simulation units

L−3S(k) = f(kL), (9.2)

with a different function f(kL) in each of the two limits. (More generally, dynamical scal-
ing allows L−3S(k) = f(kL, l), so that the viscous and inertial asymptotes are f(kL, 0)
and f(kL,∞) respectively.) figure 5 shows plots of S(k) scaled in this way for Run028
and Run032, representative of the viscous and inertial regimes respectively.

The collapse of the structure factor data within each run is good (figure 5) for length
scales larger than about twice the interface width. (The latter is marked as 2ξ on the
graphs, with ξ = 5ξ0.) With our definition of L, the peak occurs at kL just less than one.
To the right of the peak there is a shoulder, followed by a reasonable approximation to a
k−4 Porod tail. (The Porod tail represents scattering from a weakly curved interface and
should be found in the region ξ . k−1 . L(T ), see Bray (1994); but between ξ ≃ 3 and
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Lmax = 64 there is barely room to observe it cleanly.) The ragged sections of S(k) in the
low kL region corresponds to the first two k-shells which have few k points and so poor
statistics. The filled symbols are the same data corrected to allow for the fact that the
average value of |k| in such a shell differs from the nominal shell radius; the corrected
result suggests no deviation from scaling even at low k, although the data there is less
reliable than in the high wavenumber region.

The collapse between different runs (not shown) is also good, so long as one compares
runs chosen within either the viscous or the inertial regime. However, as is visible from
figure 5, the shape of S(k) does evolve significantly between one regime and the other.
In particular, the shoulder to the right of the peak is lower in the viscous regime than
the inertial regime. This implies that the domains are a subtly different shape in real
space, perhaps more evenly rounded in the linear regime since the peak is effectively a
little sharper. This may be linked to an increased number of relatively narrow necks in
the inertial runs (large l), as first suggested by Jury (1999) and recently confirmed by
direct visualisation of LB data, Desplat et al. (2000b). Our structure factor results, taken
piecewise, are compatible with those of Jury et al. (1999a), Appert et al. (1995), and
several other authors (see Appendix B). However, our study is the first to cover a wide
enough parameter range to show a clear distinction, in the shape of S(k), between the
viscous and inertial regime.

Runs in the crossover region also show reasonable data collapse within each run, with
a shape intermediate between the two shown in figure 5, and very similar to that found
by Jury et al. (1999a) in the same region of the l(t) curve. Note that a good collapse,
within or between runs, cannot be expected a priori in the crossover region. It arises
because the l-dependent scaling function f(kL, l) in fact evolves so slowly with l that
any data spanning less than a decade or two in l is insensitive to the l dependence. This
is a consequence of the extreme breadth of the crossover region (quantified below).

9.2. Evolution of the characteristic length scale

The characteristic length scale L(T ), defined via (4.1), has been calculated for the eight
2563 runs in table 2. The order parameter data was coarse-grained to 1283 before analysis,
but comparison with smaller runs confirmed that there was no effect of this on L(T )
within the ‘good data’ range. The latter is defined as Lmin < L < Lmax, with Lmin fixed
by our criterion on residual diffusion (§ 8.3) and Lmax = 64 as required to exclude finite
size effects (§ 8.5). Figure 6 illustrates how the fitting was done.

To parameterize the time dependence of L(T ), the ‘good data’ was fitted, for each run
separately, to the following form

L = v(T − Tint)
α, (9.3)

(equivalent to (4.9)) where v, Tint and α are fitting parameters. A nonlinear curve-
fitting utility was used to create the fits, which all fell within a specified tolerance of
1%. However, some trade-off is possible between the three fit parameters and a realistic
uncertainty estimate for the exponent, α, is around 10% for the first three runs in table
2, and 5% for the rest. The fits are shown in figures 7 and 8, which also shows the
diffusion-only data used to determine Lmin as described in § 8.3. The fitted results are
summarised in table 5.

The data show α values ranging from 1.12 to 0.66 with a decreasing trend as L0 is
decreased. Certainly, an increasingly negative curvature of the L(T ) plots with decreasing
L0 is apparent from figures 7, 8. However, the resulting fit parameters were relatively
erratic for the three runs of largest L0 (expected to lie in the viscous regime). Indeed, we
found α = 0.86, v = 0.023 and α = 1.16, v = 0.0012 for two runs with the same nominal
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fits at 2% diffusion fit Lmin at diffusion fit 1%
Run L0 α v Tint vD 2% 1% α

Run028 36 0.88 0.0096 1948 0.41 20.0 28.5 0.81
linear fit 1.0 0.00028 516

Run022 5.9 0.86 0.023 304 0.64 26.0 38.0 0.88
linear fit 1.0 0.00605 −524

Run033 5.9 1.16 0.0012 442 0.48 17.5 24.9 1.12
linear fit 1.0 0.0060 1445

Run029 0.95 0.95 0.0175 1020 0.54 15.3 21.7 0.92
Run020 0.15 0.80 0.0418 603 0.60 23.4 34.9 0.80
Run030 0.01 0.75 0.0747 1362 0.51 14.8 22.4 0.76
Run019 0.00095 0.67 0.134 1008 0.60 21.5 33.8 0.66
Run032 0.0003 0.69 0.0833 1855 0.48 19.0 29.8 0.69

Table 5. Fits and lower cut-off, Lmin, for 2563 runs. The parameter vD is the fit parameter
corresponding to v in the presence of diffusive growth only (see § 8.3).

L0. This was partly due to a relatively ill-conditioned fit as can be appreciated from
figure 7. (A second possible cause of the erratic fits is the presence of long-range velocity
fluctuations; see § 8.5.)

Therefore it was decided to refit the data for the three most viscous runs, imposing
α = 1, the anticipated value. This yielded much better consistency among the fitted values
of v, which with viscous scaling should obey (T0/L0)v = b1, where b1 is universal; with
the forced linear fits this was indeed the case with b1 extracted as 0.073, 0.072, 0.072±0.02
for the three runs under discussion. Subject to this, we obtain a range of values of α from
1.0 (Run028, Run022 and Run033) to 0.67 (Run019), with intermediate exponents 0.95
(Run029), 0.80 (Run020) and 0.75 (Run030) at intermediate L0. This suggests that the
simulations have indeed covered the viscous, crossover and inertial regions. However, the
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Figure 7. Fitting L(T ) and LD(T ). Upper left: Run028, L0 = 36. Upper right: Run022,
L0 = 5.9. Lower left: Run033, L0 = 5.9. Lower right: Run029, L0 = 0.95. Solid lines indi-
cate full set of recorded L(T ) data, + indicates data points used for fits with Lmin set by 2%
diffusion, © indicates data points used for fits with Lmin set by 1% diffusion, △ indicates data
points used for fits to diffusion-only data. table 5 summarises the main fit results.

ultimate test of this is to convert to reduced physical units and construct the l(t) curve
explicitly.

9.3. Universal scaling plot for l(t)

Our method for combining the data from different simulation runs to give the l(t) curve
follows Jury et al. (1999b). As apparent from definitions (1.1), the only fit parameter
that is actually needed when converting L(T ) data to reduced physical units (l(t)) is
the intercept, Tint. Then one uses the known density and viscosity, and the measured
interfacial tension, to complete the conversion.

Figure 9 shows the l(t) data from all the runs in table 2 combined on a single log-log
plot. Note that for the two runs of L0 = 5.9 the resulting data collapse is much improved
by the forced linear fit (giving two very different values of the nonuniversal offset Tint

instead of two disparate values of α). With the former, the two datasets overlie on the
l(t) plot but with the latter they do not; this helps to vindicate our choice of fit. Apart
from a similar reservation about force fitting α for the most viscous run (L0 = 36), the
l(t) curve is free of adjustable parameters. Although we did not have resources to cover
the entire curve with data, there is no evidence for any breakdown of universality: the
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Figure 8. Fitting L(T ) and LD(T ). Upper left:Run020, L0 = 0.15. Upper right: Run030,
L0 = 0.01. Lower left:Run019, L0 = 0.00095. Lower right: Run032, L0 = 0.0003. Solid lines
indicate full set of recorded L(T ) data, + indicates data points used for fits with Lmin set by 2%
diffusion, © indicates data points used for fits with Lmin set by 1% diffusion, △ indicates data
points used for fits to diffusion-only data. table 5 summarises the main fit results.

various runs do appear to lie on a smooth underlying curve. (In particular, the two most
inertial runs virtually join up.)

The apparently universal l(t) curve shows scaling that is first linear (l = b1t, with b1 =
0.072 ± 0.02), then passes through a broad crossover region before reaching l = b2/3t

2/3

(with b2/3 = 1.0 ± 0.05) at large l, t. The positions of the crossover and inertial runs
on the graph are in keeping with the trend for the scaling exponent, α, fitted directly
from each run. This confirms that the exponents determined from our fitting procedure
do accurately reflect what is going on in these simulations. The extreme breadth of the
crossover regime, 102 . t . 106, justifies the use of a single exponent to fit each run (4.9),
(9.3) even in the crossover: no single run is long enough to see a change in exponent from
beginning to end beyond the estimated errors. There is no hint that the exponent is
reducing still further to α 6 1/2, as predicted by Grant & Elder (1999), although a
further crossover beyond the range of l, t reached in these simulations cannot be ruled
out.

Recall that intersection of asymptotes on the l(t) plot defines t∗, the characteristic
crossover time from viscous to inertial behaviour. As mentioned previously (§ 4), scaling
theory says only that t∗ is ‘of order unity’. The measured value is close to 104, a value
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Figure 9. Scaling plot in reduced variables (L/L0, T/T0) for 2563 LB data. Dots (left to right)
are the runs in table 2 (top to bottom). Dashed lines show free exponent fits for the first three
data sets in table 2 for comparison with linear fits (dots).

that should raise no eyebrows in the turbulence community but may do so among workers
in phase separation kinetics. Since b2/3 is very close to 1, the largeness of t∗ can be traced
to the smallness of b1 and to the relatively minor change in exponent on crossing from
viscous to inertial scaling: for by its definition, t∗ = (bi/bv)

1/(αv−αi) where subscripts i, v
signify viscous and inertial values.

Note too, the huge range of scales covered by the combination of eight simulation runs:
five decades of length and seven decades of time. This achievement is only possible by
fully exploiting the expected scaling. This means that, although our work is capable of
falsifying the scaling hypothesis (our l(t) plot might not have joined up, and might yet
not do so when more data is added), its non-falsification in our work may not represent
persuasive proof that the scaling is true.

For, as mentioned previously (§ 7), to navigate the l(t) curve we are forced to correlate
the simulation parameters in a systematic way. Hence if the coarsening rate was in fact
dependent on M , say (for example by being pinchoff-limited, Jury et al. (1999b)), this
would not necessarily show up as bad data collapse in figure 9, since M is strongly
correlated with L0 and/or T0. In principle, however, our parameter steering has no effect
on data within a run, so that any ‘steering-induced’ data collapse could in principle
be detected because curves would not quite line up with their neighbours on the plot,
although their midpoints would lie on a smooth curve (Jury et al. 1999b). Although we
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believe this is not happening for our l(t) data, we do not have enough results to entirely
rule it out, especially as something similar does occur in our own velocity derivative data
(§ 11).

Our results for the evolution of the interfacial structure are compared with those of
previous authors in Appendix B.

10. Results for the fluid velocity

Due to data storage limitations for the largest (2563) runs, our velocity analysis also
made extensive use the 1283 runs listed in table 3. The velocity field was analysed as a
single, continuous field, filling the whole simulation; there is no explicit information about
the location of the interface between the two fluid phases. However, visualisation of the
velocity field was done using the AVS package and examples (one viscous, one inertial) are
shown in figure 10, where the flow patterns can be compared with the domain structure
defined by the interface.

There are almost no prior data on fluid mixtures with which to compare these results.
A simulation using a pseudospectral method written by Young (1999) was therefore used
to generate a velocity field for single fluid, freely decaying turbulence with a similar
Reynolds number to those of the spinodal system in the inertial regime. A velocity map
for this single fluid turbulence is also pictured in figure 10.

A trend from locally laminar flow to more chaotic motion is apparent in passing from
the viscous to the inertial regime. The vorticity map in the latter case is comparable to
the one for the turbulent single fluid (not shown). However, the comparison is hindered
by the fact that the interfacial motion at length scale L introduces a ‘whorly’ velocity
pattern even in the purely viscous flow regime. A better discriminator between the two
regimes, pursued elsewhere, comes from watching the time evolution of the interfacial
structure itself, which is clearly underdamped in the inertial case, Desplat et al. (2000b).

10.1. Velocity structure factor

The velocity structure factor was introduced in § 8.4. For numerical purposes we define
it (following (9.1)) as

Sv(k) =
1

nk

∑

k− π

Λ
<|k|<k+ π

Λ

v(k).v(−k) . (10.1)

The results were shown already in figure 4, where Sv(k) is depicted for three of the runs
in table 3, alongside two calculations (LB and spectral) for single fluid turbulence. These
structure factors are in unscaled units but in each case correspond to a point during the
run where the domain size is around 30 lattice units.

The bumps on the Sv(k) curves at high k were discussed in § 8.4. But even apart from
these, the velocity structure factors have very different shapes in the viscous (Run027),
crossover (Run018), and inertial (Run031) regimes; these differences are much larger than
for the order parameter structure factor (figure 5). In other words, the geometry of the
fluid flow is changing much more significantly, as one moves along the l(t) curve, than
the geometry of the interface.

We return to this in § 10.2, but first address an issue raised in § 8.5, which is the
apparent k−2 divergence in Sv(k) at low k in the viscous regime. This can be qualitatively
explained as follows. In a purely viscous approximation (Stokes flow) the NSE (3.2)
becomes in Fourier space

ηk2v(k) = −ik.Pth(k). (10.2)
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viscous interface viscous velocity

inertial interface inertial velocity

vorticity + interface turbulence velocity

Figure 10. Pictures of interface and velocity maps in viscous and inertial regimes. Top row:
interface (left) and velocity field (right) for Run027 in the viscous region at time step 8500, when
the domain size is about 21 lattice units. Middle row: interface (left) and velocity field (right) for
Run031 in the inertial region, for time step 5000 when the domain size is about 22 lattice units.
Only a 323 section of the simulation is shown (the same section for both interface and velocity).
The velocity is shown for the front two lattice planes only for clarity. Arrow colours indicate
speed (redder is faster). Bottom row: (left) interface (blue) for Run031 with the red interface at
a contour of 50% of the maximum vorticity and thus enclosing regions of high vorticity. Velocity
from single fluid turbulence (right). Turbulence has Reλ ≃ 10, matching that of the most inertial
run, Run031. The vorticity for single fluid turbulence (not shown) is qualitatively similar to that
shown for Run031 (left).
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Figure 11. Left: Lv(T ) (dashed) compared with L(T ) (bold) for runs in table 2. Right: For runs

in table 2, reduced interface velocity, l̇(t) (bold) compared with the rms fluid velocity measured
in reduced physical units (dotted).

Here P
th contains the chemical term P

chem which is mainly localised on the interface
between the two fluids. We now argue that this term is strongly correlated at length
scales up to the domain size L but not larger ones: this means that, for the purposes
of low wavenumbers (k ≪ π/L) it is a random variable with short range correlation.
Ignoring for simplicity all tensor indices, one thus has 〈|Pth(k)|2〉 → χ, a constant, as
k → 0. From (10.2) we find immediately

Sv(k) ∼ χ

η2k2
. (10.3)

Thus the long range, Stokesian hydrodynamic propagation converts short range fluctua-
tions in P

th into long range fluctuations in the fluid velocity. As mentioned in § 8.5, the
resulting divergence could lead to erratic coarsening rates and/or problems with finite
size effects, throughout the viscous regime. This appears not to have been noticed by
previous authors.

There is a somewhat related anomaly that arises in colloidal suspensions under gravity,
although in that case the short range fluctuations are in the density, which is effectively
a random body force, rather than in a random stress: Segrè, Herbolzheimer & Chaikin
(1997).

10.2. Length scales from the velocity field

The velocity structure factor, Sv(k), can be used to calculate a velocity length scale,
Lv(T ) analagous to L(T ) (compare (4.1)):

Lv(T ) = 2π

∫

Sv(k, T )dk
∫

kSv(k, T )dk
. (10.4)

This length measure was found to be insensitive to coarse-graining in nearly all cases.
Data collected for Lv(T ) from the 2563 runs was converted to reduced physical units,
using the values of Tint already obtained from the L(T ) fits and given in table 5. (Hence
no further fitting was involved.) The resulting scaling plot is shown, alongside the l(t)
data presented earlier, in figure 11 (left). The results in the inertial regime show a strong
convergence between lv ≡ Lv/L0 and l ≡ L/L0: the velocity length lv shows the same
t2/3 scaling as l, with a similar prefactor. This is not obvious a priori, since, as mentioned
above, the shapes of Sv(k) and S(k) are very different.
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More surprisingly, we find that to a fairly good numerical approximation, lv(t) shows
a t2/3 growth throughout the crossover region, and that this even extends far into the
viscous regime, within which lv exceeds the domain scale l by a significant factor. How-
ever, as the viscosity is increased to access the bottom left corner of the plot, the data
are increasingly affected by finite size effects, since Lv then is comparable to the system
size Λ. These are especially pronounced for the most viscous run (with Lv almost con-
stant during that run). Allowing for these effects, the data is consistent with lv ∼ t2/3 at
all times; however we have no reason to expect this result in the viscous regime, where
both the simple and the extended scaling analyses (§ 4, 5) predict instead lv ∼ l ∼ t.
Note, though, that the velocity length measure chosen (10.4) is sensitive to the low k
divergence found above in Sv(k), which would give a contribution of order Λ/ lnΛ from
the lower limits of integration. It is possible that for the parameters and system sizes
used here, this size-limited contribution combines with those from higher wavevector to
give an apparent 2/3 power in the viscous regime.

Alternative length measures may be had by taking the ratio of two other successive
moments of Sv(k), to replace (10.4). Adding one extra power of k to the top and bottom
integrand gives a length measure that lies between lv and l throughout the viscous regime,
reducing the exponent discrepancy there, but without attaining the linear scaling of l
itself. For more than two extra powers of k the scaling gets worse, not better, as the
integral in the denominator becomes dominated by high k contributions.

10.3. Average velocities

The rms fluid velocities (spatially averaged) were calculated for all the runs in table
2 and are plotted in reduced physical units in figure 11 (right), alongside the reduced
interface velocity l̇(t) derived from the order parameter.

In the most viscous run, Run028, the rms fluid velocity is larger than the interface
velocity. Both velocities are fluctuating quite far from the expected constant behaviour
in the linear region, and the fluctuations are more or less in step. This may in part be a
facet of the erratic, finite-size limited behaviour seen in the far viscous regime (§ 8.5).

Otherwise we observe that the rms fluid velocity matches the interface velocity in the
viscous and early crossover region, but grows larger than it in the inertial region, by
about 40% at the largest l, t. The two most inertial runs (Run019 and Run032) appear
to have the rms velocity scaling with a slightly different exponent than the interface
velocity (approximately as t−1/4 rather than t−1/3), though this may not be significant.
Such a deviation is foreseen by neither the simple nor the extended scaling theory, both
of which have velocities scaling as v ∼ l̇ at all times. It would imply a buildup of kinetic
energy in the fluid beyond that predicted by either scaling analysis. The excess may be
caused by our approaching the limits of numerical accuracy in resolving velocity gradients
with a consequent breakdown in energy conservation (see § 11.5, 11.8 below). A similar
breakdown, caused instead by having too high a viscosity in lattice units (as indicated
in § 7), may likewise contribute to the excess rms velocity seen in the most viscous run.

10.4. Velocity distributions

The pdf of the velocity components in a homogeneous, isotropic turbulent fluid is known
to be almost Gaussian, and uncorrelated over large distances in both space and time.
Non-Gaussian behaviour is found only in velocity increments and derivatives, (e.g. Monin
& Yaglom 1975).

The spinodal system is crucially different: it has a structural length scale L(T ), and
correlations and inhomogeneity can be expected at this scale. Hence the velocity com-
ponents themselves can show non-Gaussian pdfs. The departures are expected to show
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Figure 12. Left: flatness of velocity components for runs in table 2; runs with L0 > 0.5 (crosses)
and with L0 < 0.5 (squares). Single fluid turbulence (filled triangles) are shown for comparison.
Right: pdfs of velocity components for Run032 at time step 12000, with Gaussian pdf (solid)
and transverse velocity derivative (dashed) shown for comparison.

up through the fourth moment, since there is no preferred direction in space that would
allow one to create a scalar from a third moment of velocity. (The third moment was
checked and found to be close to zero.) The fourth moment is characterised by the flat-
ness, 〈v4

α〉/〈v2
α〉2 − 3, with α a Cartesian index; this vanishes for a Gaussian distribution.

Figure 12 (left) shows the flatness for runs in table 3 as a function of time; a distinction
is drawn between viscous runs (those with L0 < 0.5) and crossover/inertial runs (with
L0 > 0.5). It can be seen that the flatness is quite variable, but as a general trend it
grows slightly with time through each run, and also grows with decreasing L0 (increasing
inertia). The velocity pdfs show correspondingly wider tails and narrower peaks than
for a Gaussian; an example for Run032 is shown in figure 12 (right). The shape is close
to that found in the transverse velocity derivatives in the same system (shown dashed
for comparison). These non-Gaussian effects are much more pronounced in the inertial
than in the viscous regime.

11. Velocity derivatives

We now turn to the analysis of spatial derivatives of the velocity field. Velocity deriva-
tives come in two types, longitudinal, e.g., dvx/dx, and transverse, e.g., dvx/dy or dvx/dz.
Representative velocity derivatives (in fact, dvx/dx, dvy/dy, and dvy/dx) were calcu-
lated. The differentiation was done by calculating ikxvy(k) etc., and Fourier transforming
back to real space. The derivatives are unambigous so long as the gradients of velocity
are small on the scale of the lattice spacing, but otherwise the resulting gradient is not
the same as taking a lattice derivative (which we define via (6.19) with v replacing φ). In
practice we have found signigicant (∼ 40%) discrepancies the two methods; these were
investigated in the context of energy conservation and are discussed further in § 11.5. For
many purposes there is no particular reason to prefer the lattice to the Fourier definition
and we retain the latter for simplicity.

11.1. Skewness of velocity distribution

In fully-developed turbulence the skewness of the longitudinal velocity derivatives ap-
proaches−0.5, (e.g., Monin & Yaglom 1975). (The skewness of a variable y is 〈y3〉/〈y2〉3/2.)
The transverse derivatives have zero skewness, by symmetry, but positive flatness.
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Figure 13. Left: Skewness of the longitudinal velocity derivatives for Run031 (solid), Run015
(dashed), Run018 (dot dashed) and single fluid decaying turbulence (long dashed). Right: Skew-
ness of a longitudinal velocity derivative for Run031 (solid), a 963 run with the same parameters
in which the interface was removed at time step 5000 (filled circles), and single fluid turbulence
(dashed). The time scale for the turbulence data has been multiplied by 5 (left) or 10 (right) to
facilitate comparison with the LB data. (The time dependence is not of relevance here once the
initial stages are passed in both simulation methods.)

Figure 13 (left) shows the skewness of the longitudinal velocity derivatives against time
for the three most inertial runs in table 3. Also shown for comparison is the skewness from
the freely decaying turbulence simulation. In the two most inertial LB simulation runs,
the skewness of the longitudinal velocity derivative reaches around −0.35. A plausible
interpretation of this result is that patches of turbulence arise, but do not fill the whole
system; if the patches have skewness −0.5, the overall value is less. From visualizations
(see figure 10) we know that the interface remains smooth so that any turbulent regions
should be in the middle of the fluid domains.

To test this idea further, a 963 run with the same parameters was done, and at timestep
5000 (when the domain size was about 21, after residual diffusion had decayed to an
acceptable level) the interface was suddenly removed by setting the order parameter to
1 throughout the system. This converted it into a single fluid with the same velocity
field, which was then allowed to evolve. The longitudinal velocity derivative skewness for
this run is shown in figure 13 (right), with Run031 and the single fluid turbulence data
repeated for comparison. Once the interface was removed, the skewness quickly jumped
to around −0.5 from −0.35, providing strong support for the ‘turbulence in patches’
hypothesis; it appears that on removal of the interface, the turbulence rapidly infects the
whole system. (Fairly soon after this, the system became numerically unstable causing the
skewness to rise rapidly back toward zero as spuriously large velocities were generated;
this is visible in figure 13, but was not investigated further.)

11.2. Reynolds numbers

In this work we choose to regard all Reynolds numbers as estimates of the rms ratio,
R2, of the nonlinear term to the viscous term in the NSE (3.2), as defined in (5.2).

In practice, Reynolds numbers are usually constructed (via Re = T0ℓv/L2
0) from a

characteristic length (ℓ) and a characteristic velocity (v). In a homogeneously turbulent
single fluid, the usual choice of velocity scale is vrms. Also, the length measure ℓ must
itself be constructed from the velocity field; various choices then arise. One is the integral
scale, defined (to within prefactor conventions) as Lint = (3π2ρ/2E)

∫

kSv(k)dk where
E = 2πρ

∫

k2Sv(k)dk is the total kinetic energy. (This a close relative of our Lv, (10.4.))
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Figure 14. Left: For runs in table 2, Reφ, (bold line), and ReL (diamonds) and for Runs in
table 3, Reλ (dots). Right: Ratios R1 and R2 for runs with L0 = 36, 2.9, 0.59, 0.15, 0.054, 0.024,
0.01, 0.01 (different parameters), 0.0016, 0.00095, 0.00039, 0.0003. System sizes are 963 (open
symbols) and 1283 (filled symbols).

A second is the Taylor microscale, λ, defined in Eq. (5.7). A third length is the Kol-
mogorov microscale, λd, (5.8), but this is not normally used to form a Reynolds number.
In practice, most isotropic homogeneous turbulence simulation studies use as Reynolds
number Reλ = ρvrmsλ/η. This should give a reasonable estimate of the ratio R2, be-
cause as noted in § 5, λ is the length scale associated with the ∇ operator in ∇v. But
note that, according to the extended scaling analysis (table 1), it is still not an accurate
estimate asymptotically at late times: there one has the prediction that Reλ ∼ λv ∼ T 1/6

while R2 ∼ T 0.
In the spinodal system an obvious alternative to Reλ arises from choosing L(T ), the

domain size, as the length scale; either vrms or the interface velocity L̇ can then be used
for the velocity scale. However, the resultings Reynolds numbers, ReL = ρLvrms/η, and
Reφ = ρLL̇/η (see (5.4)) are not directly comparable with Reλ, which is always much
smaller.

All three quantities are shown as functions of the reduced time t in figure 14 (left).
There is little difference between Reφ and ReL; both show reasonable scaling, with the
deviations in the most extreme runs stemming from those discussed already in § 10.3.
The large t asymptote for Reφ in the inertial region is approximately Reφ ∼ t1/3 as
predicted by both the simple and the extended scaling analysis (but questioned by Grant
& Elder 1999). Our simulations extend from 0.1 . Reφ . 350, and the crossover region
occupies the range 1 . Reφ . 100. Thus in terms of Reφ (rather than t) the crossover is
not, after all, quite so broad.

In contrast to ReL and Reφ, the data for Reλ does not show good scaling behaviour.
The overall trend is of linear scaling in the viscous region and slower growth at around
t1/6 in the inertial region; both are broadly consistent with the extended scaling theory
(see table 1). However, the individual runs do not line up onto a single curve. This non-
scaling behaviour of Reλ can be traced to that of λ itself, which is examined in more
detail in § 11.8.

11.3. Ratios of terms in the NSE

Shown in figure 14 (right) are the actual rms ratios R1 and R2 defined in (5.1) and
(5.2) respectively. (Recall that the latter is the ratio of nonlinear to viscous terms in the
NSE, which is what we believe a Reynolds number should estimate.) In order to form
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these ratios, one must first evaluate (rms values of) the three relevant NSE terms, η∇2v,
ρv̇ and ρ(v.∇)v, which are vector quantities at each point in space. An rms value is
calculated as, |f |rms = (〈f2

x〉 + 〈f2
y 〉 + 〈f2

z 〉)1/2, where fx, fy, and fz are the Cartesian
components of the vector f = η∇2v (for example), and the average is taken over the
whole system. The first and second order spatial derivates of the velocity were found
from k-space data (as in § 11.1) on 963 and 1282 runs; a further complication is that to
evaluate v̇, velocity data from consecutive time steps is required. Due to data storage
constraints, this was only collected for a set of 963 runs. This is large enough to obtain R1

values for a domain size just larger than Lmin, but not to determine its time dependence
accurately within any particular run; checks were made for consistency by comparing
other quantities with 1283 data.

The values of R1 and R2 shown in figure 14 (right) lie between Reφ and Reλ but are
closer to the latter. The two ratios remain the same order of magnitude as each other
throughout, but vary by three orders of magnitude, from R2 ∼ 10−2 at the viscous end
(indicating the viscous term is dominant by two orders of magnitude) to R2 ∼ 101 at the
inertial end (indicating that the inertial terms are dominant by one order of magnitude).
Though we cannot calculate it directly, R2 is presumably somewhat higher (about 20)
towards the end of our most inertial 2563 run. This confirms the claim made in § 9
that our simulations have reached a regime where the inertial terms are dominant in the
dynamics.

Looking more closely at the behaviour of R1 relative to R2, there is a significant
difference in the crossover region, by around a factor of two (R1 > R2). Then, in the
inertial regime, R1 becomes less than R2 by about 50% and appears to be heading for
a lower growth rate. This deviation suggests that the asymptotic behaviour of these two
ratios is perhaps going to be different. That would be consistent with the extended scaling
predictions which are (table 1) that R1 ∼ t−1/6 while R2 → constant; but if so neither
curve is close to its final asymptote yet.

That the LB simulations are still far from the final asymptotic behaviour in our most
inertial runs, even though inertial terms are clearly dominant there, is not unreasonable.
The largest ratio R2 ≃ 20 actually achieved in our simulations is, by turbulence standards,
still a fairly low Reynolds number. If the extended scaling theory of Kendon (2000) is
correct, the final asymptotes for quantities relating to fluid velocity cannot be attained
until an appreciable ‘inertial range’ has developed between the interfacial driving scale
L(T ), and the smaller scales (λ, λd) where energy dissipation is taking place. However,
to observe scaling of l(t) for the structural (as opposed to velocity) data, it may not
be necessary that the inertial cascade is fully established; one might only require that a
reasonable degree of decoupling between interfacial motion and viscous dissipation has
taken place. Our results for l(t) suggest that this has already happened by the time
R2 = 10.

11.4. Structure factors of the NSE terms

Further information on the behaviour of the NSE terms can be obtained by calculating
the structure factor for each term. (These are 〈|f(k)|2〉 where f = η∇2v,v.∇v or ρv̇.)
Results for one viscous and one inertial run are shown in figure 15. Looking first at
the viscous run, the structure factor of the viscous term takes the form of a broad
peak stretching from a small bump at wavelengths around 12 lattice units (which is
around half the domain size, L(T ) = 25), down to the interface width, ξ ≃ 3. Thus the
dissipation is taking place over the smaller length scales in the system. (The small bump
is a manifestation of the domain size in the dynamics; it is present at around L(T )/2
throughout the run.)
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Figure 15. Structure factor of the viscous (squares) and nonlinear (triangles) terms in the NSE.
Left: Run027 is in the viscous regime with L0 = 36. Right: Run031 is in the inertial regime with
L0 = 0.0003. Both are shown on a log-log plot for the timestep at which L ≃ 25 lattice units.
L = 25 is marked on the x-axis along with the interface width, ξ ≃ 3. (The ρ∂v/∂T data is
from the corresponding 963 runs.)

In the inertial regime, the viscous term is, as expected, smaller than the inertial terms.
The viscous term is similar in shape to that in the viscous regime, with the addition
of two large peaks at high k that presumably arise from the presence of the interface
(compare § 8.4) and/or lattice effects. This suggests perhaps that the largest dissipative
forces, and therefore most dissipation, are happening close to the interface (or at least
on that length scale). The acceleration term has a broad peak in the structure factor
at wavelengths around L = 25, and tails off quite sharply below 10 lattice units. The
nonlinear term has a structure factor with a broad peak centred around 15 lattice units,
intermediate between the length scale of the interface, L(T ) = 25, and the dissipation
length scales.

The overall picture, though not quantitative (in view of the numerous sources of uncer-
tainty, especially in the velocity derivatives) is qualitatively consistent with the extended
scaling picture, in which the nonlinear term transports energy from large to small scales,
where it is then dissipated. But in these runs there is still considerable overlap between
the length scales for each term, as expected at relatively low Reynolds number.

11.5. Energy conservation, dissipation rate

The dissipation rate is crucial to the energy balance in the simulation. The LB algorithm
is isothermal, and therefore does not strictly conserve energy, in that the energy dissipated
as heat by the viscous stresses is taken out of the system locally rather than having to
diffuse thermally to the boundaries. Nonetheless, the simulation should faithfully recreate
the energetics of the isothermal Navier–Stokes equation, driven by interfacial motion (as
in (3.2)), which makes precisely the same assumption. In the inertial regime, the inter-
facial energy should first be transformed into kinetic energy of the fluid; the observation
of l ∼ t2/3 (see § 9.3) shows that this is happening at roughly the expected rate. To
complete the energy balance, energy must also be removed from the simulation at the
correct rate through viscous dissipation. This requires accurate modelling of the smaller
length scales (λ − λd) at which such dissipation is taking place.

The dissipation rate can be calculated directly from the velocity data as

ε = η〈(∇αvβ)(∇αvβ)〉 = η

∫

k2Sv(k)d3k (11.1)
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Figure 16. Energy conservation in viscous region. εin (circles), ε (squares), for Run008 (filled),
Run014 (open), and Run027 (solid line). In these runs v̇ is negligible on the scale of the graph.

where the angle brackets are spatial averages and both the incompressibility (∇αvα =
0) and homogeneity (〈vαvβ〉 = (1/3)δαβSv(k)) of the binary fluid system have been
exploited. The second expression is tantamount to using the Fourier definition of spatial
derivatives, and as mentioned previously, this need not coincide with lattice derivatives
when gradients are not small. Therefore the dissipation rates were calculated first using
the Fourier space expression in (11.1) and then, for some but not all runs, using the real
space expression with the lattice gradient operator as defined in Eq. (6.19).

The two estimates (Fourier and lattice) of the dissipation rate were compared with
the rate of decrease of the sum of the interfacial energy and the fluid kinetic energy
in the system: these should balance, once the interfaces are well formed and residual
diffusion has become negligible. (Note that diffusion introduces its own contribution to
the dissipation, not accounted for in the NSE, which may dominate early in each run.)
We found that the lattice derivatives gave better agreement than Fourier ones in this
comparison. However, even with these, the results were never more than satisfactory;
best in the crossover region (within 25% of the expected value) but giving dissipation
rates well above those required by energy conservation in the viscous regime, somewhat
below in the inertial. At the viscous extreme the discrepancies were a factor three or
more. Even in the crossover region, there was a tendency for the computed dissipation
rate to drift below that required for energy conservation. Examples are shown in figure 16.
Use of Fourier derivatives to estimate the dissipation rate instead gave values that were
consistently too high, through all regimes, by a factor 2 or so for runs in the crossover
and inertial regimes and much more than this in the viscous regime.

A check was made to ensure that these discrepancies in the dissipation rate did not arise
from compressibility effects, by computing the full expression for ε, without assuming
fluid incompressibility as was done in (11.1). (See Landau & Lifshitz (1959) for the
relevant expression.) This check was done with lattice derivatives; the results did not
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Figure 17. Left: Dissipation rate at time step when domain size is L = 30 (in simulation units)
for Runs in table 3 (circles, solid line) and Runs in table 2 (plus, dotted). Right: Dissipation
scale, λd, for runs in table 2 (plus, dashed), and runs in table 3 (stars, solid); Taylor microscale,
λ for same runs (diamond, dashed; circles, solid respectively). All in lattice units with domain
size L = 30 lattice units.

differ appreciably from the lattice version of Eq. (11.1), so that compressibility is not
responsible here.

The fact that the two methods of finding derivatives differ, shows that dissipation is
primarily taking place at short scales (of order a few lattice spacings). The results do
not imply that LB is failing to conserve energy, but do show that the viscous dissipation
actually generated by the algorithm is not accurately estimated from the Fourier deriva-
tives; the lattice difference estimates for ε are better, but still not accurate. In principle
even these need not give the true dissipation since the LB algorithm actually dissipates
energy by relaxing the velocity distribution functions (6.5), and not by calculating lattice
gradients. Note, in any case, that for qualitiative comparisons between runs (requiring
log-log plots covering many decades) the factor two difference between Fourier and lattice
derivatives is barely detectable, and we ignore it, for those purposes, below.

For the dissipation rate itself, simple scaling theory predicts that ε will always scale
as t−2. Kendon (2000) predicts the scaling to be ε ∼ t−2 in the viscous region, but
ε ∼ t−5/3 in the inertial region (table 1). A scaling plot of the (Fourier) dissipation rate
(in reduced physical units, as usual) is shown in figure 17 (left). To the accuracy we are
working, these data barely discriminate between the two scaling predictions though the
upward curvature may slightly favour that of Kendon (2000). There is some sign in the
viscous regime that the rate increases too fast; this might be connected with the velocity
anomalies discused previously (§ 10.1).

11.6. Taylor and Kolmogorov microscales

The Taylor and Kolmogorov scales were defined in (5.7) and (5.8) respectively. Figure
17 (right) shows λ, λd in simulation units for each run in table 2 and table 3. Values are
evaluated mid-run at time T such that the domain size L(T ) = 30, but plotted against
the reduced physical time. The curves thus have the same shape as a scaling plot of
λ/L(T ) and λd/L(T ) (since L(T ) is here fixed in simulation units) but also allows the
λ, λd values to be compared with the lattice spacing (unity) and the linear system size
(128 or 256). Given the expected effects of coarse-graining on the 2563 data at short
length scales, the agreement between the two lattice sizes is satisfactory but only the
1283 data is discussed in what follows.
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As can be seen in figure 17 (right), λ/L(T ) does not vary by much between runs, al-
though it is roughly a factor of two larger in the crossover region than in the viscous and
inertial extremes. The extended scaling analysis (table 1) predicts that λ/L(T ) ∼ t−1/6

in the inertial region, and the data is broadly consistent with this; an asymptotically con-
stant ratio, predicted by simple scaling, is marginally less plausible though not ruled out.
Likewise, λd/L(T ) is not far from the prediction of the new scaling theory (t−1/4), and
perhaps somewhat further from that of simple scaling (t−1/6). For the viscous regime,
however, λd/L(T ) does not appear to scale as t−1/2, nor does λ/L(T ) approach a con-
stant, as predicted by both scaling theories. Once again the low k velocity anomaly (§
10.1) in the viscous regime could be to blame for this, but so could inaccuracies in the
estimated dissipation rate (§ 11.5).

11.7. Resolution of the energy cascade

The Kolmogorov microscale has a further significance for any attempt at numerical sim-
ulation in inertial fluids. In a fully turbulent fluid, λd is expected to be smaller than λ,
and to mark the smallest length scale relevant for dissipation. This should, if the results
are to be relied upon, be ‘resolved’, that is, λd should lie above the discretization scale
set by the lattice. There is some debate over exactly how small λd can be in relation
to the lattice spacing, but a factor of 1.0 to 1.6 has been put forward; see for example,
Eswaran & Pope (1988); Yeung & Brasseur (1991). Our best estimate for λd in the most
inertial (2563) run is around λd = 1.8 lattice units; values are higher in all other runs.
However, in view of the quantitative uncertainty in our velocity derivative estimates (see
§ 11.5), this estimate is good to only a factor of 2 or so. Therefore, the most inertial of
our 2563 runs is certainly close to the resolution limit, and we would not wish to proceed
to higher l, t without a larger system size. Note that only in that run is λd appreciably
smaller than λ as expected asymptotically in a turbulent flow; but the Taylor scale λ is
well-resolved, by the same criterion, in all runs.

However, estimates of how well the cascade is resolved using these two lengths could be
misleading, in that they assume local as well as global homogeneity. So if, for example,
most of the dissipation were to occur in a thin layer around the interfaces in the system,
the globally averaged λd might suggest that the dissipation was fully resolved whereas
in fact it was not. This would be consistent with our findings (§ 11.5) that the actual
dissipation rate in LB is poorly estimated from the Fourier velocity derivatives, and
imperfectly even from lattice ones.

On balance, we believe that the energy cascade is adequately resolved in most of
our LB simulations, at least for the purposes of getting the correct evolution of the
structural length scale l(t). (As noted in § 11.3, a fully resolved cascade might not be
needed for this, so long as there is sufficient decoupling of interfacial motion and viscous
dissipation.) However, the most inertial runs may well be marginal in terms of resolution;
in common with several other aspects of the simulations (such as the residial diffusion,
and anisotropy), these runs are at the limit of what is possible using this simulation
method with current computational resources.

11.8. Apparent scaling violations

In our various analyses of the velocity derivatives, we focused mainly on scaling plots
made by taking a representative ‘mid-run’ data point from each LB simulation run (e.g.
figure 17, left). These plausibly connect to form a smooth curve. However, one test of
scaling is whether the full datasets (rather than a representative point) from different runs
appear to join up smoothly when plotted in reduced physical units; this was satisfactorily
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Figure 18. Left: NSE terms for all runs scaled. Most of this data is for 963 systems, with
1283 data where available. Right: Dissipation scale, λd, for runs in table 3 (open circles), Taylor
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units.

the case for the structural data l(t) (figure 9) and reasonable also (though not by any
means perfect) for the velocity data lv(t) (figure 11, left), ReL and Reφ (figure 14, left).

However, the expected scaling within runs failed completely for Reλ (also in figure 14,
left). This quantity differs from the others just mentioned in that its definition involves λ,
which in turn involves the dissipation rate ε (see (5.7)) and therefore depends on velocity
derivatives. More generally, we find similar ‘scaling violations’ in all the quantities we
have looked at that involve calculating velocity derivatives. Figure 18 shows this for (left)
the various rms terms in the NSE and (right) the Taylor and Kolmogorov scales. The
dissipation rate (not shown) shows similar features.

Apart from the failure of the runs to join up, the data for the NSE terms is in reasonable
accord with the scaling predictions (table 1) for the viscous term of t−2 in the linear region
and t−5/3 or t−7/6 in the inertial region, and for the inertial terms of t−4/3 or t−7/6 in
the inertial region. Even the scaling of t−1 for the nonlinear term in the viscous region
is as predicted by the new scaling theory (Kendon 2000). However, within each run the
quantities are falling more slowly than all these predictions. Similarly λ and λd do not
scale within single runs in the same way as they scale between runs, except perhaps in
the middle of the crossover region. (The same is true of ε, the dissipation rate, from
which λd is derived.)

At present, we have no simple explanation of these apparent scaling violations. They
could perhaps be a sign of subtle nonuniversalities of the type suggested by Jury et al.
(1999b), though it would certainly be premature to conclude this without similar (though
perhaps less severe) effects being detected in l(t). Another possibility, noted previously (§
11.5, 11.7) is that the we are not able, using LB with these system sizes, to fully resolve
the velocity gradients that arise.

On the other hand, our velocity derivatives do not appear to be completely lattice
controlled, since for example, in (11.1) one could then set ∇v ∼ v. This would give
ε ∼ L̇2, giving in the inertial regime λd ∼ T 1/6 within each run (which is about right)
but in the viscous regime λd ∼ T 0, and also λ ∼ T 0 throughout both regimes, neither
of which is plausible for our data (see figure 18, right). We have made various further
attempts to explain the data by assuming ‘composite’ scalings, based for example on the
idea that dissipation occurs mainly near the interface where velocity gradients might be
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anomalously large (∇v ∼ L̇/ξ)†. In that case, one would have ε ∼ (ξ/L)L̇2/ξ2, where
the factor ξ/L is the volume fraction of interface. Although none of these attempts was
successful, an explanation along these lines is not completely ruled out.

One further complicating factor is that, within LB, the fluid viscosity is frequency
dependent: the Navier Stokes limit requires that velocities are not only small (in lattice
units) but also evolving sufficiently slowly. For very low viscosities, τ1 approaches 1/2
which means that the distribution function fi is over-relaxed (nearly reversing sign at
each time step), see Equation 6.6. (In effect, the ‘natural’ viscosity scale in LB is of order
unity and the over-relaxation is used to create an unnaturally small value.) This works
successfully if accelerations are small but could result in a higher dissipation rate than
would be the case for a purely newtonian fluid, especially in the most inertial runs.

12. Conclusions

Our LB results for symmetric binary fluids, undergoing spinodal decomposition after
a deep quench, appear to confirm the dynamical scaling hypothesis, which requires a
universal time dependence of the structural length scale L when expressed in reduced
physical units as a function of time, l(t) (figure 9). We found no signs of nonuniversality
here, although some weak breakdown of it, as suggested by Jury et al. (1999b), cannot
be entirely ruled out. By exploitation of the expected scaling, and careful parameter
steering and validation tests to eliminate residual diffusion and other unwanted effects,
we achieved an l(t) curve spanning seven decades of reduced time t and five of reduced
length l. The l(t) curve asymptotes to l = b1t at t ≪ t∗ (the viscous regime), with
b1 ≃ 0.072, and l = b2/3t

2/3 at t ≫ t∗ (the inertial regime), with b2/3 ≃ 1.0. On
our reading of Guenoun et al. (1987), b1 is within 10% of the most careful experimental
measurements (albeit not for a deep quench) although others (Laradji et al. 1996) extract
an estimate about twice as large from the same experimental results.

The crossover time, t∗ in reduced physical units, as defined by the interception of the
viscous and inertial asymptotes, is surprisingly large (t∗ ≃ 104). So is the width of the
crossover region (four decades). This may explain why the t2/3 region has never yet been
confirmed in laboratory experiments. The default assumption that t∗ is ‘of order unity’
would mean that for fluid pairs typically studied (short chain alcohols and water for
example), the inertial regime could be accessed at length scales of a few microns, easily
studied by light scattering. But in fact, to exit the crossover region (at t∗ ∼ 106) one
needs l = L/L0 > 104 which for typical fluids gives L of order centimetres (and larger still
for the near-critical quenches often used, see Guenoun et al. (1987)). This requires direct
visualisation experiments, not light scattering, and more importantly requires rigorous
exclusion of thermal convection and gravitational effects. The latter is likely to be possible
only with extremely careful density matching, or in microgravity, Cambon et al. (1997).

Our findings are less extreme when translated into Reynolds numbers. The conventional
definition of the Reynolds numbers for the spinodal problem is Reφ = ll̇; the crossover
regime then spans 1 . Reφ . 100 and the Reynolds number range we actually achieved
was 0.1 . Reφ . 350. (Note that we see no sign of a saturating Reφ as predicted by
Grant & Elder (1999), but cannot rule this out, at some value well above 350. )

† We note that in a very recent analysis, Solis & de la Cruz (2000) developed an heuristic
alternative to that of Kendon (2000) in which dissipation takes place in an (asymptotically) thin
layer around the interface rather than in the bulk. They argue that coarsening is limited by the
damping rate of capillary waves of wavelength L, and that this damping rate is unaffected by
nonlinearity; this gives l ∼ t4/7. We find no evidence for this in our data. Using the oscillation
frequency instead of the linear damping rate recovers l ∼ t2/3.
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These figures are reduced further if the actual ratio R2 of nonlinear to viscous terms
is used as the Reynolds number; our results span 0.01 . R2 . 20. At the upper end of
this range, we have described in detail the first unambiguous simulations of a regime in
which the inertial terms in the Navier–Stokes equation are actually large compared to the
viscous ones; here we observed l ∼ t2/3. However these simulations may still be far from
the asymptotic regime addressed by the scaling analysis of Kendon (2000), in which ulti-
mately one expects λd ≪ λ ≪ L for the Kolmogorov, Taylor and structural length scales.
But in fact, although λd is only slightly smaller than λ even for our most inertial run, our
data for the inertial regime is already somewhat more consistent with Kendon’s analysis
than with the simpler (single length scale) scaling predictions of Furukawa (1985).

In the viscous regime, we recovered the expected (l ∼ t) scaling though this is somewhat
erratic and accompanied by an unexpected behaviour of the velocity correlation length
lv = Lv/L0 (figure 11, left) and possibly also the dissipation rate (figure 17, left). The first
of these, at least, may be related to the presence of anomalous long-range correlations
of the velocity over length scales much larger than the domain size L(T ). These were
detected numerically in our most viscous runs, and can be explained simply by assuming
that the interfaces contribute a random stress with local correlations on scale L (see §
10.1). It is quite possible that such effects have arisen undetected in previous simulations
of the viscous regime; in principle they could lead to finite size problems arising long
before the domain size L approaches the size Λ of the simulation cell. Fortunately, the
same does not appear to happen in the inertial regime.

As well as through their differing domain growth laws (l ∼ t or l ∼ t2/3) the viscous
and inertial regimes can be distinguished by rather subtle changes in interface geometry
(evident through the structure factor and by visualisation, with more thin necks in the
inertial case) and by much larger changes in the velocity statistics. For example, the
velocity pdf is significantly flatter for inertial than for viscous runs and also there is
significant skewness for longitudinal velocity derivatives in the inertial regime. In that
regime, we achieve results that show some of the characteristics of a turbulent fluid,
although non-Gaussian features are seen directly in the velocity distribution as well in
that of derivatives. This reflects the presence of microstructure (interfaces), as well as
some turbulence, in the fluid mixture.

The scaling of quantities involving velocity derivatives was found to give reasonably
continuous curves when mid-run values were plotted in reduced physical units (e.g. figure
17, left) but showed apparently systematic violations of the scaling behaviour which that
would imply, when analysed in detail within each run. This could indicate some physical
nonuniversality, or some shortcoming of the LB code; but equally it can be attributed to
uncertainties over how to accurately estimate derivatives that are not small on a lattice
scale. The LB code is implicitly aware of differences in the local velocity distributions
but does not itself calculate velocity derivatives. Therefore, when these derivatives are
not small, there can be discrepancies between their ‘effective’ values (as defined, e.g.,
through the actual dissipation rate generated by the algorithm) and any estimate based
on Fourier, or lattice difference, data.

The fact that such ambiguities arise at all is an indication that our LB simulations are
close to the limits of accuracy acceptable for the fluid motion, since ideally all gradients
encountered in LB should be small, not large, on the lattice scale. It is interesting that
they arise even when the Taylor and Kolmogorov microscales, λ and λd, are both signifi-
cantly larger the lattice spacing; this perhaps suggests heterogeneity of the velocity field
that is stronger than in single-fluid homogeneous turbulence. It may mean that, despite
our best endeavours, we have not adequately resolved the fluid motion at short length
scales. Fortunately, according to the analysis of Kendon (2000), the main requirement
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for observation of l ∼ t2/3 in the inertial regime is that the interface motion is decou-
pled (by fluid convection) from the dissipation scale, and not that the latter is modelled
with complete accuracy. The reason is that, once the interface is decoupled, its motion
is controlled by how fast it feeds kinetic energy into the fluid at large scales; the pre-
cise details of the dissipation further down the cascade has no further influence on the
interfacial dynamics. If so, statistics based on the domain growth law l(t) may be much
more robust than those for the fluid velocity and (especially) velocity derivatives, in the
inertial regime.

Very similar accuracy limits were also reached in the thermodynamic sector, where we
required narrow interfaces, with large composition gradients, to satisfy the conflicting
requirements of rapid interfacial equilibration and low residual diffusion. (This gave in-
terfacial tensions 10-15% different from nominal, with measurable lattice anisotropy.) We
have taken unusual care to analyse (and maintain under reasonable control) the various
sources of error. The reader has, we hope, enough information to decide for herself how
much confidence to place in our various results.

It is interesting to ask how simulations might be taken further into the inertial regime.
If the analysis of Kendon (2000) is any guide, the ultimate asymptotic state entails,
computationally, resolution of the following scale hierarchy:

a ≪ ξ ≪ λd ≪ λ ≪ L ≪ Λ (12.1)

with a the lattice spacing, or, more generally, a−3 the density of degrees of freedom in
the simulation. A factor 3 between each of these length scales is roughly what we achieve
at Λ = 256. But a worthwhile improvement to give, say, a factor 10 between each would
require Λ = 105. For a three dimensional system, this lies beyond any foreseeable inno-
vation in computational hardware if any current methodology is used. Possibly the way
forward would be to couple a coarse-grained algorithm (such as large eddy simulation)
for the turbulent fluid to a moving interface; we leave this to others to explore.

We would like to thank Alan Bray, Anatoly Malevanets, Alexander Wagner, Patrick
Warren, Julia Yeomans and Alistair Young for helpful discussions. Work funded in part
under EPSRC GR/M56234.

Appendix A. Analysis of hydrodynamic modes

In this appendix we analyse the hydrodynamic modes for the LB hydrodynamic equa-
tions (6.21-6.22). We take as our reference state one in which the fluid is at rest with
uniform concentration. In this case, to linear order in the perturbation of the hydrody-
namic fields the Navier-Stokes equation is satisfied, and only the spurious terms in the
balance equation for the order parameter remain. Specifically, the equations we are going
to analyse are

ρ̇ + ∇.(ρv) = 0

v̇ = −1

ρ
∇.P th + ν∇2v + ζ∇(∇.v)

φ̇ + ∇.(φv) = (τ2 −
1

2
)

[

M̃∇2µ −∇.(
φ

ρ
∇.Pth)

]

(A 1)

where ν = η/ρ and ζ = (ξ + 2η/3)/ρ are the kinematic shear and bulk viscosities,
respectively. Using eq.(2.9), the last term in the third equation can be rewritten as
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∇.Pth = c2
s∇ρ + φ∇µ (A 2)

where cs is the speed of sound and µ the chemical potential. This expression shows
that there is a spurious coupling between the order parameter and gradients of the
density field. Such a coupling can only be relevant when the binary mixture exhibits
compressibility. In terms of the deviations of the hydrodynamic fields with respect to
their equilibrium values, ρ0 = 1, φ0,v = 0, eqs.(A 1) become

δ̇ρ + ρ0∇.δv = 0

∂δv

∂t
= − c2

s

ρ0
∇δρ − (A + 3Bφ2

0)∇δφ + ν∇2δv + ζ∇(∇.δv)

˙δφ + φ0∇.δv = ω2

[

(M̃ − φ2
0)(A + 3Bφ2

0)∇2δφ − c2
sφ∇2δρ

]

(A 3)

where we have defined ω2 = τ2− 1
2 . In Fourier space, this set of equations can be expressed

in matrix form, setting X = (δρ,k.v, δφ, δv − kk.δv/k2) as

Ẋ =









0 −i 0 0
−ic2

sk
2 −(ν + ζ)k2 −iφ0ak2 0

ω2φ0c
2
sk

2 −iφ −ω2(M̃ − φ2
0)ak2 0

0 0 0 −νk2









.X (A 4)

where a = A + 3Bφ2
0. The hydrodynamic mode eigenvalues are correspondingly

λ1 = −νk2 (A 5)

λ2,3 = ±icsk

√

1 +
aφ2

0

c2
s

− k2

2

[

ν + ζ + aω2φ
2
0

(

−1 +
a(M̃ + 2φ2

0)

3(c2
s + aφ2

0)

)]

(A 6)

λ4 = −k2 aω2M̃

1 + aφ2
0/c2

s

(A 7)

The first mode corresponds to the propagation of shear waves, the subsequent two
modes are related to the propagation and damping of compressible momentum waves,
and the final mode is related to the diffusion of the order parameter. One can see that the
presence of the spurious term in the convection-diffusion equation does not qualitatively
modify the propagation of the order parameter: it remains diffusive. However, its eigen-
value depends on the compressibility of the the fluid, and for a compressible fluid there is
then a reduction of diffusivity coming from the coupling to sound waves. Such a coupling
also modifies the propagation and damping of longitudinal waves in the medium, so that
these become a function of the order parameter.

To whatever extent the compressibility of the fluid can be neglected, the additional
coupling between the order parameter and the density becomes irrelevant, and the ex-
pected diffusion coefficient for the convection-diffusion equation of the order parameter
is recovered.
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Figure 19. Scaling plot in reduced variables (L/L0, T/T0) Bold lines (left to right) are LB 2563

data from table 2 (top to bottom). Also shown are results from other published work: squares
Appert et al. (1995), triangles Laradji et al. (1996), circles Bastea & Lebowitz (1997), Inset:
DPD data of Jury et al. (1999b) (solid lines) with one LB data set (L0 = 0.15, pluses) repeated
for comparison.

Appendix B. Comparisons with other work

In order to compare our results with others’ published work, a similar scaling procedure
must be applied to place their data onto the universal scaling plot in figure 9. This
is only possible for work reported in sufficient detail to enable values for L0 and T0

to be calculated. Recent three-dimensional work where comparison is possible includes
that of Bastea & Lebowitz (1997), Laradji et al. (1996), Appert et al. (1995), and Jury
et al. (1999b). These four sets of results are shown along with the LB data in figure 19.
Simulations of three-dimensional spinodal decomposition with hydrodynamics for which
quantitative comparisons were not possible include, Koga & Kawasaki (1991), Puri &
Dünweg (1992), and Alexander et al. (1993), all of whom claimed to have simulated the
linear regime; Shinozaki & Oono (1991), Ma et al. (1992), Lookman et al. (1996). The
last two claimed to have simulated the inertial regime but offered no evidence beyond
their fitted exponent values for definitely having inertial rather than diffusive effects.

The four studies for which detailed numerical comparisons are possible will now be
considered in turn.
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Figure 20. Left: 2563, L0 = 36, Run024 with M = 0.8 compared with Run028 (M = 0.1).
Right: Run010, 1283, L0 = 381, M = 0.5.

B.1. Bastea & Lebowitz (1997)

Bastea & Lebowitz (1997) carried out a three-dimensional simulation containing about
1.4 × 106 particles whose motion was described mesoscopically by Boltzmann-Vlasov
equations. They combined direct simulation Monte Carlo methods for the short range
interaction with particle-in-cell methods for long range interactions. The fluid system
is relatively low-density; they describe it as a gas-gas phase separation. The necessary
fitting and scaling for the results reported by Bastea & Lebowitz was done by Jury et al.
(1999b).

On the universal scaling plot, figure 19, the supposedly viscous-regime portion of the
data from Bastea & Lebowitz is shown as circles. It lies in the correct (lower left) region
of the graph, but well to the left of any of the LB results. The scaled value of the fit
parameter, b1 = v/(L0/T0), from the refitting by Jury et al. is b1 = 0.3. This compares
with the considerably smaller values from the LB results in the linear region. The dy-
namical scaling hypothesis requires however that b1 should be universal to all systems in
the viscous regime. The high reported b1 leads us to suspect residual diffusion. Bastea
& Lebowitz do not report the diffusion rate in their system in a form that can be used
to apply the analysis of § 8.3, but test LB runs have been done with high diffusion rates
that produce LB data sets very similar to those of Bastea & Lebowitz. Two such test
runs, Run024 and Run010, are shown in figure 20.

On the left, Run024 is compared with Run028, one of the runs in table 2. Run024
has the same parameters as Run028 except for the mobility, which is eight times higher.
Run024 fits a free exponent of α = 0.85, which is similar to Run022 (also in the linear
region). However, the lack of an initial flat diffusive region (also absent in Bastea &
Lebowitz (1997)) strongly suggests the diffusion is too strong for uncontaminated linear
growth to be observed within the attainable system size. A linear fit to the upper part
of the data produces a scaled value of b1 = 0.082, compared with 0.073 for Run028.

On the right, Run010 has a value of L0 = 381, larger than for any of the runs finally
used by us, see table 3. This should put it even further into the linear region than the
rest of the runs. However, a fit with a free exponent produces α = 0.7. A linear fit to
the upper part of the data produces a value for the scaled fit parameter of b1 = 0.32,
i.e. about the same as the data from Bastea & Lebowitz, which this curve resembles. It
seems likely, therefore, that the data from Bastea & Lebowitz (1997) has strong residual
diffusion, and the results they present are a mixture of linear and diffusive growth.
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B.2. Laradji, Toxvaerd & Mouritsen (1996)

Laradji et al. (1996) used a large-scale molecular dynamics simulation of a Lennard-Jones
model with 343000 particles with a deep quench. The necessary fitting and scaling for
the data of Laradji et al. was done by Jury et al. (1999b). The results are shown on
figure 19 as triangles lying, like those of Bastea & Lebowitz (1997), to the left of the
LB data towards the lower left corner, again in the viscous regime according to the LB
analysis. Laradji et al. claimed their results confirmed the linear scaling, but their value
of the scaled fit parameter, b1 = 0.13, is again higher than ours. However, it is in well
within the range of values spanned by the the over-diffusive LB runs shown in figure 20
(b1 = 0.082, 0.32). The shape of their L(T ) curve matches that of Run024 in figure 20
(left), i.e. there is no initial diffusive plateau before domain growth begins. In LB data
this was always a sign that the run had too high a mobility and significant contamination
by residual diffusion.

B.3. Appert, Olson, Rothman & Zaleski (1995)

Appert et al. (1995) used a three-dimensional lattice gas simulation to simulate spinodal
decomposition. Their largest system size was 1283 and they also used 643 to test for
finite size effects; they rejected data with L > Λ/2, whereas we saw significant finite size
effects by this stage (and applied the stricter condition, L < Λ/4). They claimed a fitted
exponent of α ≃ 2/3, which, if correct, would put their results in the inertial regime.
Taking the relevant interval of their data, refitting it by our method (giving an exponent
α = 0.62) and converting into reduced physical units gives the dataset (squares) on figure
19. This shows that, if our LB data is correct, the data of Appert et al. is actually in the
crossover region. It appears to be asymptoting onto the LB data from above, which again
suggests significant residual diffusion, giving too low a value for the fitted exponent. As
with the data of Bastea & Lebowitz (1997) and Laradji et al. (1996), the L(T ) plot is
lacking the initial diffusive plateau, an absence that we found was invariably associated
with strong residual diffusion within LB.

B.4. Jury, Bladon, Krishna & Cates (1999b)

Jury et al. (1999b) carried out a series of simulations of a symmetric, binary fluid mix-
ture using the DPD (dissipative particle dynamics) method with 106 particles and a
deep quench. (The DPD algorithm combines soft interparticle repulsions with pairwise
damping of interparticle velocities and pairwise random forces.) In terms of the range
of domain scales that can be probed, as a multiple of the interfacial width, these are
roughly equivalent to our 1283 runs using LB. These authors found that each data set
was well fitted by a linear scaling, L = v(T − Tint), but with a systematic increase of
b1 = v/(L0/T0) upon moving from upper right to lower left in the universal scaling plot,
see figure 19 (inset). These seven data sets have a range of L0 values, 0.29 6 L0 6 0.013,
which places them all firmly in the crossover region found in the LB results, between
Run029 (L0 = 0.95) and Run030 (L0 = 0.01).

Jury et al. suggested two alternative interpretations of their own data and that of
Laradji et al. (1996) and Bastea & Lebowitz (1997), to explain the observed linear scaling
within each run, but lack of consistency in the prefactor, b1. The first was a possible
nonuniversality arising from the physics of pinchoff. The second was that all data sets
formed part of an extremely broad crossover region. This explains the observed trend
b1 ∼ t−0.2, but not the linear scaling within each run. However, Jury et al. noted the
possibility of ‘dangerous’ finite size effects within their data, which was truncated at
Lmax = Λ/2. Our LB results support the latter explanation for the DPD data, with a
separate or additional reason (residual diffusion) for rejecting the other datasets. Unlike
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these, all the data sets of Jury et al. do lie very close to the LB results, see figure 19
(inset). Moreover, the DPD show a diffusive plateau prior to the onset of the apparent
linear regime, consistent with low residual diffusion levels.

Since the DPD simulation method is very different from LB, the correspondence of the
two sets of results lends broad support to the idea of a universal scaling, although the
fact that each DPD run is best fit by a locally linear growth law is not consistent with
this. Based on our LB results, we are inclined attribute the latter to finite size effects,
which would certainly be large enough to spoil our nearest equivalent runs (1283 with
Lmax = 64). However, we cannot rule out other explanations as offered by Jury et al..
Larger DPD runs, and/or a series of LB runs, giving strongly overlapping datasets in a
narrow window of the l(t) like the DPD results (figure 19, inset), might shed light on
this.
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