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Abstract We describe inertial endomorphisms of an abelian group A, that is endomor-
phisms ϕ with the property |(ϕ(X) + X)/X | < ∞ for each X ≤ A. They form a ring
I E(A) containing the ideal F(A) formed by the so-called finitary endomorphisms, the ring
of power endomorphisms and also other non-trivial instances. We show that the quotient ring
I E(A)/F(A) is commutative. Moreover, inertial invertible endomorphisms form a group,
provided A has finite torsion-free rank. In any case, the group I Aut (A) they generate is
commutative modulo the group FAut (A) of finitary automorphisms, which is known to be
locally finite. We deduce that I Aut (A) is locally-(center-by-finite). Also, we consider the
lattice dual property, that is |X/(X ∩ϕ(X))| < ∞ for each X ≤ A and show that this implies
the above one, provided A has finite torsion-free rank.

Keywords Inertial groups · Inert subgroup · Finitary automorphism · Power
endomorphism · Locally finite group
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1 Introduction

Recently, there has been interest for totally inert (TIN) groups, i.e., groups whose all sub-
groups are inert (see [1,5,8,11]). A subgroup is said inert if it is commensurable to each
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220 U. Dardano, S. Rinauro

conjugate of its. Two subgroups X, Y of any group are told commensurable iff X ∩ Y has
finite index in both X and Y (see [12]).

When dealing with soluble TIN-groups one is concerned with automorphisms with the
following property. As in [6] and [7], an endomorphism ϕ of an abelian group A (from now
on always in additive notation) is said (right-) inertial iff:

∀X ≤ A |ϕ(X) + X /X | < ∞. (RIN)

Consideration of endomorphisms instead of automorphisms only is due to the fact we
state below. Moreover, notice that in [7] the concept of inertial endomorphism is related to
the investigation of the dynamical properties of an endomorphism of an abelian group.

Fact Inertial endomorphisms of any abelian group A form a ring, say I E(A), containing
the ideal F(A) of endomorphisms with finite image.

To prove this notice that if both ϕ1 and ϕ2 are inertial endomorphisms of A (that is have
the above RIN), then ∀X ≤ A |(X + ϕ1(X))/X | < ∞ and |(X + ϕ1(X) + ϕ2(X) +
ϕ1ϕ2(X))/(X + ϕ1(X))| < ∞.

In this paper, by our main result Theorem A below, we give a characterization of iner-
tial endomorphisms of an abelian group, from which we deduce useful consequences. In
particular, we have:

Corollary A The ring I E(A)/F(A) is commutative.

In Proposition A, we will exhibit non-trivial instances of inertial endomorphisms. For details
on the additive group of I E(A) see [4].

As far as invertible inertial endomorphisms concern, recall that in [2] one finds a charac-
terization of groups of automorphisms Γ ≤ Aut (A)with the property that for each subgroup
X ≤ A there is a Γ -invariant subgroup XΓ ≥ X such that |XΓ :X | is finite. Later in [9], a
characterization when Γ has the dual property, that there is a Γ -invariant subgroup XΓ ≤ X
such that |X : XΓ | is finite, was given. Clearly, in both cases, Γ is formed by automorphisms
which are inertial. Then, in [3], we put both pictures in the same framework by characterizing
finitely generated groups Γ of automorphisms which are inertial and have inertial inverse.
In Propositions 2.2 and 2.3 of this paper, we give a characterization also in the more general
setting of endomorphisms.

Consideration of the map x �→ 2x shows that the inverse of an inertial automorphism of
Qω need not to be inertial. However, the inverse ϕ of an inertial invertible endomorphism
has the lattice dual property (say left-inertial) that is:

∀X ≤ A |X/(X ∩ ϕ(X))| < ∞. (LIN)

On the other hand, from results in [3], we have that for an automorphism ϕ of a periodic
abelian group A properties LIN and RIN (i.e., inertial) are equivalent, that is each subgroup
is commensurable with its image. Therefore, in [3] by inertial we meant LIN and RIN, while
here by inertial we mean just RIN. Next, corollary to Theorem A below investigates how
these properties are related. Then,we consider the group, say I Aut (A), generated by inertial
automorphisms of an abelian group A. Notice that I Aut (A) contains the group of so-called
almost-power automorphisms, that is γ ∈ Aut (A) such that each subgroup of A contains a
γ -invariant subgroup of finite index. This latter group has been introduced in [9].

Recall that the rank r0(A) of any free abelian subgroup F of A such that A/F is periodic
is said torsion-free rank of A.
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Inertial endomorphisms of an abelian group 221

Corollary B Let ϕ be an endomorphism of an abelian group A.

(1) If r0(A) < ∞, then LIN implies RIN (i.e., inertial) and the two properties are equivalent
if ϕ is an automorphism. Thus, inertial automorphisms form the group I Aut (A).

(2) If r0(A) = ∞, then I Aut (A) is formed by the products γ1γ
−1
2 , where γ1, γ2 are both

inertial automorphisms.

From Proposition 2.3, we will also have that when r0(A) = ∞ an endomorphism is both LIN
and RIN iff it acts as the identity or the inversion map on a subgroup with finite index.

Recall that, automorphisms acting as the identity map on a finite index subgroup form a
group, FAut (A), which is locally finite (see [13]). Clearly, FAut (A) ≤ I Aut (A). Actually,
I Aut (A) need not to be periodic, but its periodic elements form a subgroup containing the
derived subgroup as by next statement, which also follows from Theorem A.

Theorem B Let Γ = I Aut (A) be the group generated by the inertial automorphisms of an
abelian group A. Then:

(1) Γ ′ ≤ FAut (A) is locally finite;
(2) Γ is locally central-by-finite.

Note that there are non-elementary instances of periodic non-finitary inertial automorphisms.
To see this, consider the p-group B⊕Dwhere (p �= 2) B is infinite bounded and D is divisible
with finite rank and the automorphism acting as the identity on B and the inversion map on
D. On the other hand, the abelian group I Aut (A)/FAut (A) may be rather large as we see
in next statement.

Proposition A There exists a countable abelian group A with r0(A) = 1 such that I Aut (A)

has a subgroup Σ 
 ∏
p Z(p) with Σ ∩ FAut (A) = T (Σ) 
 ⊕

p Z(p), where p ranges
over the set of all primes.

In this first section, we have focused on applications of our main results, which will be
stated in next Sect. 2, where we also introduce some terminology and definitions before. In
Sect. 3, we prove some preliminary facts, while in Sect. 4, we handle periodic abelian groups.
Section 5 is devoted to the general case, and in the final Sect. 6, we give the proof of the main
Theorem A and consequences of its stated in this section.

2 Statements of main results

As a standard reference on abelian groups we use [10]. Letter A always denotes an abelian
group, we regard as a left E(A)-module, where E(A) denotes the ring of endomorphism of A.
Any p-group is regarded as a module over the ring Jp of p-adics as well. Letters ϕ, γ denote
endomorphisms of A, while m, n, r, s, t denote integers, p a prime, π a set of primes, �(n)

the set of prime divisors of n and �(A) the set of primes p such that there is an element of A
with order p. We denote by T = T (A) the torsion subgroup of A, by Aπ the π-component
of A, by A[n] := {a ∈ A | na = 0 }. If nA = 0 and n �= 0, we say that A is bounded by n.
Further, we say that A is bounded, if it is bounded by some n. We say that A is π-divisible
when pA = A for each p ∈ π and denote by Div(A) the largest subgroup of A which is
divisible by each prime. As usual Qπ denotes the ring of rationals whose denominator is a
π-number, where Q�(n) = Z[ 1n ]. When we write m/n ∈ Q, we always mean m and n �= 0
are coprime integers.
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222 U. Dardano, S. Rinauro

Definition We say that an endomorphism ϕ of an abelian group A is a multiplication if one
of the following holds:

(1) A is periodic and ϕ is a so-called power endomorphism, that is acting by a p-adic on each
p-component of A. This is equivalent to saying that ϕ leaves each subgroup invariant,
i.e., ∀X ≤ A ϕ(X) ⊆ X (see [11]).

(2) A is not periodic and there arem, n ∈ Z such that A = nA, A�(n) = 0 and ϕ(nx) = mx
for all x ∈ A. We just write ϕ = m

n as A has a natural structure of Q�(n)-module.

Note that we use word “multiplication” in a way different from [10]. Ours are in fact
“scalar multiplications”. When A is periodic, multiplication are plainly inertial (otherwise
see Proposition 3.2).

Fact Multiplications of an abelian group A form a ring M(A) and commute with any endo-
morphism.

Recall that Jp contains the ring of rationals whose denominator is coprime to p. Further
if A is non-periodic, then M(A) 
 Qπ where π is the largest set of primes such that A is a
Qπ -module, that is A is p-divisible with no elements of order p, ∀p ∈ π .

If X is a subset of a (left) R-module A and R1 a subring of R as usual we denote by 〈X〉
(respectively, R1X or X R1 ) the additive subgroup (respectively, the R1-submodule) spanned
by X . Further, by XR1 , we denote the largest R1-submodule contained in X . Also if ϕ an
endomorphism of A we write X (ϕ) for Z[ϕ]X and X(ϕ) for XZ[ϕ]. Note that, by abuse of
notation, we sometimes identify Z (and even Qπ ) with their (possibly not faithful) natural
images in E(A).

Beforewe embark on the description of inertial endomorphisms, note a sufficient condition
for an endomorphism to be inertial. We omit the straightforward proof.

Proposition 2.1 Let ϕ be an endomorphism of an abelian group A. If ϕ acts as an inertial
(respectively, LIN) endomorphism either on a finite index subgroup of A or modulo a finite
subgroup, then ϕ is inertial (respectively, LIN) on A.

We state now a detailed characterization of inertial endomorphisms of periodic abelian
groups. We handle LIN endomorphisms as well.

Proposition 2.2 Let ϕ1, . . . ϕt be finitely many endomorphisms of an abelian periodic group
A and Φ := Z[ϕ1, . . . ϕt ] ≤ E(A). Then:
(R) each ϕi is inertial iff there is a finite index subgroup A0 = B ⊕ D ⊕ C of A such that
B,C, D are Φ-invariant and:

(i) �(B ⊕ D) ∩ �(C) = ∅,
(ii) B is bounded and D is divisible with Min,
(iii) each ϕi acts as multiplication on B, D and C.

If the above holds, then

∃m ∀X ≤ A |XΦ/XΦ | ≤ m. (FS)

(L) each ϕi is LIN iff it is inertial and there are subgroups A0, B, D, C as in (R) such
that ϕi acts as a nonzero multiplication on each nonzero primary component of D and an
invertible multiplication on B and C.

We treat now inertial and LIN endomorphisms of a non-periodic abelian group. Next, propo-
sition generalizes Theorem 3 of [3] to endomorphisms. Even if the statement has interest in
itself, we will regard it as a lemma for Theorem A.
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Inertial endomorphisms of an abelian group 223

Proposition 2.3 An endomorphism ϕ of an abelian non-periodic group A is inertial (respec-
tively, LIN) if and only if either (a) or (b) holds:

(a) there is a ϕ-invariant finite index subgroup A0 of A such that ϕ acts as multiplication
by m ∈ Z (by 1

n ∈ Q, respectively) on A0;
(b) there are finitely many elements a1, . . . , ar such that:

(i) ϕ acts as multiplication by m
n ∈ Q on the ϕ-submodule V = Z[ϕ]〈a1, . . . , ar 〉which

is torsion free as an abelian group,
(ii) the factor group A/V is torsion and ϕ induces an inertial (respectively, LIN) endo-

morphism on A/V ,
(iii) the �(n)-component of A is bounded.

We state now our main result, which characterizes inertial endomorphims of any abelian
group. Notice that when A is periodic, the statement of Theorem A applies with V = 0
and implies part (R) of Proposition 2.2. On the other hand, if A is torsion free, then inertial
endomorphisms are just multiplications, see Proposition 3.3. In fact, in the statement of
Theorem A, we will have ϕi = mi

ni
∈ Q on A/T (A) for each i .

Theorem A Let ϕ1, . . . , ϕt be finitely many endomorphisms of an abelian group A and
Φ := Z[ϕ1, . . . ϕt ] ≤ E(A). Then, each ϕi is inertial if and only if there is a Φ-invariant
subgroup A0 with finite index in A such that either and (a) or (b) holds:

(a) each ϕi acts as multiplication by mi ∈ Z on A0;
(b) there are Φ-invariant subgroups B,C, D of A and finite sets of primes π ⊆ π1 such

that:

A0 = B ⊕ D ⊕ C

where

(i) B⊕D is the π1-component of A0 where B is bounded and D is a divisible π ′-group
with finite rank,

(ii) C is a Qπ [ϕ1, . . . , ϕt ]-module, with a submodule V 
 Qπ ⊕ · · · ⊕ Qπ (finitely
many times) such that C/V is a π1-divisible π ′-group,

(iii) each ϕi acts as (possibly different) multiplications on B, D, V , C/V ,
(iv) each ϕi acts by the same

mi
ni

∈ Q on V and all p-components Dp of D with the
property that the p-component of C/V is infinite; also π = �(n1 · · · nt ).

3 Multiplications of an abelian group

We start this section by pointing out which multiplications are inertial or LIN, respectively.
Recall that an abelian group A with the minimal condition (Min) is just a group of the

shape A = F ⊕ D, where F is finite and D is divisible with finite total rank that is the sum
of finitely many infinite cocyclic (Prüfer) groups.

Proposition 3.1 Let A be an infinite abelian group and ϕ ∈ M(A).

(R) If A is periodic, then each multiplication is inertial;
(L) If A is a p-group, then ϕ is LIN iff ϕ is invertible or A has Min and ϕ �= 0.

Proof Part (R) is trivial. Concerning part (L), clearly ϕ = 0 is not LIN as A is infinite. Then,
let the p-adic α = psα1 represent ϕ on A with α1 invertible. If ϕ is not invertible, then s > 0
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224 U. Dardano, S. Rinauro

and A[p] ≤ kerϕ is finite. Hence, A has Min. Conversely, if A has Min, then for any X ≤ A
we have that X/ϕ(X) = X/ps X is finite. ��

Recall that multiplications of a non-periodic abelian group are all of type ϕ = m
n ∈ Q.

Proposition 3.2 Let A be an abelian non-periodic group and ϕ = m
n ∈ M(A).

(R) ϕ is inertial iff either r0(A) < ∞ or n = ±1;
(L1) if 0 < r0(A) < ∞, then ϕ is LIN iff A�(m) has Min and m �= 0;
(L2) if r0(A) = ∞, then ϕ is LIN iff m = ±1.

Proof (R) Arguing in Ā := A/T (A), we have that for any X̄ ≤ Ā free with infinite rank, it
results that

ϕ(X̄) + X̄

X̄

 mX̄ + n X̄

n X̄

is infinite unless n = ±1. Then, if ϕ is inertial and r0(A) = ∞, we have that ϕ is a
multiplication by the integer m.

Conversely, if n = ±1, then ϕ is trivially inertial. Assume r0(A) < ∞. For any X ≤ A,
the section (ϕ(X) + X)/X is a bounded �(n)-group and is finite mod T := T (A). On the
other hand, since A is a Q�(n)-module, A�(n) = 0 and therefore (ϕ(X) + X)/X avoids T .

(L1) If ϕ is LIN, then A/ϕ(A) < ∞ implies that ϕ �= 0. Further, we have that A�(m) has
Min, by Proposition 3.2. Conversely, for each X ≤ A we have

X

X ∩ m
n X


 nX

nX ∩ mX

is finite as it is bounded by m and both the rank of A�(m) and torsion-free rank of A
are finite.

(L2) Let X̄ be free subgroup of Ā := A/T with infinite rank. By the same argument as
above, we have that X̄/(X̄ ∩ m

n X̄) is infinite unless m = ±1. Conversely, ϕ = 1
n is

LIN as X ≤ ϕ(X) for each X ≤ A. ��
The other way round, let us see that inertial endomorphisms of a torsion-free abelian group

are all multiplications.

Proposition 3.3 Let ϕ be an endomorphism of a torsion-free abelian group A.

(R) ϕ is inertial iff ϕ acts as a multiplication by m
n ∈ Q and if r0(A) = ∞ then n = ±1.

(L) ϕ is LIN iff ϕ acts as a multiplication by m
n ∈ Q with m �= 0 and if r0(A) = ∞ then

m = ±1.

In particular, if ϕ �= 0 and r0(A) < ∞, ϕ is LIN iff ϕ is inertial.

Proof The sufficiency of the conditions follows from Proposition 3.2. To prove necessity,
we generalize an argument used in [3]. In both cases (R) and (L), for each a ∈ A there exist
nonzerom, n ∈ Z such thatma = nϕ(a). As A is torsion free,m, n can be choosen coprime.
Let us show that m

n is independent of a. Let a1 ∈ A. If 〈a1〉 ∩ 〈a〉 �= {0}, then ka1 = ha for
some nonzero h, k ∈ Z. Therefore, we may write ϕ(a1) = h

k ϕ(a) = h
k
m
n a = m

n a1. Similarly,
if 〈a1〉 ∩ 〈a〉 = {0}, there exist m1,m2, n1, n2 ∈ Z such that

m

n
a + m1

n1
a1 = ϕ(a) + ϕ(a1) = ϕ(a + a1) = m2

n2
(a + a1) = m2

n2
a + m2

n2
a1.

It follows m
n = m2

n2
= m1

n1
. Thus, ϕ acts as a multiplication.

For the rank restriction, apply Proposition 3.2. ��
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Inertial endomorphisms of an abelian group 225

Wewill use often the following fact. Even if it follows fromTheorem3 of [4] as a particular
case, we sketch here the very elementary proof.

Proposition 3.4 For an endomorphism ϕ of a periodic abelian group A the following are
equivalent:

(MF) ϕ acts as a multiplication on a finite index subgroup A0 of A,
(FM) ϕ acts as a multiplication modulo a finite subgroup A1 of A.

Proof If (MF) holds then ϕ acts as a multiplication on all but finitely many components
Ap1 , . . . , Apt . If Api is any of them and the pi -adic αi represents ϕ on A0 ∩ Api , then
Bpi := (ϕ −αi )(A0 ∩ Api ) is an image of A/A0. Thus, A1 := Bp1 +· · ·+ Bpt is the desired
subgroup. The converse is similar. ��

FM-endomorphisms are inertial by Proposition 2.1 and will play a relevant role in the
sequel.

4 Inertial endomorphisms of a periodic abelian group

This section is actually devoted to prove Proposition 2.2, which can be regarded as the
periodic case of Theorem A. We state first the following easy but fundamental fact, which
will reduce the proof to the case when A is a p-group.

Proposition 4.1 An endomorphism of an abelian torsion group A is inertial (respectively,
LIN) iff it is such on all primary components and multiplication (respectively, invertible
multiplication) on all but finitely many of them.

Proof Sufficiency of the condition may be verified straightforward. Concerning necessity,
we only deal with case LIN, the other case being similar. Let π be the set of primes p such
that ϕ is not an invertible multiplication on Ap . If p ∈ π , then either ϕ is not a multiplication
on Ap or ϕ is a non-invertible multiplication. In the former case, there is a cyclic subgroup
X p of Ap such that ϕ(X p) � X p , and hence |X p ∩ ϕ(X p)| < |ϕ(X p)| ≤ |X p|. In the latter
case, there is a cyclic subgroup X p of Ap such that ϕ(X p) is properly contained in X p . In
both cases |X p/(X p ∩ ϕ(X p))| > 1. It is now clear that if ϕ is LIN, then π is finite, as
|X/(X ∩ ϕ(X))| must be finite for X := ⊕

p∈π X p . ��
We prove now a few lemmas. The first one extends Proposition 4.3 in [11].

Lemma 4.2 Let A be an abelian p-group, a ∈ A and ϕ ∈ E(A).

(1) If ϕ is either inertial or LIN, then a belongs to a finite ϕ-invariant subgroup.
(2) If |X/X(ϕ)| < ∞ for all X ≤ A, then |X (ϕ)/X | < ∞ for all X ≤ A.

(3) If |X/X(ϕ)| ≤ pm for all X ≤ A, then |X (ϕ)/X | ≤ pm
2
for all X ≤ A.

Proof (1) Wemay assume A = 〈a〉(ϕ) �= 0. Suppose first a has a prime order p and consider
the natural epimorphism of Zp[x]-modules mapping 1 to a and x to ϕ(a) (regard A as
Zp[x]-module where x acts as ϕ):

F : Zp[x] �→ A.

If F is injective, we can replace A byZp[x] andϕ bymultiplication by x . If H := Zp[x2],
then ϕ(H) = xH is infinite, while H ∩ xH = 0, a contradiction. Then, F is not injective

123



226 U. Dardano, S. Rinauro

and A is finite as it is isomorphic to a proper quotient of Zp[x]. If now a has (any) order
pε , then A/pA is finite, by the above. Moreover, pA = 〈pa〉(ϕ) is finite by induction on
ε.

(2) This can be proved in a similar way as case (3)
(3) We claim that if a ∈ A has order pε , then |〈a〉(ϕ)| ≤ p(m+1)ε .

Assume first ε = 1, that is a has order p and A0 := 〈a〉(ϕ) is elementary abelian.
Suppose, by contradiction, that the above F is injective. As above, let H := Zp[x2]. Then,
H(ϕ) = (g(x2)) for some polynomial g. Since |H/H(ϕ)| = pm < ∞, we have g �= 0. Then
(g(x2)) � H , a contradiction. Therefore, for some f ∈ Zp[x] with degree say n, we have

Zp[x]
( f )


ϕ 〈a〉(ϕ) = A0.

Thus, the minimal ϕ-invariant subgroups of A0 correspond 1 − 1 to the irreducible monic
factors of f , which are at most n. Consider a Zp-basis X of A containing an element in each
subgroup of them. The hyperplane H of equation x1 + x2 + · · · + xn = 0 has index p in
〈a〉(ϕ) and H(ϕ) = 0 as H ∩ X = ∅. Therefore, |〈a〉(ϕ)| ≤ pm+1.

If ε > 1, by induction B := 〈pε−1a〉(ϕ) has order at most p(m+1)(ε−1) and 〈a〉(γ )/B has
order at most pm+1 by the case ε = 1. Therefore, |a(ϕ)| ≤ p(m+1)ε , as claimed.

In the general case, let X be any subgroupof A and X(ϕ) = 0.Thus, |X | =: pε ≤ pm .Write
X = 〈a1〉⊕ · · ·⊕ 〈ar 〉 with ai of order pεi and ε1 + · · ·+ εr = ε. Since |〈ai 〉(ϕ)| ≤ p(m+1)εi

by the above claim, we have |X (ϕ)| ≤ p(m+1)ε . So that |X (ϕ)/X | ≤ p(m+1)ε−ε ≤ pm
2
. ��

Lemma 4.3 Let D be a divisible periodic subgroup of an abelian group A. If ϕ is either an
inertial or LIN endomorphism of A, then ϕ acts as multiplication on D.

Proof Without loss of generality, we may assume D and ϕ(D) are Prüfer groups. If ϕ is
LIN, then D ≤ ϕ(D) and thus D = ϕ(D). Therefore, in both cases inertial or LIN, we have
ϕ(D) ≤ D. ��

We state next lemma without proof as it is a particular case of Theorem 1 of [4].

Lemma 4.4 Let A be an elementary abelian p-group. If ϕ is either inertial or LIN endo-
morphism of A, then ϕ is FM (as in Proposition 3.4).

Lemma 4.5 If A is an abelian p-group and ϕ is either inertial or LIN endomorphism of A,
then
( f s) ∀X ≤ A |X (ϕ)/X(ϕ)| < ∞.

In particular, if ϕ is LIN, then ϕ is inertial.

Proof We may assume X(ϕ) = 0. Thus, since ϕ is multiplication on D1 := Div(A), (see
Lemma 4.3), we have D1 ∩ X = 0 and X is reduced. Moreover, by Lemma 4.4, ϕ is
multiplication on a subgroup of finite index of A[p] and we get that X [p] is finite. It follows
that X is finite. Then (fs) holds by Lemma 4.2. ��

To shorten statements we introduce a definition.

Definition An abelian p-group A is critical iff D := Div(A) �= 0 has Min and A/D is
infinite but bounded.

Lemma 4.6 Let A be an abelian p-group, D := Div(A) and ϕ an inertial endomorphism
of A
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Inertial endomorphisms of an abelian group 227

(1) If ϕ is not FM, then A is critical.
(2) If A = B ⊕ D is critical, then ϕ acts by multiplication on both D and on a subgroup

B0 with finite index in B.

Proof First recall that (fs) holds by Lemma 4.5. We prove (1) by the following steps.
(I) A is not residually finite. Assume by contradiction it is. Note that if ϕ is inertial, then

there is no sequence of subgroups Xi with the property that if we denote Yi := Xi ∩ ϕ(Xi )

then we have:

( j) Yi+1 ∩ Xi = Yi
( j j) the sequence |ϕ(Xi )/Yi | is strictly increasing.
Otherwise, there would exists a subgroup Xω := ∪i Xi with the properties that |ϕ(Xω)/Xω ∩
ϕ(Xω)| ≥ |ϕ(Xi )/Yi | ≥ i for each i .

On the other hand, we will construct a prohibited sequence Xi , getting the desidered
contradiction. Let X be any finite subgroup of A. By Lemma 4.2, the subgroup K := X (ϕ)

is finite. Since A is residually finite, by (fs) there is a ϕ-subgroup A∗ with finite index in A
such that A∗ ∩ K = 0. Now, as ϕ is not multiplication on (A∗ + K )/K , there is a ∈ A∗ such
that ϕ(a) /∈ 〈a, K 〉. Let Y := X ∩ ϕ(X), X ′ := 〈a〉 + X and Y ′ := X ′ ∩ ϕ(X ′). Let us check
that

( j) ϕ(X) ∩ Y ′ = Y ;
( j j ′) ϕ(X ′) > ϕ(X) + Y ′.

In fact, to prove ( j), if ϕ(x) ∈ ϕ(X) ∩ Y ′ (where x ∈ X ), then ϕ(x) = ma + x0 with
m ∈ Z, x0 ∈ X and ma = ϕ(x) − x0 ∈ A∗ ∩ K = 0, hence ϕ(x) = x0 ∈ Y and ( j) holds.

To prove ( j j ′), note that if y′ ∈ Y ′ = X ′ ∩ ϕ(X ′), then ∃n,m ∈ Z, ∃x, x0 ∈ X such that
y′ = ma + x = nϕ(a) + ϕ(x0). Then, ma − nϕ(a) ∈ A∗ ∩ K = 0. Hence x = ϕ(x0) ∈
Y := X ∩ ϕ(X). Since ϕ(a) /∈ 〈a, K 〉, then p divides s, and so Y ′ ≤ 〈pϕ(a)〉 + Y �� ϕ(a).
Therefore, ( j j ′) holds as ϕ(a) ∈ ϕ(X ′)\〈pϕ(a)〉 + Y .

Thus, we can define by induction a prohibited sequence as the above one, since from ( j)
and ( j j ′) it follows |ϕ(X ′)/Y ′| > |ϕ(X)/Y | and we get a contradiction.

(II) A is not reduced. Otherwise, let R be a basic subgroup of A. By (fs), R(ϕ)/R is finite
and so H := R(ϕ) is residually finite as well. Also, A/H is divisible. By step (I) applied to
H , there are a p-adic α and a finite ϕ-invariant subgroup A1 of H such that ϕ = α on H/A1.
As the kernel K/A1 of (ϕ − α)|A/A1 contains H/A1 and its image is reduced, while A/H is
divisible, it is clear that K = A and ϕ = α on A/A1, the desidered contradiction.

(III) A is critical. Let A = B ⊕ D with B infinite but reduced. As (fs) holds, at the
expense of substituting a finite index ϕ-invariant subgroup A0 for A, we may assume that B
is ϕ-invariant. Further, by step (II) and Lemma 4.3, ϕ is multiplication on both D and on a
finite index subgroup of B. So we may also assume ϕ is multiplication on B. Let ϕ act on
B and D by means of p-adics α1, α2, respectively, As ϕ is not FM, we have α1 and α2 act
differently on B.

If by contradiction B is unbounded, then there is a quotient B/S 
 Z(p∞). By (fs) we
can assume S to be ϕ-invariant and consider Ā := A/S. This a divisible group on which ϕ

acts as a (universal) multiplication by Lemma 4.3, contradicting the assumption on α1 and
α2. So that B is bounded.

If by contradiction D has infinite rank, we may substitute B[pε] for B where ε is the
smallest natural number such that B/B[pε] is finite. By the reduced case above, ϕ is multi-
plication on a subgroup A∗ of finite index of A[pε]. Then, as D has infinite rank, α1 ≡ α2

mod pε and ϕ is multiplication on (B∩ A∗)⊕D which has finite index in A, a contradiction.
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To prove (2) recall that ϕ acts as multiplication on D by Lemma 4.3. The other part follows
from (fs) and part (1) of this Lemma. ��
Proof of Proposition 2.2 We start by proving necessity in part (R).

(1) Let us show that there are subgroups A0, B, C , D as in the statement and (i), (ii) and
(iii) hold. By Proposition 4.1, we reduce trivially to the case when A is a p-group. Then,
note that if all ϕi ’s are FM, then clearly there is a finite index subgroup C of A such
that all ϕi ’s acts as multiplication on C . Otherwise, by Lemma 4.6, A = B0 ⊕ D is
critical, with B0 bounded and D divisible with finite rank. For each i , there is a finite
index ϕi -invariant subgroup Bi of B0 such that ϕi acts as multiplication on Bi . Let then
B := ∩i Bi . Then, A0 := B + D is the desired subgroup as in the statement.

(2) if (i), (ii) and (iii) hold, then(FS) holds. Note that as A/A0 and �(B ⊕ D) are finite,
then C contains all but finitely many primary components of A. Therefore, we reduce
again to the case when A is a p-group and either A0 = C or A0 = B ⊕ D is critical.

(2.1) In the former subcase, each ϕi is FM, that is it acts as multiplication (by the p-adic
αi ) on A0 (which has finite index in A) and modulo a subgroup with finite order
Fi := im(ϕi − αi ), see Proposition 3.4. Then, all ϕi are multiplication A0 and
modulo the finite subgroup F0 := F1 ⊕ · · · ⊕ Fl . Therefore, for each X ≤ A, we
have that X ∩ A0 and X + F are ϕi -invariant for each i .

(2.2) In the latter subcase, A0 = B ⊕ D and ϕi is multiplication on B and D, where B
is bounded and D divisible with finite rank. Let X0 := X ∩ A0. Then, |X/X0| ≤
|A/A0| is finite. Further, X∗ := (D ∩ X) + (B ∩ X) is ϕi -invariant and the group
X0/X∗ is bounded as B is. Also X0/X∗ has rank r at most the rank of D, hence
X0/X∗ is finite. Thus, X/XΦ is finite. Hence, each ϕi is LIN on A. By Lemma
4.5, ϕ is even inertial. To show that XΦ/X is finite as well, note that there is m
such that X/XΦ is contained in the mth socle (A/XΦ)[m] on which each ϕi is
FM by Lemma 4.6. Thus, XΦ/X is finite as in (2.1) above.

To prove sufficiency in part (R), note that (FS) implies trivially that each ϕi is inertial.
To prove necessity in part (L), let all ϕi ’s be LIN. Assume first A = Ap is a p-group.

Then, by Lemma 4.5, all ϕi ’s have (fs) and therefore are inertial. Thus, by the above, there
are subgroups A0, B, D, C as in part (R) of the statement and (i), (i i), (i i i) hold. If B �= 0
(hence C = 0) we can assume B is infinite and, by Proposition 3.1, each ϕi is invertible on
B and ϕi �= 0 on D (if D �= 0). On the other hand, if some ϕi is not invertible on C �= 0
(hence B ⊕ D = 0), then C has Min and we can put A0 := Div(C) and the statement holds.
Thus, we have proved that the condition is necessary for the p-components of A.

In the general case, apply Proposition 4.1 and deduce that again LIN implies inertial since
this is true on the p-components (Lemma 4.5). Moreover, the set π of primes such that some
ϕi is not an invertible multiplication on Ap is finite, by Proposition 4.1 again. By the above,
for each p ∈ π , there is a finite index subgroup A0,p of Ap such that A0,p,= Bp ⊕ Dp ⊕Cp

as in part (R) of the statement and (i), (i i), (i i i) hold. Then, the statement (in the general
case) holds with:

A0 = Aπ ′ ⊕ ⊕

p∈π

Ap, B := ⊕p∈π Bp, D := ⊕

p∈π

Dp and C := Aπ ′ ⊕ ⊕

p∈π

Cp.

To prove sufficiency in part (L) note that, arguing componentwise, by Propositions 2.1 and
4.1, it is enough to show that each ϕi is LIN on B ⊕ D as in the statement and in the case
when this is a p-group. For each X ≤ B ⊕ D let X∗ := (X ∩ B) + (X ∩ D). Then, X/X∗
is finite being bounded and of finite rank. Moreover, since clearly ϕ(X ∩ B) = X ∩ B and
ϕ(X ∩ D) has finite index in X ∩ D, we have X∗/X∗ ∩ ϕ(X∗) is finite as well. ��
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5 Inertial endomorphisms of a non-periodic abelian group

This section is devoted to the proof of Proposition 2.3. In next statement, we recall some
well-known facts.

Lemma 5.1 Let A1 be a subgroup of an abelian group A and π a set of primes.

(1) If A/A1 is a π ′-group, then A is π -divisible iff A1 is π-divisible.
(2) If A if torsion free, A/A1 periodic and A1 is π -divisible then A/A1 is a π ′-group and

A is π-divisible.
(3) If A1 is torsion free and π -divisible while A/A1 is π ′-group, then multiplication by a

π-number is invertible.

Next, Lemma is a generalization of Lemma 4.2.(1) to non-periodic groups.

Lemma 5.2 Let A be an abelian group, a ∈ A and ϕ ∈ E(A). If ϕ is either inertial or LIN,
then the torsion subgroup T of the ϕ-submodule generated by a is finite.

Proof We may assume A = 〈a〉(ϕ). If a has finite order, apply Lemma 4.2.(1). Assume a is
aperiodic. By Proposition 3.3, ϕ = m

n on A/T (m, n coprime), that is (nϕ−m)(a) is periodic.
Regard A asZ[x]-module (where x acts as ϕ) and consider the natural epimorphismmapping
1 to a and x to ϕ(a):

F : Z[x] �→ A.

Let I be the inverse image of T via F . Then, (nx−m) ⊆ I andZ[x]/I 
 A/T is torsion free
(as Z-module). Since proper quotients of Z[x]/(nx − m) 
 Z[1/n] = Q�(n) are periodic,
then I = (nx−m). Applying F we get that T = Z[ϕ]〈(mϕ−n)(a)〉 is a cyclic ϕ-submodule.
It is finite by Lemma 4.2. ��
Proof of Proposition 2.3,necessity Assume that ϕ is either inertial or LIN. By Proposition
3.3, ϕ is multiplication by m

n ∈ Q on A/T , where T := T (A) and m, n are coprime. Thus,
ϕ = m

n on each ϕ-invariant torsion-free section of A. Let π := �(n). We proceed by a
sequence of claims.

(1) There is a free abelian F ≤ A such that V := Z[ϕ]F is torsion free and A/V is periodic.
In fact, by Zorn’s Lemma, there is a subset S of A which is maximal with respect to
“F := 〈S〉 is free abelian on S and V := Z[ϕ]〈S〉 is torsion free”. It follows that A/V
is periodic. If not, there is an aperiodic a ∈ A such that 〈a〉 ∩ V = 0. By Lemma 5.2,
the torsion subgroup of Z[ϕ]〈a〉 has finite order s. Thus, Z[ϕ]〈as〉 
 Q�(n) has rank 1
(see Proposition 3.3) and {as} ∪ S has the above properties instead of S, a contradiction.
Then V is torsion free subgroup and A/V is periodic.

(2) the π-component Aπ is bounded. To establish this, assume by contradiction that T has
a quotient T/K isomorphic to a Prüfer p-group, with p ∈ π . By (FS) of Proposition
2.2, K (ϕ)/K is finite. Thus, without loss of generality, we may assume K (ϕ) = 0, that is
T is a Prüfer p-group. Since V contains a ϕ-invariant subgroup isomorphic to Qπ , then
T + V contains a ϕ-invariant subgroup isomorphic to Z(p∞) ⊕ Qπ and it is enough to
check that:
– the endomorphism ϕ = α ⊕ m

n of Z(p∞) ⊕ Qπ is neither inertial nor LIN (α any
p-adic). To this aim consider the “diagonal” subgroup

H =
{

[tp−i ] ⊕ tp−i | i ∈ N, t ∈ Z, [tp−i ] ∈ Q{p}/Z

}
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and note (m − nϕ)([p−i ] ⊕ p−i ) = (m − nα)[p−i ] ⊕ 0. Since p does not divide m,
we have Z(p∞) = (m − nϕ)(H). Therefore both H and ϕ(H) have infinite index in
H + ϕ(H), as desired.

(3) If r0(A) < ∞, then (b) holds. This is now clear.
(4) If r0(A) = ∞ and ϕ is inertial, then (a) holds. By Proposition 3.3, we know that

ϕ = m ∈ Z on V = F , which is a free abelian group as in claim (1). So there exists
a (ϕ-invariant) subgroup W such that V/W is a periodic group whose p-component is
divisible with infinite rank for each prime p. By the periodic case, Proposition 2.2, ϕ

is FM on A/W , since it contains a divisible p-group with infinite rank for each prime
p. Without loss of generality, we can assume ϕ is a multiplication indeed on A/W .
Moreover, since each p-component of V/W is unbounded, we have ϕ = m on A/W .
Then W ≥ im(ϕ − m) 
 A/ker(ϕ − m) where the former is torsion free and the latter
is periodic, as a factor of A/V . Thus ϕ = m on A.
The proof of necessity in the case when ϕ is inertial is now complete. Let us consider
the case when ϕ is LIN.

(5) If r0(A) = ∞ and ϕ is LIN, then (a) holds. Let F and V = Z[ϕ]F as in claim (1)
above. By Proposition 3.3,m = 1, that is ϕ = 1

n on V . Then V/F is the sum of infinitely
many copies of Z(p∞) for each prime p ∈ π := �(n). Take F∗ such that F/F∗ is
a periodic π ′-group whose p-component is divisible with infinite rank for each prime
p ∈ π ′. Let V∗/F∗ be the π -component of V/F∗. Since V/V∗ is a π ′-group, V∗ is
π-divisible, by Lemma 5.1.(1). Thus V∗ is ϕ-invariant and V/V∗ 
ϕ F/F∗. Let A∗/V∗
be the π ′-component of A/V∗.

We claim A/A∗ is finite. It is enough to check that the π-component A1/V∗ of A/V∗ is
finite. To this aim, notice that T1 := T (A1) = Aπ . On one hand A1/(T1+V∗) is a π-group by
definition of A1/V∗; on the other hand A1/(T1+V∗) isπ ′-group as (T1+V∗)/T1 isπ-divisible
and A1/T1 is torsion free [see Lemma 5.1.(2)]. Thus A1 = T1 ⊕ V∗ and the claim reduces
to show T1 is finite. Since by (2) above, T1 = Aπ is bounded, we assume by contradiction
that T1 has infinite rank. By Proposition 2.2, we have that ϕ is FM on T1. Then, there exists
a prime p ∈ π such that ϕ = s ∈ Z is a multiplication by s not multiple of p on a countable
Zp-submodule B = ⊕i 〈bi 〉 of T1. Let {ai | i < ω} be a countable subset of the above basis S
for F and set W := 〈Vi | i < ω〉 = ⊕i Vi , where Vi := Z[ϕ]ai . Also, let M := B ⊕ W and
H := 〈ai + bi | i < ω〉 its “diagonal” subgroup, which is free on the Z-basis of the ai + bi ’s.
Since ϕ is one-to-one on M , then ϕ(H) is torsion free as H is. Recall that ϕ = 1

n ∈ Q on V .
Then for all i we have: H + ϕ(H) � (p − nϕ)(ai + bi ) = (p − 1)ai , as p divides n. Since
pai ∈ H , then ai ∈ H + ϕ(H). Thus B ≤ H + ϕ(H). Therefore (H + ϕ(H))/ϕ(H) ≥
(B + ϕ(H))/ϕ(H) 
 B is infinite, contradicting ϕ is LIN. Thus A/A∗ is finite.

Let us show that ϕ = 1
n on some A0 with finite index in A∗. Recall that A∗/V∗ is a

π ′-group and its p-component contains a divisible p-group of infinite rank (for each prime
p ∈ π ′). Then, by Proposition 2.2, we have that ϕ is FM on A∗/V∗. Thus, ϕ is multiplication
on some A0/V∗ with finite index in A∗/V∗. On the one hand, ϕ = 1

n on V . On the other hand,
by Lemma 5.1.(3) the multiplication by 1

n is an endomorphism on the whole A0. Then, as
ker(ϕ|A0 − 1

n ) ≤ V and (ϕ − 1
n )(A0) ≤ V∗, we have that A0/ker(ϕ|A0 − 1

n ) 
 (ϕ − 1
n )(A0)

is both periodic and torsion free. Therefore, ϕ = 1
n on A0. Thus, (a) holds. ��

Proof of Proposition 2.3, sufficiency We treat both conditions inertial and LIN simultane-
ously.

If ϕ is as in (a), it is trivial that ϕ is inertial (or LIN, respectively). Let then ϕ be as in (b).
We have to show that for each subgroup X of A the statement R(X) [respectively, L(X)]
below holds.
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R(X):=
( ∣

∣
∣
∣
X + ϕ(X)

X

∣
∣
∣
∣ < ∞

)

L(X):=
( ∣

∣
∣
∣
X + ϕ(X)

ϕ(X)

∣
∣
∣
∣ < ∞

)

Let π := �(n). We proceed by a sequence of claims.

(6) ϕ = m
n is inertial on A/T which is π -divisible.

In fact, if a ∈ A, there is a nonzero integer s such that sa ∈ V . Thus s(nϕ − m)(a) =
(nϕ − m)(sa) = 0 and (nϕ − m)(A) ⊆ T , as claimed.

(7) If X is any periodic subgroup, then R(X) [respectively, L(X)] holds.
This follows straightforward, since X (ϕ)∩V = 0 and one can verify R(X) [respectively,
L(X)] mod V .

(8) If for each torsion-free subgroup Y/Aπ ≤ A/Aπ it holds R(Y/Aπ ) [respectively,
L(Y/Aπ )], then for each torsion-free subgroup X ≤ A it holds R(X) [respectively,
L(X)].
Recall that by hypothesis B := Aπ is bounded by some e. Clearly, X has finite rank.

Let
∣
∣
∣
X+ϕ(X)+B

X+B

∣
∣
∣ =: s < ∞. Then, sϕ(X) ≤ X + B. Thus, esϕ(X) ≤ X . Since

ϕ(X) + X/X is bounded and has finite rank, it is finite. Then, R(X) holds, as wished.

Similarly, if
∣
∣
∣
X+ϕ(X)+B

ϕ(X)+B

∣
∣
∣ = s < ∞, then sX ≤ ϕ(X) + B, hence esX ≤ ϕ(X) and

(ϕ(X) + X)/ϕ(X) is finite.
(9) If Aπ = 0 and X is torsion free then R(X) [respectively, L(X)] holds.

As the hypotheses on ϕ hold even in A1 := Z[ϕ]X with respect to V1 := A1 ∩ V , we
can assume A = A1, that is X has maximal torsion-free rank r and V 
 Qπ ⊕ . . .⊕Qπ

(r times).
Let K/X be the π -component of A/X (which is periodic). By hypothesis R(K + V )

holds, thus R(K ) holds, since (K + V )/K 
 V/(V ∩ K ) is finite as it is a π ′-group.
On the other hand, K is torsion free, as T is a π ′-group. Thus, T (K + ϕ(K )) is finite.
Let Y := X + ϕ(X), YR := Y ∩ (X + T ) and YL := Y ∩ (ϕ(X) + T ). On the
one hand, YR/X and YL/ϕ(X) are both finite, as isomorphic to quotients of Y ∩ T ≤
T (K+ϕ(K )), which is finite. On the other hand, by (6), we have R(X+T ) [respectively,
L(X + T )]. Therefore, |Y/YR | = |(Y + T )/(X + T )| < ∞ (respectively, |Y/YL | =
|(Y + T )/(ϕ(X) + T )| < ∞). Thus R(X) [respectively, L(X)] holds.
Thus, we are reduced to show the following, which completes the proof.

(10) If R(X0) [respectively, L(X0)] holds for each torsion-free subgroup X0 of A, then
R(X) [respectively, L(X)] holds for any subgroup X .

By (7) above, ϕ induces on T a inertial (resp LIN) endomorphism. Let U := T (X). By
Proposition 2.2 applied to T , we have (FS), so that U/U(ϕ) is finite. Since the hypotheses
hold modulo U(ϕ) (which is periodic), that is for the endomorphism induced by ϕ on the
group A/U(ϕ), we can assumeU(ϕ) = 0 that isU = T (X) is finite. Therefore, X = X0 ⊕U
splits on U . Since X/X0 is finite, then R(X0) [respectively, L(X0)] implies straightforward
R(X) [respectively, L(X)]. ��

6 Proofs of Theorem A and remaining results

We state a lemma dealing with finitely many inertial endomorphisms. Denote by ⊕rQ
π the

direct sum of r copies of Qπ .

Lemma 6.1 Let ϕ1, . . . , ϕt be finitely many inertial endomorphisms of an abelian group A
with r := r0(A) < ∞.
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If ϕi = mi
ni

∈ Q on A/T , then there is a Z[ϕ1, . . . , ϕt ]-submodule V 
 ⊕rQ
π , where

π := �(n1 · · · · · nl), such that A/V is periodic.

Proof It is easily seen that for each p j ∈ π there isψ j ∈ Z[ϕ1, . . . , ϕt ] such thatψ j = r j/p j

on A/T (r j and p j coprime). Then, there are coprime m, n such that ϕ := ∑
j ψ j = m/n

on A/T where �(n) = π .
By Proposition 2.3, for each i , there is a torsion free ϕi -invariant subgroup Vi such that

A/Vi is periodic. Pick Z-independent elements b1, . . . , br of ∩i Vi , where r = r0(A). By
Lemma 5.2, for each k, there exists ak ∈ 〈bk〉 such that Z[ϕ]〈ak〉 is torsion free with rank 1.
Clearly, V 
 ⊕rQ

π . As V has maximal torsion-free rank, it is plain that A/V is periodic.
We claim ϕi (V ) ⊆ V . Set Wi := Z[ϕi ]〈a1, . . . , ar 〉 ≤ Vi . Since ϕi = mi

ni
on Wi , ϕ = m

n
on V and �(ni ) ⊆ �(n), we have Vi ≤ V . Also V/Wi is a π-group, as V/〈a1, . . . , ar 〉 is
such. Let a be any element of V and e be the bound of Aπ (which is bounded by Proposition
2.3). Therefore, there is aπ -number t such that ta ∈ Wi hence (niϕi −mi )(ta) ∈ T ∩Wi = 0.
Thus (niϕi −mi )(a) ∈ Aπ , so that e(niϕi −mi )(a) = 0. Since e and ni are π-numbers and
V is π-divisible, we have ϕi (V ) = eniϕi (V ) = emi V ⊆ V as claimed. ��

Proof of Theorem A, necessity Assume all ϕi are inertial. If r0(A) = ∞, then by Proposition
2.3 for each i there is a ϕi -invariant subgroup Ai with finite index such that each subgroup
of Ai is ϕ-invariant. Then, (a) holds with A0 := ∩i Ai .

Assume now r := r0(A) < ∞. By Lemma 6.1, there is a Z[ϕ1, . . . , ϕt ]-submodule V
such that V 
 ⊕rQ

π and A/V is periodic. Let π2 be the set of primes p such that some ϕi
is not FM on the p-component of A/V . Note that the definition of π2 is independent of V ,
as all possible V are commensurable each other.

On the one hand from Proposition 2.2, it follows that π2 is finite and for each p ∈ π2 the
p-component Ap of A is the sum of a bounded subgroup and a finite rank divisible subgroup.
On the other hand, Aπ is bounded, by Proposition 2.3. Thus, if π1 := π ∪ π2, there is C∗
such that

A = Aπ1 ⊕ C∗.

By Proposition 2.2 and the definition of π1, there is a finite index subgroup B ⊕ D of Aπ1

such that B is bounded, D is divisible with finite rank hence a π ′-group and each ϕi acts as
multiplications on both B and D, as we claim in the statement. Let us identify a suitable C .

We may assume V ≤ C∗. In fact |V/(V ∩ C∗)| =: s is finite as V 
 ⊕rQ
π and

V/(V ∩C∗) 
 (V +C∗)/C∗ is periodic with bounded π-component. So we may substitute
sV for V and get V ≤ C∗.

Use bar notation in Ā := A/V . Consider the primary decomposition C̄∗ = C̄∗
1 ⊕ C̄∗

0
where C̄∗

1 (respectively, C̄∗
0 ) is a π1-group (respectively, π ′

1-group). By (FS) of Proposition
2.2 and the definition of π1, each ϕi is multiplication on a subgroup C̄0 with finite index in
C̄∗
0 . On the other hand, C

∗
1 is torsion free (with finite rank) hence C̄

∗
1 has Min. Thus, C̄∗

1 has a
divisible finite index subgroup, say C̄1, on which each ϕi is multiplication (see Lemma 4.3).
Therefore, the subgroup C := C1 + C0 has finite index in C∗ and each ϕi is multiplication
on C̄ . So conditions (i), (i i), (i i i) of the statement hold for A0 := B ⊕ D ⊕ C .

To prove condition (iv), for each i let ϕi = mi
ni

∈ Q on V (see Proposition 3.3) and

p ∈ π(D) such that the p-component C̄ p of C̄ is infinite (hence unbounded). On the one
hand, as Cp is torsion free, we get that ϕi = mi

ni
on Cp . On the other hand, ϕi acts by the

same p-adic α on Dp as on D̄p . Therefore α = mi
ni

by Proposition 2.2 (as D̄p ⊕ C̄ p is
non-critical). ��
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Proof of Theorem A, sufficiency It is clear that if (a) holds, then all ϕi are inertial, so only
case (b) is left. By Proposition 2.1, we may assume A = A0. Fix a1, . . . , ar such that
V := Z[ϕ1, . . . , ϕt ]〈a1, . . . .ar 〉. Fix i and let Vi := Z[ϕi ]〈a1, . . . .ar 〉. Then V/Vi is a
divisible π-group with finite rank. By Proposition 2.3, ϕi is inertial iff it is such on the
periodic group A/Vi . Clearly, by Proposition 2.2, ϕi is already inertial on A/V . Use bar
notation in Ā := A/Vi .

If p ∈ π (which is a finite set), the p-component of Ā is Ā p ⊕ C(p), where Ap is the
p-component of A and C(p) is the p-component of C̄ . Clearly, C(p) contains V(p), the p-
component of V̄ . SinceC has no elements of order p, thenC(p) is torsion free and, by Lemma
5.1, C(p)/V(p) is a π ′-group. Hence C(p) = V(p). Therefore, ϕi is multiplication on C(p).
Moreover, this subgroup is divisible of finite rank. On the other hand, ϕi is multiplication
even on Ā p 
ϕi Ap ≤ B, which is bounded. Thus, we are in a position to apply Proposition
2.2 and obtain that ϕi is inertial on Ā p ⊕ C(p), the p-component of Ā.

If p /∈ π , then the p-component of Ā is ϕi -isomorphic to the p-component of A/V as
V/Vi is a π-group.

We have seen that ϕi is inertial on all p-components of Ā and even multiplication on all
but finitely many, thus ϕ is inertial on the whole of A by Proposition 4.1. ��
Proof of Corollary A Apply Theorem A to any pair of inertial endomorphisms ϕ1, ϕ2 of an
abelian group A. If (a) holds for both ϕ1 and ϕ2, then ϕ1ϕ2 − ϕ2ϕ1 = 0 on a subgroup
with finite index of A, since multiplications commute. Otherwise, by Proposition 3.3, ϕ1 and
ϕ2 commute on A/T anyway, where T = T (A). Moreover, there is a subgroup A0 with
finite index of A such that ϕ1 and ϕ2 commute on A0/V for some V as in Theorem A. As
T ∩ V = 0, then ϕ1 and ϕ2 commute on A0, as wished. ��
Proof of Theorem B It is enough to prove the statement for a finitely generated subgroup
Γ = 〈ϕ1, . . . , ϕt 〉 of I Aut (A). If case (a) of Theorem A applies statements (1) and (2)
follow trivially. Otherwise, let A0 and V be as in case (b) of Theorem A and T0 := T (A0).
Then, Γ ′ acts trivially on both A0/V and A0/T0. Thus, Γ ′ acts trivially on A0 and (1) holds.

The subgroup Γ0 := CΓ (A/A0) has finite index in Γ . On the other hand, by the above,
Σ := Γ ′ ∩ Γ0 stabilizes the series 0 ≤ A0 ≤ A and embeds in Hom(A/A0, A0), which
is bounded by m := |A/A0|. Thus [A,Σ] ≤ A0[m] = B[m] ⊕ C[m] ⊕ D[m]. As each
γ ∈ Γ acts by multiplications on B[m],C[m], D[m] and Γ is finitely generated, |Γ/Γ2|
is finite, where Γ2 = CΓ0([A,Σ]). On the other hand, we have that [A,Σ, Γ2] = 0 and
[A, Γ2,Σ] ≤ [A0,Σ] = 0. Thus, by the Three Subgroup Lemma [Γ2,Σ, A] = 0, that
is Σ is contained in the center of Γ2 which turns to be nilpotent and finitely generated as
well. Therefore, Γ has the maximal condition on subgroups and Γ ′ is finite, being periodic.
Finally, as Γ is finitely generated, we have Γ is central-by-finite. ��
Proof of Corollary B In part (1), by Propositions 2.2 and 2.3, LIN implies inertial. Also, in
any case, if ϕ is invertible, then ϕ is LIN iff ϕ−1 is inertial.

For statement (2), note that if γ1 is inertial and γ2 is LIN, then γ1γ2 = γ2γ1[γ1, γ2]where
γ1[γ1, γ2] is inertial as [γ1, γ2] is finitary. ��
Proof of Proposition A Let A be an abelian group and T := T (A). Suppose V is a torsion
free subgroup such that A/V is periodic and denote Ā := A/(V + T ), then the stabilizer Σ

of the series 0 ≤ (V +T ) ≤ A is canonically isomorphic to Hom( Ā, V +T ) = Hom( Ā, T ).
In the particular case when V has finite rank and A/V is locally cyclic, then by Proposition
2.3 we have Σ ≤ I Aut (A) and Σ ∩ FAut (A) corresponds to the subgroup of Hom( Ā, T )

formed by the homomorphisms with finite image. Moreover, if in addition, for each prime
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p, Ap has order p while the p-component of A/V has finite order (at least) p2, we have:
Σ 
 Hom( Ā, T ) 
 ∏

p Z(p) and Σ ∩ FAut (A) 
 ⊕
p Z(p), where p ranges over the set

of all primes.
To show the existence of a group A as above, let G := B ⊕ C where B := ∏

p〈bp〉,
C := ∏

p〈cp〉, and bp , cp have order p, p2, respectively. Consider the (aperiodic) element
v := (bp + pcp)p ∈ G and V := 〈v〉. Note that for each prime p there exists an element
d(p) ∈ G such that pd(p) = v − bp . Define A := V + 〈d(p)| p 〉. Then, we have that
A/T 
 〈1/p | p 〉 ≤ Q as it has torsion-free rank 1 and v +T has p-height 1 for each prime.
Then, T = T (B) 
 ⊕

p Z(p), while the p-component of A/V is generated by d(p) + V

and has order p2 as pd(p) = v − bp . ��
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