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Inertial Estimation and Energy-Efficient Control of a

Cable-suspended Load with a Team of UAVs

A. Petitti1, D. Sanalitro2,†, M. Tognon3,2, A. Milella1, J. Cortés2, A. Franchi4,2

Abstract— The Fly-Crane is a multi-robot aerial manipulator
system composed of three aerial vehicles towed to a platform
by means of six cables. This paper presents a method to
estimate the mass and the position of the center of mass of
a loaded platform (i.e. the Fly-Crane platform including a
transported load). The precise knowledge of these parameters
allows to sensibly minimize the total effort exerted during a
full-pose manipulation task The estimation is based on the
measure of the forces applied by the aerial vehicles to the
platform in different static configurations. We demonstrate
that only two different configurations are sufficient to estimate
the inertial parameters. Far-from-ideal numerical simulations
show the effectiveness of the estimation method. Once the
parameters are estimated, we show the enhancement of the
system performances by minimizing the total exerted effort.
The validity of the proposed algorithm in non-ideal conditions
is presented through simulations based on the Gazebo simulator.

I. INTRODUCTION

In the last decades, control and estimation algorithms for

the coordination of multi-robot systems have been deeply

investigated [1]. Recently, the multi-robot solution became

particularly popular in the field of aerial robotics. This solu-

tion increases the total payload of the system, its robustness

against disturbances, as well as its manipulability, making

the system suitable for construction and assembly tasks. To

reduce the complexity of the system, the aerial vehicles are

often connected to the load by simple cables, which allows

decoupling the rotational dynamics of the vehicles to the one

of the load.

Among the several designs presented in the literature,

e.g., [2] and [3], the most suitable for the load full-pose

control are the ones that are statically rigid [4] (or force-

closure [5]). This property allows compensating external

disturbances almost instantaneously simply changing the

intensity of the forces applied to the load by the cables,

without changing their orientation. The minimum condition
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to obtain such a property is to use at least six cables. In [6],

the use of one aerial vehicle per cable (at least six) is

proposed. However, this solution increases the complexity

and the cost of the system with respect to the case with only

three pairs vehicle-cable which is the minimum requirement

for full-pose control but is not statically rigid. In this work,

we shall focus on a statically rigid system that uses only three

aerial vehicles: the Fly-Crane [7]. The Fly-Crane, using only

three vehicles connected to a platform by a pair of cables,

allows to precisely control the pose of the platform while

minimizing the complexity and cost of the system. A similar

concept but based on bars was proposed in [8].

To perform manipulation tasks with the mentioned multi-

robot systems, different motion planning, and control meth-

ods have been presented. Regarding motion control, the

methods range from simple flatness-based open-loop [3], full

dynamic model inversion [6] and geometric techniques [9], to

communication-based [1] and communication-less [10] co-

ordination approaches. In the case of complex manipulation

tasks, different motion planners have been also developed to

provide desired trajectories that avoid obstacles in unknown

environments [11] and ensure the feasibility of inputs and

cable forces [7].

For both motion planner and controller, it turns out that

an important quantity to be precisely estimated is the real

position of the Center of Mass (CoM) of the load with respect

to its geometric center. In fact, for model-based controllers,

the knowledge of this parameter allows to better compensate

for the gravity effects. For motion planners, this parameter

is instead important to compute the configuration that best

shares the weight of the load among the aerial vehicles. Due

to the limited payload of the vehicles, it is advisable that each

aerial vehicle provides nearly the same force to sustain the

load, thus optimizing the energy-efficiency and flight-time

autonomy.

To improve both tracking performance and the generation

of optimal trajectories, our main contribution is the design

of an observer that can estimate the position of the CoM

of the loaded platform with respect to its geometric center.

For this observer, we analyze the observability conditions

necessary to estimate the CoM. We show that two different

static configurations are sufficient for the estimation. This

observer can run in a first initialization phase if the position

of the CoM is constant, or during task-execution, if the

position of the CoM changes over time (e.g., for pick &

place operations). The estimated quantity is then used in an

online optimizer that, given the desired pose trajectory of

the loaded platform, computes the remaining configuration
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Fig. 1: Schematic representation of the Fly-Crane and its main
variables.

variables (the angles of the cables) such that the weight of

the loaded platform is equally balanced among the robots.

Finally, the computed desired configuration is tracked by

a robust controller, presented in [12], capable of dealing

with external disturbances and non-idealities arising from

modeling errors at the dynamic, and kinematic levels.

The proposed framework, and in particular the estimation

method for the position of the loaded platform CoM, has

been tested with numerical simulation in non-ideal con-

ditions. Through these simulations, we shall highlight the

positive impact of improving the parameters estimation.

The manuscript is organized as follows. Section II de-

scribes the Fly-Crane system and its modeling, while in

Sec. III the proposed control and optimization strategy is pre-

sented. Section IV introduces the proposed estimation strat-

egy together with the observability analysis. The simulation

results in non-ideal conditions are shown in Sec. V. Finally,

discussions and future works are presented in Sec. VI.

II. SYSTEM MODELING

The Fly-Crane system consists of three aerial vehicles

attached to a platform by six cable. The platform is equipped

with an additional load. Each aerial vehicle is tied to the

loaded platform by two cables. The system is schematically

depicted in Fig. 1. Connections between cable-platform and

cable-aerial vehicle are done such that no rotational con-

straints are present.

In order to describe the system, let us define an inertial

frame FW = {OW ,xW ,yW , zW }, where OW is its origin

and {xW ,yW , zW } are its unit axes. We also define the

frame FL = {OL,xL,yL, zL} rigidly attached to the plat-

form. In particular, OL is the origin of FL and {xL,yL, zL}
are its unit axes. FL is placed such that OL is in the geo-

metric center of the platform and zL is perpendicular to the

platform plane. The vector WpL ∈ R
3 describes the position

of OL with respect to FW and WRL ∈ SO(3) describes the

orientation of FL with respect to FW
1. It is worth noticing

that, if the (loaded) platform’s mass is uniformly distributed,

the geometric center OL will coincide with the CoM of the

1The left superscript indicates the reference frame. From now on, FW

is considered as reference frame when the superscript is omitted.

platform. However, this is rarely the case, especially when

the platform is used for the manipulation of objects.

Let us denote with C the CoM of the platform and with

pC the position of C with respect to FW or, equivalently,

with LpC the position of C with respect to FL.

As already introduced, six cables are rigidly attached to the

platform, pulling it in such a way to control its position and

orientation. We assume that the cables have negligible mass

and inertia with respect to the other bodies of the system.

The i-th cable, with i = 1, . . . , 6, is attached at one end to

the platform at the point Bi and at the other end to an aerial

vehicle at the point Ai. The point Bi and Ai are described

by the vectors bi ∈ R
3 and pRi ∈ R

3 with respect to FW ,

respectively, or equivalently by the vectors Lbi ∈ R
3 and

LpRi ∈ R
3 with respect to FL. Assuming deformations due

to elasticity negligible in the operative conditions, the i-th

cable is characterized by a constant length li ∈ R>0.

We denote with fLi ∈ R≥0 the intensity of the internal

force along the i-th cable. Notice that if fLi > 0 the cable is

taut, while is slack if fLi = 0. Therefore, the motion of the

system has to be planned in a way to preserve the tautness

of each cable, i.e., such that fLi > 0 for all i = 1, . . . , 6.

We consider the aerial vehicles as thrust generation units

where fRij ∈ R
3 is the 3D controllable total thrust vector

of each vehicle.

Assuming the cables always taut, we have that each pair

of cables lays on a plane, as depicted in Fig. 1. The configu-

ration of the pair of cables (i, j) is then given by the angles

αij ∈ R between the plane formed by the cables and the one

composed by the axis {xL,yL}. Given the previous descrip-

tion of the system and the relative constraints, the platform

configuration can be entirely described by (pL,RL,α) ∈
C = SE(3) × R

3, where α = [α12 α34 α56]
⊤ ∈ R

3.

Let us indicate with q =
[
p⊤
L η⊤ α⊤

]⊤
the generalized

coordinates of the system, where η = [φ θ ψ]
⊤

is a

Euler angle parametrization of RL. The only undetermined

variable, i.e. the position of the aerial vehicles pRi, can be

easily computed by direct kinematics from q:

pRi(q) = pL +RL
LpRi(αij), (1)

where LpRi = Lbi + liRLbij
(αij)RzL

(βi)
Lbij

‖Lbij‖
, Lbij is

the vector
−−−→
BiBj expressed in FL and βi ∈ T is the angle

between
−−−→
BiBj and

−−−→
BiAi. The rotation matrices RLbij

(αij)
and RzL

(βi) represent, respectively, the rotation of αij about

axis Lbij and the rotation of βi about axis zL. Let v =[
ṗ⊤
R1 ṗ⊤

R2 ṗ⊤
R3

]⊤
be the velocities of the aerial vehicles,

then, the following holds:

v = J(q)q̇, (2)

where J ∈ R
9×9 is the Jacobian matrix defined as

J =



I3 J12 R12

I3 J34 R34

I3 J56 R56


 , (3)
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Fig. 2: The control architecture of the Fly-Crane with highlighted the CoM estimator, the α optimizer, the configuration controller of the
platform and the velocity controllers of the three aerial vehicles.

where In ∈ R
n×n is the identity matrix of dimension n,

Jij = −

[
RL

(
Lbi + liRLbij

(αij)RzL
(βi)

Lbij

‖Lbij‖

)]

×

,

Rij = −liRLRLbij
(αij)

[ Lbij

‖Lbij‖

]

×

RzL
(βi)

Lbij

‖Lbij‖
.

For a given vector ν = [νx νy νz]
⊤, the notation [ν]×

indicates the skew-symmetric matrix.

Furthermore, thanks to the Jacobian matrix J, following

[13], we can write the dynamics of the whole system,

including platform and aerial vehicles as

Mq̈ + c+ n = J⊤



fR12

fR34

fR56


 , (4)

where M ∈ R
9×9 is the generalized inertia matrix of the

system, c ∈ R
9 is the vector of Coriolis and centrifugal terms

and n ∈ R
9 accounts for gravitational effects. Analyzing (4),

we remark that a non-zero displacement of C from OL

(if LpC 6= 0) induces an additional torque component

RL
LpC × mLg, where mL is the mass of the loaded

platform, and g is the gravity vector. This is more evident if

we make explicit n

n(LpC , q) = mL




g

RL
LpC × g

0


+mQJ

T



g

g

g


 , (5)

where mQ is the mass of each robot (which is considered

the same for ease of notation).

III. CONTROL AND OPTIMIZATION STRATEGY

The Fly-Crane can be seen as a redundant manipulator,

since the desired pose of the platform (i.e. the end-effector)

can be achieved with an infinity of configurations. The angles

α represent the 3-DoF redundancy of the system. Here, we

propose a method to locally optimize the desired value of

these angles, αd, in order to balance the loaded platform’s

weight among all vehicles. In the following, we call this

method αd optimizer. The estimated center of mass and the

orientation of the loaded platform play a fundamental role

to compute the optimal αd. Therefore they represent the

inputs of the αd optimizer as depicted in Fig. 2. The values

of αd are computed by solving the following minimization

problem:

αopt = argmin
α

µ(LpC , q),

s.t. 0 ≤ αij <
π
2
, for (i, j) ∈ {(1, 2), (4, 3), (5, 6)} ,

(6)

where µ(LpC , q) =

∣∣∣∣‖fR12‖ − ‖fR34‖

∣∣∣∣ +

∣∣∣∣‖fR34‖ −

‖fR56‖

∣∣∣∣ +
∣∣∣∣‖fR56‖ − ‖fR12‖

∣∣∣∣. It is worth noting that this

function reaches its minimum when the norms of the forces

are the same, i.e., each aerial vehicle is equally contributing

to the transportation effort.

In this work, we apply a simple gradient descent itera-

tive algorithm to solve the optimization problem, but more

sophisticated techniques could be used. More precisely, at

each time instant, we vary the value of α of a quantity

proportional to the approximate anti-gradient of µ(LpC , q).

At this point, the available desired trajectories qd =
[pd

L ηd αd
opt] and q̇d = [ṗd

L η̇d α̇d
opt] are fed to

the controller which generates the commanded acceleration

for each vehicle u = [u⊤
1 u⊤

2 u⊤
3 ]

⊤. Such commanded

accelerations are provided to the low-level actuation units of

the aerial vehicles. Each low-level controller takes care of

the orientation and total thrust of the vehicles by controlling

the rotor speeds aiming at implementing the desired linear

acceleration. In the following we detail the equations used

in each level of the control framework represented in Fig. 2.

Given the desired configuration qd, the corresponding gen-

eralized velocities q̇d, and the measured configuration q, the

commanded accelerations are computed simply as

u = KR

(
J(q)

(
Kqeq + q̇d

)
− v

)
, (7)

where Kq = kqI9 ∈ R
9×9

>0 and KR = kRI9 ∈ R
9×9

>0

are positive definite matrices representing control gains, and

eq = qd − q.

The convergence and stability of the implemented con-

troller have been proven in [12].
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IV. ESTIMATION OF THE INERTIAL

PARAMETERS

In this section, the estimation of the inertial parameters

needed to optimize the energy exerted by the system taking

advantage of the Fly-Crane redundancy. First, the necessary

conditions for the estimation are demonstrated. The proposed

estimation strategy is described afterward.

Let us model the loaded platform of the Fly-Crane as a

rigid body on which six forces fi = fLiκi are acting in Bi,

respectively, with i = 1, . . . , 6, and κi =
pRi−bi

‖pRi−bi‖
∈ SO(2)

being the unit vector representing the attitude of the cable.

For ease of exposition, we introduce a new reference frame

FC = {OC ,xC ,yC , zC}, where its origin OC is in C and

{xC ,yC , zC} are its unit axes. FC is oriented as FL. Thus,

the vector pC also describes the position of OC with respect

to FW and RC ∈ SO(3) describes the orientation of FC

with respect to FW , resulting that RC = RL. Therefore,

the dynamical model of the loaded platform, with reference

to FC , is the one of a rigid body subject to the forces fi,

i = 1, . . . , 6, i.e.,

{
mLv̇C =

∑6

i=1
fi +mLg

Iω̇ + ω × Iω =
∑6

i=1
[(bi − pC)× fi]

, (8)

where v̇C is the velocity of C, ω is the angular velocity

of the loaded platform, and I is the inertia tensor of the

loaded platform. It is worth noting that in (8) there are no

torques due to gravity. Seen from FC , gravity acts in the

origin C. The forces fi, i = 1, . . . , 6 are obtained from the

robot thrusts inverting (4). Moreover, we assume that the

wrench-feasibility constraints and the thrust constraints are

satisfied [7]. The equations of the statics, in FC , are the

following:

{ ∑6

i=1

Cf i = −mLR
T
Cg∑6

i=1

(
Cbi ×

Cf i

)
= 0

. (9)

Let us note that Cbi =
Lbi−

LpC and Cf i =
Lf i. Thus, (9)

can be suitably written as

{ ∑6

i=1

Lf i = −mLR
T
Lg∑6

i=1

[
(Lbi −

LpC)×
Lf i

]
= 0

. (10)

Then, we can write (10) as a linear system Ax = b, where

x =
[
m−1

L
LpC,x

LpC,y
LpC,z

]T
∈ R

4,

b =
[
−(RT

Lg)
T −

∑6

i=1
(Lbi ×

Lf i)
T
]T

∈ R
6, and

A =




∑6

i=1

Lf i 0

0

[∑6

i=1

Lf i

]

×


 ∈ R

6×4.

It is worth noting that A and b strongly depend on the con-

figuration of the system and, in particular, on the orientation

of the loaded platform through RL. Given the dimension of

the unknown vector x, it may seem that a single configuration

is sufficient to estimate the parameters. However, A is not

full rank. Let us note that A can be seen as an upper

triangular block matrix, thus (Theorem 3.10 in [14])

rank(A) = rank

( 6∑

i=1

Lf i

)
+ rank

([ 6∑

i=1

Lf i

]

×

)

and it follows that rank(A) = 3. Therefore, in order to

estimate x, we need at least two different static config-

urations, namely, q̄1 and q̄2 leading to, respectively, the

following two pairs (A1,b1) and (A2,b2). However, q̄1
and q̄2 must be chosen in such a way to guarantee that

Ã =
[
AT

1 AT
2

]T
∈ R

12×4 is full rank. To this aim, we

use the Gramian matrix, defined as G = ÃT Ã, to analyze

linear independence of vectors in Ã, that is to say, a set of

vectors are linearly independent if and only if the Gramian

matrix is full rank [15]. Thus, the eigenvalues of G give us

information about Ã. Specifically, if the smallest eigenvalue

λmin of G is non zero, then x can be estimated. Indicated

with fi(q̄) the resulting force acting on the loaded platform

given the configuration q̄, we state the following proposition.

Proposition 1. Given two configurations q̄1 and q̄2, the

unknown vector x =
[
m−1

L
LpC,x

LpC,y
LpC,z

]T
can

be estimated if and only if
∑6

i=1

Lf i(q̄1) 6=
∑6

i=1

Lf i(q̄2).

Proof. Let us analyze the Gramian matrix G defined as G =
ÃT Ã. We note that A1 and A2 have the same structure

A1 =




ρ 0

0

[
ρ

]

×


 , A2 =




σ 0

0

[
σ

]

×


 ,

where ρ =
∑6

i=1

Lf i(q̄1), σ =
∑6

i=1

Lf i(q̄2). Thus, G

presents the following structure

G =




ρTρ+ σTσ 0

0

[
ρ

]T

×

[
ρ

]

×

+

[
σ

]T

×

[
σ

]

×


 .

The eigenvalues of G, indicated with eig(G), are

eig(G) =

{
γ, γ,

γ

2
±

1

2
ξ

1

2

}
,

where γ = ρTρ + σTσ and ξ =

(
ρTρ + σTσ

)2

+

4(ρTσ)2 − 4ρTρσTσ (see the Appendix for a detailed

analysis of the eigenvalues of G). Hence, λmin = 0 iff

ξ = γ2:

ξ = γ2 ⇒
γ2 + 4(ρTσ)2 − 4ρTρσTσ = γ2 ⇒

(ρTσ)2 = ρTρσTσ ⇒

ρT

(
σ ρT

)
σ = ρT

(
ρσT

)
σ ⇒

σ ρT = ρσT

,

implying that G is singular if and only if ρ = σ. Then, the

proposition is proved.

To give a physical interpretation to Proposition 1, ob-

serve that we can rewrite the condition
∑6

i=1

Lf i(q̄1) 6=

Preprint version, final version at http://ieeexplore.ieee.org/ 4 IEEE International Conference on Unmanned Aircraft Systems (ICUAS) 2020



∑6

i=1

Lf i(q̄2) as RL
⊤
1 g 6= RL

⊤
2 g, where RL1, RL2 in-

dicate the rotation matrices associated to the configuration

q̄1, q̄2 respectively. Thus, R̄L1 and R̄L2 cannot represent

a rotation around zW at the same time. This clarifies as

platform rotations around a vector parallel to the g vector do

not contribute in the estimation process. Indeed, as a result

of such rotations, the load balancing does not change.

Guided by this result, we propose the following estimation

algorithm composed by two phases: the initialization phase

and the online estimation phase reported in Algorithm 1 and

Algorithm 2, respectively. The introduction of a preliminary

initialization phase is motivated by the possibility that the

desired trajectory to follow does not provide an opportune

variation of the orientation of the loaded platform. Thus,

resulting in no informative data for the estimation procedure.

For this reason, we introduce an initialization phase in

order to have at least an initial estimation of LpC . On the

other hand, the online estimation phase aims to improve the

estimation by filtering out possible measurement noise.

Algorithm 1: Initialization

1 Start from a static configuration q0;

2 Stabilize the platform with orientation RxL
(ς);

3 Collect
L
f̃(q̄1) for i = 1, . . . , 6 and compute A1;

4 Stabilize the platform with orientation RyL
(ς);

5 Collect
L
f̃ i(q̄2) for i = 1, . . . , 6 and compute A2;

6 Solve Ãx = b̃ for x;

7 return p̂C(0);

Algorithm 2: Online Estimation of m and LpC

1 p̂C = p̂C(0);
2 while the final point is not reached do

3 if there are new measurements at time t then

4 Collect
L
f̃ i(q̄t) for i = 1, . . . , 6;

5 p̂C = recursiveLeastSquare

(
p̂C ,

L
f̃ i(q̄t)

)
;

6 return p̂C ;

The initialization phase assumes to start from a generic

configuration q⋆ =
[
pT
L⋆ 0 0 0 α⋆ α⋆ α⋆

]T
. Then, two

different orientations RxL
(ς) and RyL

(ς) of the platform

are imposed through the controller where RxL
(ς) is the

rotation of angle ς > 0 about axis xL and RyL
(ς) is

similarly defined. Then, the measurements acquired in these

two different configurations are used to set the initial value

p̂C(0) of the estimate p̂C of pC . It is worth to notice

that during the initialization phase, we do not perform the

optimization procedure. On the other hand, the online phase

is employed, starting from p̂C(0), to update of the estimate

p̂C . Anytime new measurements are available, the estimate

p̂C is updated by means of a standard Recursive Least Square

procedure [16].

Fig. 3: Screenshot of the Fly-Crane system simulated in Gazebo.

V. NUMERICAL AND SIMULATION RESULTS

In this section, we describe the validation of the estimation

algorithm, introduced in Sec. IV, and of the optimization

strategy, given in Sec. III, by means of numerical simulations.

To this aim, first, we simulate the estimation of the loaded

platform mass and its center of mass. Then, we use this

estimation to compute the value of α that locally optimizes

the force distribution among the robots.

A. Simulation Scenario

We consider a simulation scenario suitable for the exe-

cution of trajectory tracking tasks. It is implemented using

Gazebo, modeling the cables as a set of serially-connected

links, such that non-ideal effects as cable deformations, cable

vibrations and sagging, and noisy measurements are taken

into account. An image of the simulation scenario is shown

in Fig. 3. We perform our tests with software in the loop:

the low-level controller of the aerial vehicles (based on the

TeleKyb2 framework) is the one running on board in our real

platforms whose hardware interface is emulated as well. The

high-level controller is implemented in MATLAB/Simulink.

The low-level controller runs at a frequency of 1 [kHz], while

the high-level controller runs at a frequency of 5 [Hz]. The

system has been simulated using the following parameters:

• the length of each cable is 1 [m];
• the weight of each vehicle has been set to 1.03 [kg];
• the mass of the platform is 0.2 [kg].

Each cable is attached to the platform anchor points located

in Lb1 = [−0.433 0.15 0] [m], Lb2 = [−0.433 −0.15 0] [m],
Lb3 = [0.0866 − 0.45 0] [m], Lb4 = [0.3464 − 0.3 0] [m],
Lb5 = [0.3464 0.3 0] [m], Lb6 = [0.0866 0.45 0] [m]. Then,

we assume a load with mass 0.2 [Kg] located in LpO =
[−0.4 0.1 0] [m], resulting in an increase of 100% in the

loaded platform total mass. The presence of the load move

the center of mass to pC = [−0.2 0.05 0] [m].

B. Validation of the Estimation Algorithm

Before starting with the trajectory tracking task, we run

the estimation procedure in order to identify the value of

the mass and the position of the CoM of the loaded plat-

form. First, we run the initialization phase of the estimation

2https://git.openrobots.org/projects/telekyb3
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Fig. 4: The estimation errors (in kilograms for the mass and meters
for the position coordinates) computed during the online estimation
procedure. At time t = 0 the errors correspond to the one obtained
after the Initialization procedure.

Fig. 5: The evolution of the configuration q =
[

p
⊤
L η

⊤
α

⊤
]⊤

of
the Fly-Crane while tracking a desired trajectory and optimizing α.

procedure, described in Algorithm 1, with ς = 15◦. The

outcome of this preliminary phase is an initial estimate

p̂C(0) = [−0.143 − 0.081 0.015] [m] and m̂ = 0.405 [Kg].
The accuracy of this initial estimate is related to the noise

provided by the simulation framework. To average out the

noise, we run also the online estimation phase that leads

the estimation errors to converge to zero, in average. The

results of the online estimator are reported in Fig. 4. As can

be seen, the estimation errors tend to go to zero thanks to

the least-squares method, which is robust with respect to the

noise thanks to its ability to fit all the data up to the current

time. The online phase of the estimation procedure run at a

frequency of 500 [Hz].

C. Validation of the Optimization Algorithm

Once the estimation phase is completed, the system is

demanded to track a trajectory which takes the system from

its initial configuration, qd(0) where α = [60 60 60] [deg],
to a configuration qd(T1) where pd

L = [0 0 1.5] [m] and

ηd = [0 0 0] [deg] with T1 = 60 [s], to the final desired

configuration qd(T2) where pd
L = [0.2 0 1.5] [m], ηd =

[10 8 45] [deg] with T2 = 120 [s]. While the system tracks

the trajectory, α are optimized to distribute the entire payload

among the robots in the best possible way. To better illustrate

the performance of the algorithm, the optimization results

will be compared with a not optimized case, where the

desired angles of the configuration of the system are equal

to αc = [38 56 46] [deg]. Notice that this particular choice

leads to a feasible trajectory.

In Fig. 5, we present the results of the tracking of

the desired trajectory while the optimization is running.

The controller is considerably robust in maintaining the

desired platform position and orientation while following

the output of the optimization algorithm, i.e. αopt, that

varies significantly during the tracking task. On the other

hand, Fig. 6a shows the optimized configuration compared

to αc. As can be seen, the optimization procedure forces the

system to reach different angles α, if compared with the not

optimized case, that reflects an optimal configuration with

respect to the minimization of the total exerted actuation

effort. Furthermore, Fig. 6b shows how the cost function µ

reaches a lower value as a result of the optimization process,

when compared to the one obtained in the not optimized case.

The optimization is running since the beginning of the task,

in qd(0), leading µopt to decrease and α to move from their

initial values. Then, at T1, when the new robot arrangement

qd(T1) is required, the evolution of the cost function µopt

is distinctly below the not optimized µ, as a consequence

of the α gradual variation. Then, the cost function keeps

such beneficial gap until the end of the simulation. It is

worth observing that the cost function rise is caused by the

transition between two different system setups for which the

required thrusts must be different enough among the three

UAVs. For the sake of completeness, Fig. 6c shows the

trend of robot thrusts in the optimized case compared to not

optimized case. As can be seen, the optimization algorithm

reduces the dispersion of the three total thrusts by increasing

fR56opt and decreasing of fR12opt and fR34opt. This causes

the minimization of the maximum total thrust exerted by the

system and, as a consequence, the extension of the overall

flight time.

VI. CONCLUSIONS

We have presented a novel parameters estimation strategy

for towed-cable multi-robot systems and we showcased its

performance on the so-called Fly-Crane system. Our analysis

shows that the knowledge of the applied forces in two

different static configurations is sufficient to estimate the

mass and the center of mass of the loaded platform. We

have shown how this estimation procedure can be useful to

optimize the performance of the system in terms of energy.
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(a) The evolution of the angles α in the case in which the
optimization procedure is running (solid lines) and is not running
(dashed lines).
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(b) The evolution of the cost function during the trajectory tracking:
in red, the case with the optimization of α, i.e. α = αopt, and, in
blue, the case with constant α = αc.
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(c) The evolution of the UAV total thrusts in the optimized case
(solid line) and not optimized case (dashed line).

Fig. 6: The comparison between the evolution of the Fly-Crane
system in the not optimized case and optimized one

Finally, we have validated the proposed strategy by means

of numerical simulations. Future work will deal with the

analysis of the noise sensitivity of the estimation strategy and

with the development of an online active sensing estimation

procedure able to detect the best configurations given the

noisy measurements.
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APPENDIX

Given the Gramian matrix defined as G = ÃT Ã, where

Ã =
[
AT

1 AT
2

]T
and

A1 =




ρ 0

0

[
ρ

]

×


 , A2 =




σ 0

0

[
σ

]

×


 ,

where ρ =
∑6

i=1

P f i(q̄1), σ =
∑6

i=1

P f i(q̄2) and fi(q)
indicates the resulting force acting on the platform given the

configuration q.

Indicated with ρ1,2,3 and σ1,2,3 the components of, re-

spectively, ρ and σ, let us compute the eigenvalues of G by
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solving G− λI = 0 for λ leading to the following values

λ1/2 = ρ21 + ρ22 + ρ23 + σ2
1 + σ2

2 + σ2
3 = ρTρ+ σTσ

λ3 =
ρ2

1
+ρ2

2
+ρ2

3
+σ2

1
+σ2

2
+σ2

3

2
+

+ 1

2

(
ρ41 + 2ρ21ρ

2
2 + 2ρ21ρ

2
3 + 2ρ21σ

2
1 − 2ρ21σ

2
2+

−2ρ21σ
2
3 + 8ρ1ρ2σ1σ2 + 8ρ1ρ3σ1σ3 + ρ42+

+2ρ22ρ
2
3 − 2ρ22σ

2
1 + 2ρ22σ

2
2 − 2ρ22σ

2
3 + ρ43+

+8ρ2ρ3σ2σ3 − 2ρ23σ
2
1 − 2ρ23σ

2
2 + 2ρ23σ

2
3+

+σ4
1 + 2σ2

1σ
2
2 + 2σ2

1σ
2
3 + σ4

2 + 2σ2
2σ

2
3 + σ4

3

) 1

2

=

= 1

2

(
ρTρ+ σTσ

)
+ 1

2
ξ

1

2

λ4 =
ρ2

1
+ρ2

2
+ρ2

3
+σ2

1
+σ2

2
+σ2

3

2
−

+ 1

2

(
ρ41 + 2ρ21ρ

2
2 + 2ρ21ρ

2
3 + 2ρ21σ

2
1 − 2ρ21σ

2
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−2ρ21σ
2
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2
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2
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2
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2
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1σ
2
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2σ

2
3 + σ4

3

) 1

2

=

= 1

2

(
ρTρ+ σTσ

)
− 1

2
ξ

1

2

.

Moreover, let us simplify ξ by writing the negative products

as −2ρ2iσ
2
j = 2ρ2iσ

2
j−4ρ2iσ

2
j and adding the terms −4ρ2kσ

2
k+

4ρ2kσ
2
k, for k = 1, 2, 3, leading to

ξ =

(
ρ41 + ρ42 + ρ43 + σ4

1 + σ4
2 + σ4

3 + 2ρ21ρ
2
2 + 2ρ21ρ

2
3+

+2ρ21σ
2
1 + 2ρ21σ

2
2 + 2ρ21σ

2
3 + 2ρ22ρ

2
3 + 2ρ22σ

2
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+2ρ22σ
2
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2
3 + 2ρ23σ

2
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2
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2
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+2σ2
1σ

2
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1σ
2
3 + 2σ2
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2
3

)
+

+

(
4ρ21σ

2
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2
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2
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+8ρ1ρ2σ1σ2 + 8ρ2ρ3σ2σ3 + 8ρ1ρ3σ1σ3
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+

(
− 4ρ21σ

2
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2
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2
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2
2 − 4ρ21σ

2
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2
2 − 4ρ22σ

2
2

)

=

(
ρTρ+ σTσ

)2

+ 4(ρTσ)2 − 4ρTρσTσ.
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